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We study the helical-structure spin glass that is formed in a system of randomly arrayed vector 
magnetic moments with oscillating large-radius interaction. The low-temperature phase differs 
from the paramagnetic one, but does not have the Edwards-Anderson parameter (qEA = 0) in the 
case of a fully isotropic interaction. The anisotropy of the interaction leads to q,, #0, and the 
susceptibility x ( T )  either has a smoothed-out cusp at T=: Tc or increases right down to low 
temperatures (depending on the anisotropy). In the former case the nonlinear susceptibility 

= a 2X/dh is very high in absolute value (but finite) near the maximum of x (T) .  Very weak 
magnetic fields h -ho (where ho depends on the anisotropy parameter) smooth out and then 
destroy completely the maximum of x ( T  ). 

I. INTRODUCTION 

A theoretical description of highly disordered systems 
such as spin glasses is made complicated' by the lack of a 
translationally invariant order parameter and hence of ex- 
plicit "slow"" variables that describe the continuous defor- 
mations of the ground state. The model proposed by Mattis2 
for spin-glass without  frustration^,^ however, does have la- 
tent slow variables that are uniquely connected with the ini- 
tial spins, and this connection is determined by a set of ran- 
dom numbers that vary with the realizations of the system. 
This suggests the possible existence of some latent slow var- 
iables also in the more realistic spin-glass models. A model of 
this kind, which describes a random array of spins (at points 
xi and with density c) in three-dimensional space, with an 
interaction 

%Po 
VoaB ( r )  =tiap W o  - sin pore-"', 

2nr 

was proposed and investigated by ~ s ~ - ~  for the case of 1 s i 1 ~  
spins. It has turned out that at sufficiently high densities c 
(more accurately, at y = xp;/47~c( 1) the spin configuration 
is described by a sinusoidal modulation wave (ui ) a cos 
(Q xi + p ), where Q is a wave vector of arbitrary direction 
(Q =pol and p is the sought slow variable. Both the thermal 
fluctuations p and the static strains (due to the disorder of 
the system) increase over large scales, so that the sinusoidal 
structure is preserved only locally. Nonetheless, such a "dis- 
torted sinusoidal" phase differs in principle from the para- 
magnetic one, and the two should thus be separated by a 
thermodynamic-phase-transition point. 

Clearly, however, latent slow variables exist in not just 
any spin glass. In particular, in the Edwards-Anderson mod- 
el1 with large (but finite!) number of nearest neighbors, a 
phase transition of an entirely new type takes place (in a 
three-dimensional system),' not connected with formation 
of any (even very well hidden) macroscopic mean values, so 
that the question of slow variables no longer arises. 

It makes sense thus to distinguish between two types of 
spin glass: one with latent sinusoidal or (see below) helical 

structure and the other having no spatial structure at all. 
From the viewpoint of spin-glass theory, the "general situa- 
tion" corresponds more readily to the second type, but the 
first type is apparently also realized in nature and is there- 
fore worthy of study. In this paper we investigate in detail 
the properties of the low-temperature phase of a classical 
spin glass of the first type with a vector (Heisenberg or 
planar) spin. The question of the phase transition from the 
paramagnetic to the low-temperature phase remains un- 
clear, and will not be dealt with here, i.e., we confine our- 
selves to the temperature region T = (T, - T)/T, )1/213 (for 
a derivation of this criterion see Ref. 5). 

We emphasize that we are considering only equilibrium 
thermodynamics (which may be very difficult to achieve in 
experiment). The plan of the paper is the following: In Sec. I1 
we discuss certain experimentally investigated forms of spin 
glass, in which a distorted helical structure can exist. It is 
shown that the RKKY interaction (V(r)- W0rP3 cos 2pFr) 
customarily used to describe the interaction of magnetic mo- 
ments in alloys such as CuMn near the phase-transition tem- 
perature Tc is equivalent to an interaction of type (1.1) with 
x-min (c1I3, pF), po = 2pF. It is shown next in the same 
section that the interaction (1.1) can lead to formation of a 
helical structure only at y = xp;/4?rc 5 1, whereas at y) 1 
(low densities) the problem is totally equivalent to the utterly 
random Edwards-Anderson model (second spin-glass type). 
In particular, the alloy Cu, -, Mn, is expected to exhibit a 
helical structure atx 2 10% (see in this connection the recent 
experiment of Cable et a/.'). 

The third section of the paper is devoted to a derivation 
of the effective Hamiltonian of a helical structure in the case 
of Heisenberg spins. We shall show that this structure is 
characterized (locally) by two vectors: the wave vector 
Q = V8 of the helix and by the vector n (in spin space) that 
determines the direction of the normal to the plane of rota- 
tion of the spins in the helix. In the absence of spin-orbit 
interactions the vectors Q and n belong to different spaces 
and are therefore independent. When the direction of n is 
slowly varied, an "elastic" energy appears in the form 
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where the constant J is of pure fluctuational origin (J = 0 in 
the mean-field approximation). The field deformations 8 are 
described by the effective Hamiltonian 

The fluctuations of the density of the disposition of the mag- 
netic atoms are neglected in Eqs. (1.2) and (1.3). Allowance 
for these fluctuations adds to (1.2) and (1.3) the terms [n] 
and 8 [8 1, respectively: 

where g,,(x) and f (x) are random Gaussian fields with 
small correlation raiii. A dimensionality analysis shows that 
the fluctuations (both thermal and those due to disorder) of 
the field n remain finite over large spatial scales, whereas the 
fluctuations of the field 8 diverge strongly. This means that 
to investigate the stability of our helical phase (neglecting 
spin-orbit interactions) it suffices to consider the Hamilton- 
ian H [8] = Ho[8] + g [ 8 ] ,  defined by Eqs. (1.3) and (1.3'). 
The Hamiltonian H [8 ] agrees to within numerical coeffi- 
cients with the Hamiltonian that describes the helical phase 
of a planar X Y  magnet. 

In Sec. IV we study the properties of the distorted heli- 
cal phase of vector magnets. In the absence of anisotropic 
interactions, a low-temperature phase is produced with 
strong thermal fluctuations of the field 8: ((8(0) 
- 6 (x ) )~ )  a x1I2, therefore the mean value of the spin is 

I (ai ) I = (cos 8 (xi)) = 0 and the magnetic susceptibility x 
obeys the Curie law /y a 1/T at all T (here and below the 
angle brackets denote thermodynamic averaging, the double 
brackets an irreducible correlator, and a superior bar aver- 
aging over the realizations). Nonetheless, this low-tempera- 
ture phase differs from the paramagnetic one, as can be seen 
from the behavior of the correlator of the wave vectors of the 
structureQ (x): (Q (0)Q (x)) cc x - (asituationreminiscentof 
a two-dimensional X Y  ferr~magnet).~ 

In Sec. V we study the effects of dipole-dipole interac- 
tion and of anisotropy. The presence of a dipole-dipole inter- 
action, no matter how small, alters qualitatively the proper- 
ties of the system. The point is that the dipole energy is a 
minimum when Q and n are parallel. This means that if n is 
fixed (say on account of spin anisotropy of the easy-plane 
type) lifting of the degeneracy in the directions of Q and 
cutoff of the long-wave fluctuations. A similar effect results 
also, in the absence of any spin anisotropy, from small an- 
isotropy of the initial interaction in coordinate space. The 
spins acquire therefore local mean values (ai  ) #O (in which 
case, of course, the magnetic moment averaged over the sys- 
tem is (5) = O), and the magnetic susceptibility assumes a 
constant value at low temperatures. 

In Sec. VI of the paper we investigate in detail the mag- 
netic properties of the system. The variation of the suscepti- 
bility with temperature depends on the relative values of the 

anisotropic interactions. It is then possible to distinguish 
between three characteristic regimes, which we shall consid- 
er in order of increasing intensity of the anisotropic forces: 1) 
monotonic increase ofx(T)  with decrease of temperature; 2) 
smooth maximum ofx(T) in the region T - r* 4 1 followed by 
a decrease to x ( T  = 0); 3) a sharp break at T = T, . For the 
second regime we investigate in detail the behavior of the 
nonlinear susceptibility = 8 2 ~ / d h  and of the differential 
susceptibility/E.(~, h ) in finite fields h. The func t ionT(~)  has 
at T - T* a sharp maximum that is not connected with a true 
singularity, but stems from a rapid crossover between the 
regions of "strong" ((SO )2) > 1 and "weak" fluctuations of 
the phase variable 8 (x). In any of the aforementioned three 
regimes, the behaviors of the longitudinal and transverse 
(relative to the spin rotation plane) susceptibilities differ 
greatly. For example, in the regime of strongly developed 
fluctuations the transverse susceptibility X, changes little 
with lowering of the temperature, whereas the longitudinal 
susceptibility xll increases in accordance with the Curie law 
to not too low temperatures, but with an additional coeffi- 
cient 3/2, so that the susceptibility x averaged over all the 
directions is purely paramagnetic; in other words, the longi- 
tudinal susceptibility coincides in this case with the para- 
magnetic susceptibility of a planar magnet. The behavior of 
xL changes little with change of the anisotropic interactions, 
whereasxl1 depends strongly on them and characterizes the 
state of the system, and will therefore be the main object of 
our study. The value of xII (T, h ) changes rapidly when an 
external magnetic field is turned on. In the region of the 
maximum of the linear susceptibilityx(T) the value ofx(T, h ) 
is determined by the values ofx(T)  a n d T ( ~ ) ,  and decreases 
with the field, but at lower temperatures the initial decrease 
ofx(T, h ) gives way to an increase even in weak fields h -h, 
(where ho is determined by the intensity of the dipole forces 
in the case of XY spins or by the spatial anisotropy of the 
initial interaction), and is eventually governed by the Curie 
law. In other words, the susceptibility measured in a field 
h 2 ho has no temperature maximum and increases mono- 
tonically with decreasing temperature. This nonlinear effect 
is due to a competition between the dipole forces that sup- 
press the fluctuations, on the one hand, and the magnetic 
field that enhances them, on the other (the action of a uni- 
form magnetic field on a randomly distorted helicoid is anal- 
ogous to the action of a random magnetic field on a ferro- 
magnet. 

The last section of the paper is devoted to a discussion of 
the results and of the possibilities of experimentally observ- 
ing the predicted spin-glass phase with helical structure. 

11. CONFIRMATION OF MODEL 

We shall consider dilute solutions of magnetic atoms in 
a carrier matrix. The interaction between the spins of the 
magnetic atoms is assumed paired, and the spins themselves 
are assumed to be of the classical planar or Heisenberg type: 

The interaction Vi,. is assumed to depend on xi - x,, 
i.e., Vu = V(x, - xj), and the magnetic atoms are assumed 
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located at random points xi. This class includes the most 
frequently considered model of classical spin glasses 
Cu, - , Mn, , Au, - , Fe, , etc. The magnetic moments of the 
Mn and Fe atoms interact in these glasses in accordance with 
the RKKY law given, in the approximation in which the 
Fermi surfaces of Cu and Au are spherical, by 

Ii ( r )  =- Vor-3e-'11 cos 2pFrr (2.2) 

wherep, is the Fermi momentum and I is the mean free path 
of the electrons in the matrix,p,I) 1. We consider hereafter 
the usual situation when ~ " ~ 1 )  1 (C is the density of the mag- 
netic atoms) and the exponential factor can be neglected. 
The characteristic properties of the interaction (2.2) are: 1) 
fast oscillations of V(r); 2) divergence of the integral 
I = J V2(r)d 3r; 3) spherical anisotropy of V (r). The first and 
second properties are possessed by all interactions effected 
indirectly via the conduction electrons (if there is no special 
proximity to a phase transition into a helicoidal structure). 
The analysis that follows in this section is based only on 
these properties. The spherical isotropy of V (r), on which the 
properties of the low-temperature phase depend strongly, 
will be useful to us in the succeeding sections. 

The interaction (2.2) is singular as r + 0, so that diverg- 
ing (near r = 0) integrals are encountered when an attempt is 
made to obtain the high-temperature expansion. This might 
seem to mean that the principal role is played by closely 
spaced atoms. This, however, is not so: the magnetic mo- 
ments of these atoms are strongly bound (the interaction en- 
ergy is much higher than the temperature) and make no con- 
tribution whatever to the thermodynamics. A more correct 
method is that of the virial expansion,1° which shows that 
the main contribution is made by atoms separated by dis- 
tances on the order of r(T) - ( v ~ T ) " ~ ,  i.e., those for which 
the interaction energy is of the order of the temperature. We 
verify this using as the example the first nontrivial term of 
the virial series for the free energy: 

(We have put Vo = 1 and assumed Heisenberg spins.) Calcu- 
lating the next terms of the virial expansion, we can verify1' 
that all the correlation corrections to the free energy become 
of the same order at T-c. Unfortunately, the virial expan- 
sion is of little use for calculations in that the region of 
strongly developed multiparticle correlations in which a dia- 
gram technique is preferable. The diagram expansion is not 
suitable for a total interaction of V (r), as explained above. We 
therefore write the potential (2.2) as the sum of two parts: 

V ,  ( r )  =V ( r )  exp (-aTAi3r2), (2.4) 

v2 ( r )  = V ( r )  [ I - e x p  ( -aT"r2) ] .  

Here V,(r) is the short-range potential, for which we can 
construct a convergent virial series; we handle V,(r) by a 
diagram technique. Since we confine ourselves in the virial 

expansion to a finite number of terms, this calculation meth- 
od is approximate and its results depend on the subdivision 
parameter a. For the best choice of a we use a variational 
principle, i.e., independence of the free energy of a: 

Our purpose is to derive an effective interaction of slow 
degrees of freedom, so that we actually require that the pa- 
rameters of this interaction be independent of a. It is clear 
beforehand, however, that a,- 1, inasmuch as at a( 1 the 
contribution of the virial series is small and the high-tem- 
perature expansion terms are large, whereas at a > 1  the 
terms of the virial series are large. 

We rewrite the partition function with the interaction 
(2.1) in a way that makes possible calculation of the terms of 
the virial series with the potential V,(r). We add to this end 
an additional molecular field S(x) [S(p) is its Fourier trans- 
form, r0 = /xi - xj /]: 

V ,  ( p )  = j V ( r )  eipr d3r.  (2.6) 

We calculate the partition function over ai with the aid 
of the virial expansion, and S(xi ) plays the role of the exter- 
nal field: 

The first term of the virial series can be calculated directly: 

where S i rS (x i ) .  When only F, is taken into account, the 
effective interaction H [S] takes the form 

We have confined ourselves only to those terms of the 
expansion of H, in powers of S2 which are needed at high 
temperatures. In the mean-field approximation we see that 
the high-temperature phase becomes unstable at 
T = T,, = 1/3c min [V2-'(~)]. The properties of the low- 
temperature phase and its instability will be investigated in 
later sections of the paper; here we obtain the effective inter- 
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action H [S]. At temperatures T- T,, small changes of the 
temperature T, (defined formally as the point where that 
part ofH [S] which is quadratic in S becomes unstable in the 
mean-field approximation) alter strongly the free energy of 
the system. As the variational principle for finding a, we use 
therefore in lieu of (2.5) the condition 

This allows us to retain only terms quadratic in S when cal- 
culating the next term of the virial series: 

In this approximation, the part o fH [S] that is quadratic 
in S takes the form 

Averaging formally over the impurity locations and neglect- 
ing the fluctuations of the impurity density, we obtain 

c2 cos 2pFr 
cap ( - a T 5 f )  ] 

Tr3 

- Tt? exp (aTYar2) } eipr 2 1 .  (2.13) 
cos 2pFr 

The parameter a, the temperature T,, and the momen- 
tum p, at which the quadratic form becomes unstable are 
determined from the system of equations 

We reduce this system to dimensionless form. We introduce 
thenewvariablesa = T/c, k = p ~  -'I3, = 2p, T -'I3.   he 
quantity q is the only dimensionless parameter that deter- 
mines the solution (a, @, , k,) of the system (2.14)-(2.16). It is 
convenient to transform the functions Wand V2 in this sys- 
tem into 

431 
~ ( k ) = - - I r d r s i n k r  cth - 

30% { [ C o : : r e x p ( - a i ) ]  

- r3 exp(ar') } , (2.17) 
cos qr 

(2.18) 
Here @A (a, 0 z) is the derivative of the confluent hypergeo- 
metric function with respect to the first index. 

We consider first the limiting case q( 1 (or, equivalent- 
ly, large densities c). In this case the main contribution to the 
integral in (2.17) is made by the region r- 1, so that cos qr 
and (sin kr)/kr can be replaced by unity, making Windepen- 
dent of k. Retaining only the leading terms in q2/a, we obtain 
in place of (2.18) 

We note that adV; '/dug V, ', whereas ad  W/da - W, and 
it follows thus from (2.15) that W4 V, 2. From (2.16) we get 

Solving numerically the transcendental equation (2.14), 
we obtain 

Substituting this value in (2.20), and then (2.20) and (2.19) in 
(2.15), we obtain a transcendental equation for the cutoff 
parameter a: 

rn 

Solving it numerically we obtain the final answer: 

a=1,12, O,=l/s [ln (4a /qz)  + C , ] ,  C - 1 . 1 7 7  (2.23) 

To investigate the properties of the low-temperature 
phase outside the framework of the mean-field theory we 
need the unrenormalized form of the fluctuation spectrum 
S (p) with momenta p close top,. Substituting in (2.13) the 
expressions (2.19), (2.21), and (2.23) we have, at the required 
accuracy, 

d3p H(Z)~S]=L JL[-+.] 12- 

2 30, ( 2 ~ ) ~  ' 
T-T,  (2.24) 

H Z  = - pFz ( ~ n * +  c , )  , ~ ~ 1 4 . 5 5 3 ,  =-. 
C2 q2 Tc 

In the opposite limiting case, 9% 1, we can also obtain 
the solution (2.14)-(2.16) but, as will be shown below, S(x) is 
now an incorrectly chosen slow variable, and accordingly 
the point of occurrence of the instability H'2'[S] does not 
manifest itself in any way in the physical properties of the 
system, so that the use of condition (2.10) is not valid. The 
structure of the low-temperature phase at q s l  will not be 
dealt with in this paper. 

We determine now the form of the interaction of the 
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variables S(p), confining ourselves to the first term of the 
virial expansion: 

We have retained here only the leading terms relative to the 
random field (in this case, the impurity locations xi) and 
terms of fourth order in S: this is valid at not too low tem- 
peratures (T- T,). An interaction energy of the same form 
as in (2.24) and (2.25) can be obtained directly if the initial 
spin interaction differs somewhat from the RKKY form: 

V(r) = Wo (xpo/2nr) sin pore-"'. (2.26) 

It follows from the reasoning above that the RKKY 
interaction is a particular case of the interaction (2.26), the 
parameters x andp, can be determined by using Eqs. (2.21) 
and (2.24), while W, = 30,. A direct interaction of this type 
can be expected between spins located in a host metal close to 
a helicoidal transition, so that exchange of the virtual heli- 
con leads to (2.26) (see Ref. 6). The interaction (2.26) contains 
two dimensionless parameters and describes a larger group 
of phenomena than (2.2). We shall therefore consider hereaf- 
ter just this interaction. The parameter x has the meaning of 
the reciprocal interaction radius; we assume that x(c1I3; the 
results will be valid, in order of magnitude, also at x 5 c1I3. 

The behavior of the system at low temperature depends 
very strongly on the parameter y = xp;/hc. At y( 1 and at 
sufficiently low temperatures ( - r 2  ? I 3 ) ,  a phase5 of the 
spoiled-helix type is produced. We shall investigate its low- 
temperature processes in the sections that follow. In the op- 
posite limiting case y( 1 the potential V(r) oscillates rapidly, 
so that the correlations between Vg and the different param- 
eters (j, i) can be neglected, and an analog of the Edwards- 
Anderson model1 with a large but finite interaction radius 
can be obtained: 

The question of the low-temperature properties and of 
the phase transition in this model has not yet been complete- 
ly investigated (it is the subject of Refs. 1, 7, and 11-13). We 
shall not deal with it here, and examine only how the transi- 
tion takes place (when y is decreased) from the Edwards- 
Anderson model to the spoiled-helix structure. We consider 
the low-temperature expansion of the correlator (S, S,. )' 
in the mode1 (2.27) and compare it with the expansion for the 
potential (2.26). Let us draw the diagrams corresponding to 
these expansions. In the model (2.27), each line (potential) 

T 
i - i - 4  u 

a b 

FIG. 1 .  Part of high-temperature diagram series in the Edwards-Ander- 
son model (a) and in the model (2.26) that competes with it (b ). 

should enter twice, as shown in Fig. la, whereas in model 
(2.26) a diagram of type of Fig. lb  is possible. Corresponding 
to these diagrams are the expressions 

(SoSR).'-e V2(R-r) V2(r) h r ,  

tS,S,,c'-c2 V (R-r,) V (r,) V(R-r,+r,) V(r+rz) d3r, d3rz. 

We compare these integrals, substituting the expression -- 
(2.26) for V(r). We obtain the ratio (SS)i/  (SS); zy- ' ,  so 
that at y> 1 the diagrams of the second type can be neglected, 
and the high-temperature expansion with the potential (2.26) 
coincides with the expansion in the Edwards-Anderson 
model. This proves the equivalence of these models, at least 
at not too low temperatures T- Tc - ( C X ~ ~ ) ' ~ ~ .  

Ill. DERIVATION OF LONG-WAVE EFFECTIVE HAMlLTONlAN 

1. We consider the classical statistical mechanics of a 
system of Heisenberg spins ui that are randomly scattered in 
three-dimensional space at an average density c. We choose 
the interaction between the spins, as in the preceding section 
of the paper, in the form 

& 

Vo (r) = Wo (xpo/2nr) sin pore-"', x a c ' " .  (3.2) 

The behavior of the system is determined by the value of the 
parameter y = xp;/41rc. (We confine ourselves to the region 
y( 1.) In this case, at sufficiently low temperatures, the Hei- 
senberg spins from, as do the planar ones, a distorted spatial 
helix (helicoid). Let us prove this and derive the effective 
Hamiltonian of slow deformations of this structure at inter- 
mediate scales (larger than the length over which the helix is 
formed and smaller than the length at which the long-range 
order is lost). 

It is convenient to rewrite the partition function 
Z = Tr exp ( - H /T)  by introducing the continuous field 
S(x) (the molecular field acting on the spin at the point x): 

where xi are the locations of the spins h = q,,u,Z, and Z 
is the external magnetic field. We confine ourselves to not 
too low temperatures and expand the argument of the expo- 
nential in powers of S/T. We obtain (at h = 0) 
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In the last term of (3.4) we can directly replace ZS (x - xi ) by 
c. In the mean-field approximation, at T = T, = c Wd3 (we 
put hereafter W, = I), a phase transition takes place into an 
inhomogeneous helix-like state: S = el cos p, . x + e, sin 
p, . x, where e, . e, = 0. In the temperature region r = 1 
- c/3 T g  1, the functional H takes the form 

+ [ I -  + c 8 (x -x i )  ] s2 } d's. 

We shall consider the temperature region lrl,4I3, 
where short-range order of helical type obtains (see below, as 
well as Ref. 5). The last term of (3.5) leads to large-scale 
distortions of the helix. Let us derive an expression for the 
free energy of such deformations. We take first into account 
the influence of the thermal fluctuations that take place over 
scales much smaller than those of the distortions connected 
with the random fields. The last term of (3.5) can then be 
neglected. 

2. It is convenient to represent the field S, in the form 

Sa=aa ( x )  exp ( i 0 )  faa* ( x )  exp (-io) +Ta (x), ( 3 4  

where 8 = p, . x and a, is a complex vector that varies 
"slowly" with the coordinate, a: = 0 (It is convenient to 
think of a, in the form a, = e,, + ie,, ), while pa are "fast" 
fluctuations with momentap -p,, I p + pol -p,. The Green's 
function p of the fluctuations was calculated in Ref. 14. In 
the region y213g ( T I  g 1 of interest to us we have 

Let us clarify these equations. The tensorpap picks out 
only fluctuations in the plane of rotation of the formed spi- 
ral, so that g,, which corresponds to such (longitudinal) fluc- 
tuations has (at Irl> 4") a gap 171. In the mean-field ap- 
proximation the transverse fluctuations have no gap at all, 
but when their interaction with one another is taken into 
account it turns out that they acquire a 

We consider now the slow deformations of a, (x), which 
do not change the modulus p = la, 1 ': 

The vector a, defines the plane in which the spins ro- 
tate; the normal to this plane is n = ia X a*/p. We represent 
the deformation I(x) in the form of the sum ii = I, + I l l ,  

such that iil changes the direction n, and the deformation 
produced by is equivalent to a slow change of the angle 
B (x) [see (3.6)], i.e., to a shift of the helical without changing 
the spin-rotation plane. Substituting (3.6) in (3.5), we obtain 
that part of thee free energy which depends only on the iill 
deformations, or, equivalently, on 9 (x): 

It can be shown that the fluctuations pa (x) do not lead to a 
substantial change of H,[B] at 171 > $I3. Matters are differ- 
ent with the transverse deformations. Their energy, disre- 
garding the thermal fluctuations, is 

from which it can be seen that H r'(ii, ) vanishes for all fluctu- 
ations with momenta p such that (p, . p) + p2 = 0. 
Allowance for the thermal fluctuations pa leads to a non- 
zero energy of all the deformations with nonzero momenta, 
and therefore alters H,(I,) substantially. Let us carry out 
this calculation. 

We substitute the expression (3.6) for S, in (3.5) and 
separate that part of the free energy which depends on the 
product ii, pa : 

We have neglected here the terms that are linear in p, (they 
yield zero after averaging over the fluctuations pa ) and the 
terms of third order in pa (they contribute only in the higher 
orders of perturbation theory, i.e., they will contain extra 
powers of y), as well as terms containing the oscillating fac- 
tors exp 2iB (x). We average over pa in second-order pertur- 
bation theory: 

1 
AH(r i , , )= - ln  ID. erp [- ( H , . ,  + j rpag;dTa dar ) ]  

The functions a, (x) vary little over the characteristic scales 
of the variation of g(x-x'), so that we can replace the a(x) in 
Eq. (10) by their Taylor-series expansions about the point x' 
and integrate with respect to the difference x - x' = y: 
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We use now the orthogonality relation 
- - 

(&a,) a= (dual) a*=O 

and find that a contribution to the second integral is made 
only by terms of the type g,g,: 

Expressing (d, Si, ) in this equation in terms of (d, n)2, calcu- 
lating the integral, and using Eq. (3.9) for the free energy of 
the transverse deformations in the mean-field approxima- 
tion, we obtain ultimately: 

The spectrum of the long-wave fluctuations of the di- 
rection of the normal n turns out to be quadratic and strong- 
ly anisotropic: the ratio of the coefficients of the first and 
second terms of (3.14) is of the order of 171 ( 1. The pecu- 
liarity of Ho[n] is that the spectrum of the fluctuations with 
momenta qlp, does not become harder with decreasing tem- 
perature and with increasing (71 (the growth of the structure 
amplitude p is offset by the weakening of the "fast" fluctu- 
ations p, (x), which were the ones that led to the appearance 
of the first term of (3.14). 

3. We have shown that slow deformation of the helical 
structure in a Heisenberg magnet are described by two vec- 
tors, Q = V6 and n, and the corresponding deformation en- 
ergies are given by (3.8) and (3.14). These equations were 
obtained neglecting the spatial fluctuations of the density of 
the spin-location points. Allowance for these fluctuations 
(i.e., for the last term of (3.5)) leads (in the language of the 
vectors Q and n) to the appearance of terms of the random- 
anisotropy type. The general form of these terms can be ob- 
tained from symmetry considerations: the initial isotropy of 
the spin Hamiltonian (3.1) requires invariance of the total 
effective Hamiltonians of the fields 6, n relatixe to the skift 
6 -+ 6 + const and to a uniform rotation n -+ On, where 0 is 
an orthogonal matrix. Those expressions that are of lower 
order in the derivatives and satisfy these requirements, are of 
the form 

wheref, (x) and g,, (x) are random functions with small cor- 
relation radii. A simple dimensionality analysis shows that 
the Hamiltonian Ho[n] is stable relative to j;r [n] in the sense 
that weak random fields g,, (x) do not destroy the long-range 
order of the vectors n bust as the thermal fluctuations in a 
three-dimensional system with a quadratic spectrum). A 
substantially different situation obtains for the field 6 (x) and 

theperturbationg [6 1: the unrenormalized field correlator is 
of the form 

so that the thermal fluctuations 

( (60)  ' )o= --& 3 Go (q )  d3q 
( an )  

diverge logarithmically, and the deformations due to the 
random field have a power-law divergence 

- 
(we assume, and will prove below, that f (q) -, const as 
q -+ 0). Expression (3.18) shows that the disorder-induced 
deformations of the phase 6 of a helical structure are large 
and can lead to destruction of the long-range order over suf- 
ficiently large scales. 

In the next section we investigate in detail the long- 
wave properties of a system with an effective "phase" Hamil- 
tonian H [B ] = Ho[6] + [6] and show that there is indeed 
no long-range order, the local mean values of the spins 

I (aa (x)) I - (COS 6 (x)) are also equal to zero [in the absence 
of spin-orbit forces and of anisotropy of the initial interac- 
tion V(r)], but the low-temperature phase does nontheless 
exist. We shall not consider the fluctuations of the field of the 
normal n(x) (we put n(x) = no), since these fluctuations are 
finite and small, and therefore do not influence the stability 
of the low-temperature phase. 

We note that in the case of planar XYspins the direction 
of n is fixed from the very outset, so that slow structure dis- 
tortions aredescribed by theHamiltonian H 161. The analysis 
that follows, of the effect of the disorder 2 [6 ] on the proper- 
ties of the helix pertains therefore to both Heisenberg and 
XY spins. 

IV. DESTRUCTION OF HELICAL LONG-RANGE ORDER 

1. We derive the effective Hamiltonian B [ e ]  [Eq. 
(3. IS)], which was written out above from symmetry consid- 
erations. Averaging the last term of (3.5) over the disposition 
of the points xi by the replica method,' we obtain the Hamil- 
tonian in the form 

The summation over the replica indices (a, b ) is from 1 to N, 
and at the end of the calculations one must put N = 0. In the 
derivation of (4.1) we have regarded 1 - c- 'Bi 6(x - xi ) as a 
random Gaussian field, a good approximation at yg  1. The 
term HR [Sa ] makes no contribution to H [6 ] in first order, 
since $f = 2q does not depend on 6 for a helical structure 
[see (3.6)]. The contribution of interest to us, of second order 
in H, [Sa] to H [el,  is given by 
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where the irreducible mean value is taken over the "fast" 
Gaussian fluctuations pa (x) [see (3.6) and (3.7)]. The terms 
significant in (5.2) are those with a = c, b = d or a = d, 
b = c; it is clear beforehand that a contribution to the irredu- 
cible correlator (4.2) is made only by the longitudinal 
Green's function gl, because only longitudinal fluctuations 
alter the value of S, so that only they enter in the irreducible 
correlator (4.2). Substituting S (x) in the form (3.6), we have 

8 , 0 . ]  =- r, jj d3x d3r'gIZ(x-x') cos Q.x cos Qbxf, 
0 b  

where Q, = V8, . The integral in (4.3) can be calculated at 
IQa * Qb I q o :  

25 
arctg I Qa-Qb I 

2 % ~ ' ~  

We shall need hereafter only the term of (4.4) that is leading 
at IQ, - Q, ((7tr1/', SO that we ultimately have [see (3.8)] 

The second term of (4.5) is equivalent to the random Gaus- 
sian 6-correlated field f, (x) [see (3. IS)]. The fact that & [O, ] 
depends on the angle between Q, and Q, means the onset 
(owing to the disorder of the system) of a locally preferred 
direction of Q = V 8. We note that terms of the type 
(Q, . Q, )' arise in the description of ferromagnets with ran- 
dom second-order anisotropy axis," but the vector Q, is 
then an independent variable and is not equal to V8,. In our 
case & [8, ] can be represented as a series in even Legendre 
polynomials in (Q, . Q, )/Q, Q, , i.e., anisotropies of all or- 
der are present. 

The foregoing derivation of the Hamiltonian H [O,] 
(4.5) is valid at temperatures near the transition point. The 
Hamiltonian retains its form also at lower temperatures, but 
the equations for its parameters are somewhat different. In 
particular, in the region T4 T, = c/3 we obtain, in analogy 
with the foregoing, 

2. A Hamiltonian of type (4.5) for long-wave fluctu- 
ations was investigated in detail by us6 in connection with an 

Ising spin-glass model. It was shown that the bare Green's 
function of the long-wave fluctuations 

is substantially renormalized by the presence of HR and 
takes the form G (p) mp-'/'. Let us describe briefly the deri- 
vation given in Ref. 6. The change of variables x = f /2po, 
8 = 8 /2 transforms H [8, ] into 

where at 1 r 1 g 1 we have 

and at T g  T, 

The bare Green's function corresponding to (4.6) is of the 
form (N = 0) 

where 

Q = % is the "bare" wave vector, = 2p0V, Q' = 1. We 
note that the fluctuations of a field 8 (x) with a momentum p 
correspond to fluctuations of the total field S(x) with mo- 
menta Q + p. Equations (4.6)-(4.8) for the Hamiltonian and 
for the Green's functions are valid over rather large scales, 
where the fluctuations of the order-parameter amplitude can 
be neglected. These fluctuations are small [see (3.7)] at 

I p - pol (xr1/', SO that in the dimensionless variables used 
in (4.6)-(4.8) we have 

-- - 
(Qp, pz) ~ ~ ~ " * l p ~ = q 0 ~ .  

The first term of B,, (x) corresponds physically to the 
averaged irreducible correlator ( ( 8 (0)8 (x) ) ) that charac- 
terizes the thermodynamic properties of the system; the sec- 
ond term (8 (0)) (8 (x)) describes the disorder-induced de- 
formation of the "bare" structure with 8(x) = p, . x. At 
g = 0 the theory (4.6) is logarithmically ren~rmalizable,'~ 
and the renormalization changes the parameters A and B: 

The renormalization is caused by the strong thermal fluctu- 
ations that are typical of a 3 0  system with one-dimensional 
periodicity. It is convenient to carry out the calculations by 
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representing the field 8 (x) as a sum of a "slow" part 8,,(x) and 
a small "fast" part a,(x). As a result, the coefficients A and B 
acquire increments proportional to 

At g#O the first-order corrections to A and B also take the 
form (4. lo), but the most singular contribution comes from 
the crossover product of the first term of (4.7) by the second: 

The integral (4.11) diverges quadratically at the lower limit, 
and q is the cutoff momentum. The corrections (4.1 1) are due 
not to thermal fluctuations but to deformations produced in 
the one-dimensionally periodic ground state by the disorder 
of the system. It is convenient to begin the summation of 
these strongly diverging corrections with a formal consider- 
ation of a model such as (4.6) in a space of dimensionality 
5 - E (at d = 5 the integral (4.11) would diverge logarithmi- 
cally). This was done by us in Ref. 6, where the Hamiltonian 
(14) was investigated in detail in connection with Ising spin 
glass. It was shown that at d = 5 - E there is a stable fixed 
point at which the parameters A and B are power-law func- 
tions: 

A (p) rn (pQ) 6e'11, B (p) ap-2e'1f 

(the exponents are given in first order in E) .  This means that 
the disorder-induced structure deformations lead to partial 
isotropization of the spectrum. Of course, the exponents ob- 
tained in the first &-approximation cannot be used at E = 2. 
In Ref. 6 are advanced arguments (which we shall not repeat 
here) according to which for d = 3 the Green's function has 
atpgq, zg1/'/8 the form 

Qb(p) =tG(p) 15,~f gpZG2 (p), G (p) =[A(pQ)"2+Ep7/2] - l ,  

where the coefficients and Bzq;" are determined, 
in order of magnitude, by joining (4.12) to (4.8) at B-q,, 
( p ~ )  -9: (here ql ~ g " ~ / 8  is the scale over which the correc- 
tion (4.11) becomes of the order of unity). Equation (4.12) 
gives the correlator of the small fluctuations relative to the 
disorder of the ground state (we note that the parameter g is 
not renormalized, so that Eq. (4.7) with G,(p) replaced by 
G (p) remains valid). 

For the foregoing calculations to be self-consistent 
it is necessary to satisfy the condition qlgq, (where q, 
= ( X I T I  1/2/p0)1/2 is the cutoff momentum for the long-wave 

Hamiltonian H [O]. Substituting ql zg1/'/8 andg from (4.6), 
we get 

as required. 
3. Equation (4.12) for the correlator of the phase fluctu- 

ations shows that the rms deformations of the phase O (x) 
= 8 (x)/2 increase quadratically with distance: 

'((0 (0) )-to (x) ))'= ---& 1 gp2G2(p) d3p (I-cos px) mz2q,i, 
2(2n) 

therefore the helical long-range order is completely de- 
stroyed at x 2 q; '. The direction of the wave vector Q = VO 
of the helix varies slowly in space: 

(see Eq. (30) of Ref. 6 and the discussion that follows it). 
Averaged over the system, there is therefore no preferred 
direction of Q, and the correlator G (p) at the smallest mo- 
menta should become fully isotropic (A = B ). We, however, 
shall not investigate this region of extremely large scales, 
and confine ourselves to distances in the interval 
ql- ' g ~ ( e ' / ~  , where a local direction of Q is defined and the 
correlator is given by (4.12). 

We consider now the thermal fluctuations of the phase 
SO (x) = 0 (x) - ( 0  (x)). They are determined by the first term 
of (4.12) and turn out to be strongly divergent 

where L is the scale of the long-wave cutoff (in a direction 
transverse to Q). It is most important that the fluctuations 
can nevertheless be regarded as Gaussian. The point is that 
A (p)-Ap3/2, and therefore the interaction vertex I' that 
stems from the term A (VO)4 contains a high power of the 
momentum: r (p)  ~ c p " / ~ ,  and the interaction of the long- 
wave fluctuations is small (see the detailed discussion of a 
situation of this kind in the recent paper1' as applied to smec- 
tic liquid crystals). This means that mean values such as 
(cos(S0)) can be calculated from the formula (cos(8O)) 
= exp[ - 1/2((SO )')I. The divergence of ((SO )') at L = cc 

shows that the mean value of the "molecular field" I (S(x, 
)) 1 = ( p cos O (xi)) is zero, and with it also the Edwards- 
Anderson parameter q, = (mi ) 2  = 0. 

We have thus an equilibrium low-temperature spin- 
glass phase with qEA = 0 and consequently with a "para- 
magnetic" linear susceptibility x = c/3T. It  would be quite 
difficult to distinguish between such a spin glass and a para- 
magnet by magnetic measurements, although formally a dif- 
ference between them is ensured by the existence of the slow- 
ly decreasing correlator (4.15). These conclusions are based 
essentially on the absence of a long-wave cutoff of the func- 
tions (L = CO) in the isotropic Hamiltonian (3. I), (3.2). The 
weak anisotropy, which is always present in a real system, 
leads, as we shall show below, to the appearance of a finite 
cutoff scale L and to a substantial change of the results ob- 
tained for the physical quantities. 

V. EFFECT OF INTERACTION ANISOTROPY 

1. Dipole forces and anisotropy of the easy plane type 

Dipole-dipole interaction of the magnetic moments al- 
ways takes place in real magnets. Its low intensity (compared 
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with the exchange interaction) notwithstanding, its long 
range can lead to substantial effects in strongly fluctuating 
systems (e.g., in two-dimensional ferromagnetsl'). We shall 
show that the dipole forces couples of the helix vector 
Q = V6 to the normal vector n. (The vectors Q and n turn 
out to be parallel.) If, furthermore, the crystal has easy-plane 
anisotroy that fixes the direction of n, the direction of Q 
cannot change freely, and the long-wave fluctuations of the 
phase 6 turn out to be suppressed. 

The dipole-interaction energy is given by 

where no = ro /ro, and the summation is over the sites of the 
spins a, . For our pupose it suffices to find the contribution of 
the dipole forces to the long-wave effective Hamiltonian 
(4.6). To this end we must substitute in (5.1) a, = T -'S'O'(X, ), 
where S(O'(x,) is given by the first two terms of (3.6) (the un- 
perturbed helix), and replace the summation by integration. 
Let 

Q=po (sin a ,  0, cos a ) ,  O,=OO+Qx, 

Then 

The integration over d 3x reduces to averaging of the inte- 
grand over Q - x, so that we have for the dipole energy 
(T-- Tc 

x cos [ (sin a sin -+ cos @+cos a cos -+) QR] 

cos a=Qn/po, (5.3) 

where Vis the volume of the system. Thus, the dipole forces 
tend to orient the vector Q = VB parallel (or antiparallel) to 
n. We assume for the sake of argument that the easy-plane 
anisotropy that sets the direction of n is stronger than the 
dipole interaction (5.3). The direction of n is then rigidly 
prescribed, and the dipole energy produces in the long-term 
Hamiltonian an additional term in the form 

where N = n, p = 18n-(g,p, )2x2/p: ( 1. The functional 

a [a ]  reaches a minimum at ~8 = &, Q = 1 + 2p/A. The 
unrenormalized Green's function takes now the form 

Go (p) = [ A  (0;) "f p4+p (6'- (Fn) ') I-'. (5.5) 

Therefore the fluctuation with the smallest momenta 
( p 5 q,) are found to be suppressed. We determine q,, assum- 
ing that q2(ql~g"2/8. In this case the Green's function 
takes in the region q2-=@(q, the form [see (4.12)] 

Pb (p) =tsabG (p) +gp2G2 (p) , 
(5.6) 

G ( p) = [A (n;) ' / z + ~ p " ' / a +  pL2]  -' 
(it can be shown that the parameter p is not renormalized). 
Comparing the third term of G - '(p) with the second, we get 

The quantity q; ' assumes the role of the long-wave cutoff L 
in (4.16). Calculating ( ( ~ 8 ) ~ )  with the aid of the correlator 
(5.6), we obtain (6 = 8/21; 

The mean value of the molecular field differs thus from zero 
and is equal to 

I (S) I = (2p)"'(co~ (60) >=c (5/31 T 1 ) '" exp [-1/2111 t l - " l a ~ ,  

where (5.9) 

The value of II can be both large and small in the considered 
parameter range y = x p:/4n-c( 1. The magnetic properties 
of the system depend strongly on the value of II. Before we 
proceed to study them, we consider an alternate mechanism 
that leads to the appearance of terms of the type pp2 in 
G -'(p), i.e., to cutoff of the fluctuations. 

2. Spatial anisotropy of initial interaction 

The foregoing analysis is based on the spin-spin interac- 
tion (3.2) that depends only on the distances between the 
spins; its Fourier transform has a maximum on the sphere 
lpl =Po: 

Vo (p) =Wo {[ (p2-po2) /2poxI 2+i) -'. (5.1 1) 

Real spin glass is as a rule a disordered solution of magnetic 
atoms in a crystal matrix whose axes define preferred direc- 
tions in space. The spin interaction must therefore depend 
not only on Ipl but also on the direction of 1 = p/p,. 

We shall assume hereafter this anisotropy to be weak 
(an exact criterion will be given below). In some cases the 
anisotropy of V(p) can be described in the form of a "slow" 
dependence of the parametersp, and x on 1: 

i.e., the maximum of Vl(p) is reached on a nonspherical sur- 
face, but the value of V, ,,, (p) = W, is constant on this sur- 
face. No substantial changes from the foregoing take place in 
this case, since the main fact, that an infinite number of 
modes are simultaneously unstable at T = T,, remains in 
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force, and the resultant helical structure can be continuously 
transformed without a change of energy (in the zeroth ap- 
proximation in the fluctuations it is necessary to put for this 
purpose Q = lp,(l), where 1 is an arbitrary unit vector). The 
effect of the dependence of W, on 1 is more substantial. In 
this case the instability at T = T, sets in at individual points 
rather than on the entire surface, and the minimum of the 
free energy of the helical phase is reached on a discrete set of 
directions of Q. As a result, the effective long-wave Hamil- 
tonian assumes a form similar to (5.4), but the parameter p 
and the vector N are determined by the Wo(l) dependences. 
We obtain them by regarding p, and x as constants, and 
Wo(l) as a weak function of 1: 

so that the interaction takes the form 

and leads to the Hamiltonian (3.5) in which the parameter T 

is replaced by ~ ( 1 )  = T - w(1). Under the condition I ~ ( l ) g y 2 / ~  
the properties of the short-wave fluctuations pa (x) do not 
change. In the region T <0, 1~(1 ) ( ,~ ' /~  the minimum of the 
free energy is reached for a helical ordering with 1 =lo, 
where 1, is one of the maxima of the function w(l), and is 
equal to 5/12?(1,)c2. [see (3.5) and (3.6). The dependence of 
the effective-Hamiltonian density on 1-1, is therefore deter- 
mined by the expression 

H,=Vi2(c21T) [T' (10) -T' (1) (cZ/T) ) T I   lo) -W (I)] . 
(5.14) 

Assuming the maximum of w(1) to be isotropic and expand- 
ing in powers of 1 - b, we get 

Using (5.15) in place of (5.3) we obtain an effective Ha- 
miltonian of type (5.4), in which the third term in the square 
brackets takes the formp,(VB - lo)', where 

V ~ = ' / Z  (xlp,) 2 ~ , .  (5.16) 

(Equation (5.16) was derived for temperatures T z  Tc , ] T I <  1. 
At T<Tc the result will be practically the same, with a slight 
change of the numerical coefficient.) The bare correlator 
G,(p) takes then the form 

Go (p) =[ A ( l o ~ ) 2 + ~ ~ 4 + p , ~ 2 1 - ' ,  (5.17) 

so that all the results obtained for the case of a dipole interac- 
tion in an easy-plane magnet hold also for a system of Hei- 
senberg spins with the weakly (spatially) anisotropic interac- 
tion (5.13) (substituting p -+pl). 

VI. MAGNETIC PROPERTIES 

1. For the standard phase of a Heisenberg magnet a 
distinction must be made between the responses to magnetic 
fields that lie in the spin-rotation plane (the latter defined by 
its own normal n) and perpendicular to it. We have shown 
(see Sec. 111) that the fluctuations (both thermal and those 
due to disorder) do not destroy the long-range order of the 

directions of n. This means that such a spin glass has the 
anisotropy of the magnetic properties. The response to a lon- 
gitudinal magnetic field (relative to the spin-rotation plane) 
depends on the fluctuations of the soft phase variable 8 (x) 
and has therefore a complicated structure even in fields that 
are weak compared with the exchange energy; this is the 
response that we shall investigate in the main. The response 
to the transverse field does not depend on the 0 (x) fluctu- 
ations and does not have such a structure. We present there- 
fore simply the results for the linear transverse susceptibility 
near Tc ( I T [  4 1): 

We have substituted p = 5/6(r(c2, Tc = c/3 (see Sec. 111). 
The tensor pap was defined in (3.7). 

We proceed to calculate the longitudinal linear suscep- 
tibility 

where Ya = xa (x-' coth x - x-'). 
We consider in succession the temperature regions 

Irlg 1 and T<Tc. In the first region, expanding (6.2) in pow- 
ers of Si /Tg 1, we get 

Using (5.9), we obtain ultimately 

We note that the terms proportional top  and not containing 
(cos(6B )) cancel out in the susceptibility averaged over the 
directions 

This means that X, in contrast to x,, and x,, is expressed 
through the mean values of the Edwards-Anderson order 
parameter. At low temperature we use the asymptotic form 
of the functions Y, (x): 

In the derivation of (6.3) and (6.6) we have retained only 
terms with i = j from the first term of (6.2), since 
<Si S, > li,jis small relative to the parameter x/p,. 

Calculating (cos (68 )) at T< Tc in analogy with the der- 
ivation of (5.9), we have 
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get K, = 1/2K1. Using the definition of the irreducible cor- 
relator and the identity a; = 1, we get 

FIG. 2. Temperature dependence of the linear susceptibility. The dashed 
line shows the transverse susceptibility X, . Lines 1,2, and 3 represent the 
longitudinal susceptibility for different values of the parameter II: 
1 - n<y1119, 2 - y 1 1 1 9 < ~ 4 1 ,  3 - mi. 

The temperature behavior of the susceptibility depends 
substantially on the value of rI and is shown in Fig. 2. We 
note that only the first term of the expansion in T/Tc was 
retained in the argument of the exponential in (6.7). At KI( 1 
this equation is therefore correct only for x ( T  = 0). It is in- 
teresting that the behavior ofxII is different at high tempera- 
tures even in the region of long phase fluctuations, when 
(cos(S6 )) ( 1: it can be seen from (6.4) and (6.7) the suscepti- 
bility xll follows the paramagnetic law, but with the coeffi- 
cient 1/2 typical of the planar XY spins. In other words, the 
formation of a local helical structure makes the Heisenberg 
spins effectively planar. 

2. Nonlinear longitudinal susceptibility coxll = (a2xil /ah2),, = ,, 
The quantity ill can be expressed in terms of the initial 

spin variables af (we calculate hereafter only the longitudi- 
nal response and neglect the inessential fluctuations of the 
spins, so that the indices a andP take on the values 1 and 2): 

The quantity af oscillates rapidly, therefore the main 
contribution to the sum (6.8) is made by the terms with i = j, 
k = l ; i = k , j = I o r i = I , j = k :  

We represent the tensor afof as a sum of irreducible parts: 

The correlator K2 breaks up then into the sum 

The second term oscillates rapidly as a function of xi and xi, 
so that after averaging over the impurity disposition the sec- 
ond term of (6.10) becomes small compared with K,, and we 

The main contribution to the sum (6.9) over i and j is made by 
pairs with /xi - x, I$c-'/~, SO that the contribution from 
the pairs i = j can be neglected. We express K, (at i#j) in 
terms of the mean value of the field variable S(x): 

Just as in the calculation of the linear susceptibility, we 
consider two temperature regions, 1r1<1 and T(Tc. Using 
(6.9)-(6.12), we have 

The upper and lower lines refer to T z  Tc and the T4Tc, 
respectively. 

To calculate the correlators in (6.13), we represent S in 
the form (2p)1/2(cos8, sine) and use the replica method 
(a#b #c#d):  

((S,"SjesZ=4p" (cos (8"--0b)xi cos (O"-Ob)xj> 

-(COS (P-Ob)xi cos (0c-0d)4) 1. (6.14) 

In the calculation of the quantities of type (cos(8" (0) 
- eb (x))) we must average over those thermal fluctuations 

and deformations of the field 6 (x) which are connected with 
the disorder. It was shown above that the thermal fluctu- 
ations with momenta q(ql are asymptotically Gaussian. In 
the calculation of the averages over the random deforma- 
tions, the contribution of the non-Gaussian terms is of the 
order of t ln q,lxi - x, I. It will be shown below that the 
main contribution to xll comes from the region Ixi 
- x, 1 5 q, 't -2, SO that in the region t( 1 considered by us 

the contribution of the non-Gaussian terms is of the order of 
t In t -' and is small. Assuming thus all the fluctuations to be 
Gaussian and using expression (5.6) for <<SOo (0)6eb(x)>> 
= Gob (x)/4, we obtainill  in the form 

(6.15) 

In the calculation of the integral (6.15) a distinction must be 
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made between the cases of strong (tG (0)/4) 1 [or, equiv- 
alently, t)tl = :20 (~ /9~)"~ ) ]  and weak (tgt 1) thermal fluctu- 
ations. In the former case (corresponding to (Si)2-@) we 
have 

sh [tG(x)/81~'12 exp [tG(x)/8]; 

in addition, we can neglect the term pp2 in (G -'(p). As a 
result we obtain 

(6.16) 
where a ,  is obtained by numerical integration: 

1 qdqdk 
a,= 55 dz d2y exp [ G ~ J k v ( ~ d ~ ~ ) c o s k z - l )  ] 

If the anisotropy of the interaction is large enough, and the 
thermal fluctuations are correspondingly small, we get 

sh[tG (x) 181 -tG (x) 18, exp [-tG (0) /2] = 1. 

Thus 

a2= jj dz d2y [& Jj q q $ ~ ~ ~ ~ ~  cos kz ] "7.9. 

The behavior of the nonlinear susceptibility ill (just as 
that of the linear one) depends strongly on the parameter II 
[see (5. lo)]. We consider first the case y1119-gIIg 1. In this 
region lill I has a sharp maximum near the transition point at 
1,) -7* = n6/11: 

[the function f (x) at arbitrary x can be obtained by numerical 
integration in (6. IS)]. This peaking of the maximum is due to 
the large exponents in the asymptotic forms off (x) and not to 
a true singularity. 

In the region II) 1 the nonlinear susceptibility de- 
creases rapidly with decreasing temperature, right up to 
T* = T, /B ,  after which it decreases: 

3. Magnetic susceptibility in finite longitudinal fields 

We show in this section that at sufficiently low tempera- 
tures thedifferentialmagnetic susceptibility~~~ (h ) = dM /dh 
increases with decreasing field and becomes paramagnetic in 

fields of the order of the anisotropy parameterp. The reason 
for this effect is that the uniform magnetic field applied at 
random points to the helical structure acts in analogy with a 
random field in a ferromagnet, softens the spectrum, and 
decreases (S)1 accordingly because of the thermal fluctu- 
ations of the phase 6. 

The increase of the thermal fluctuations affects strongly 
2 the susceptibility at tG (0;h = O)g 1, i.e., at ( S )  1 ,  = , = 2p. 

Let us find the change of the Hamiltonian of the long-wave 
fluctuation in the presence of a finite magnetic field h. We 
average over the disorder in the Hamiltonian (3.3), using 
S)h, and use the representation of S in the form 
(2p)112(cos 8, sin 8). We get 

We shall be interested hereafter in the influence of H, on the 
spectrum of the long-wave oscillations. We can therefore 
neglect the rapidly oscillating part of H, and replace 
cos (8, /2) cos (8, /2) by 1/2 cos (8, - 8, )/2. The condition 
tG (0, h = 0)g  1 allows us to neglect the thermal fluctuations 
in the estimate of the characteristic values of h that alter the 
spectrum. To calculate the corrections that must be intro- 
duced into the Green's function on account of the magnetic 
field, it suffices to retain the first term of the expansion of H, 
in terms of 8, - 8,. As a result we obtain the h-dependent 
contribution to the effective Hamiltonian (4.6), in the form 

The "replica" Hamiltonian (6.2 1) means physically the pres- 
ence in the system of random fields that are directly connect- 
ed with the phase 8 (x): 

(in contrast to 2 [8 ] of Eq. (3.15), where only the gradient of 
the phased, 6 (x) was connected with the random field). Ran- 
dom fields such as (6.22) produce structure deformations 
that increase most strongly at large distances and can there- 
fore influence strongly the system properties even at very 
small u. We shall consider hereafter the region u <<g2, in 
which noticeable corrections due to H,  [a] appear at scales 
L>> 9, ', and must therefore be calculated using the Hamil- 
tonian (5.4) with renormalized parameters A and B: 

A (p) =A (GQ) ", B (p) =BP-'", (6.23) 

where 2 and are defined in (4.12). The first correction to 
A (p) from H,  is of the form 
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[cf. the analogous expression (4.1 I)]. Substituting (6.23) and 
(5.6) in (6.24) we obtain 

The correction to is similar, whereas the relative correc- 
tion t o p  is substantially smaller. It can be seen from (6.25) 
that with increasing scale the value o f 2  (p) decreases down to 
the dipole length q,  '. At sufficiently small q2 the correction 
8 2  can become of the same order as A, and this would mean a 
substantial softening of the spectrum an enhancement of the 
thermal fluctuations. Let us estimate the value of h at which 
this occurs, using the expressions (4.6), (5.4), (5.17), (5.16), 
(6.21), and (6.25): 

where E can be replaced either by the parameter w2 of the 
spatial anisotropy of the interaction V(p), or by the charac- 
teristic relative value of the dipole energy 6~(g,p)~c/T, .  A 
quantitative examination of the properties of the spectrum 
and of the thermal-fluctuation intensity at h 2 h, is a compli- 
cated problem, with which we shall not deal now. We expect 
the rms thermal fluctuation of the phase 

to increase rapidly in this region, so that the local mean val- 
ues I (Si ) 1 of the spins tend to zero, and the susceptibility xil 
increases and eventually obeys the Curie law. We note that 
the field h, is substantially weaker than the characteristic 
exchange field ( -  T,) and decreases with decreasing tem- 
perature. The behavior of the differential susceptibility 
xII (T, h ) is shown qualitatively in Fig. 3. The susceptibility 
xL remains unchanged in fields of the order of h,. 

VII. DISCUSSION OF RESULTS 

1. We have shown that a system of Heisenberg spins 
randomly arrayed in space and interacting in accordance 
with Eq. (1.1) have a low-temperature phase with helical 
short-range order (at densities high enough so that 
y = xpi/4.rrc(l). The helix is locally specified by a vector 

FIG. 3. Differential longitudinal susceptibility xll (T, h ) in various fields h. 
The quantity h is defined in (6.26). The parameter Il is assumed to be in 
the region y"l'<II<l. 

Q = VO and by the direction of normal n to the spin-rotation 
plane. The span of the short-range order in terms of the vari- 
able O is characterized by a length 

in the direction transverse to the vector Q and by a length 
L -xL,  in the longitudinal direction. The lengths L, and 
L are large compared with the interaction radius x-', and 
it is this which allows the system to be described by the slow 
variables. In the parameter region where y> 1 there are no 
slow variables and the problem is equivalent to the Edwards- 
Anderson model. 

The =symbol in Eq. (7.1) and those similar to it denotes 
equality to within a number of the order of unity. To facili- 
tate comparison with experiment we have nevertheless re- 
tained the large numerical factors in the right-hand sides of 
these equations. Of course, these factors must not be taken 
too literally. 

2. In the absence of any anisotropy of the interaction, 
the spin-rotation phase in the helix is subject to strong ther- 
mal fluctuations [see Eq. (4.16)], so that the local mean 
values (a,  ) and the Edwards-Anderson parameter 
q, = (a,  )' are zero. That this is not a paramagnetic state 
is indicated by the following: 1) the slow decrease of the cor- 
relator C(x) = (Q(O)Q(x)) of the helix directions [see 
(4.15)]; 2) the long range order with respect to the variable n, 
which leads to anisotropy of the magnetic response 
(xaa = xll pug + x1 (Sag -pas)). The second circumstance 
makes it relatively easy to distinguish in experiment between 
such a spin glass from the completely random one described 
by the Edwards-Anderson model. One can hardly expect a 
true long-range order with respect ton in a real system, since 
the system is as a whole isotropic; the corresponding correla- 
tion length (the size of the "domain") will be determined by 
sparse large fluctuations and must therefore be much larger 
than the microscopic lengths L, and L . 

3. The weak deviation of the interaction from the 
spherically isotropic form (1.1) singles out certain directions 
of Q in space (these directions are connected with the non- 
magnetic-matrix crystal-lattice axes). As a result, the ther- 
mal fluctuations SO (x) are suppressed, and a nonzero qA, 
results. A similar effect is produced also by dipole interac- 
tions of the spins that couple the vectors Q and n, in conjunc- 
tion with the easy-plane anisotropy that fixes the direction of 
n. In all the experimental realizations known to us, the host 
has a wide enough symmetry group, so that there exist sever- 
al equivalent Q and n vector-pair directions relative to the 
crystal axes, and this should lead to domain formation. The 
dipole interaction always present will make n collinear with 
Q in each of the domains, i.e., the long-range order of n is 
destroyed. 

The spatial scale LA at which the thermal fluctuations 
are cut off is determined by the formula (see (5.7), 

112 - 1 
= (POX)- 42 1: 

where E should stand either for the relative nonsphericity of 
the interaction w2 [see (5.15)] or the ratio 6.rr(gLp,)2~/Tc of 
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the characteristic dipole energy to the exchange energy. In 
our analysis we have assumed LA SL,, i.e., not too large a 
value of E:  

EK ( 0 . 2 y ) Z p o l x  (7.3) 

In the opposite limit (which is possible if the interaction is 
highly nonspherical) the directions of Q are fixed from the 
very beginning, the thermal fluctuations 69 (x) can be ne- 
glected, and the system breaks up into large domains inside 
of which there is a rigid helical order. In this case, just as in 
the one discussed in Sec. IV, the inhomogeneous arrange- 
ment of the spins produces a random field that acts on the 
vector Q (i.e., the term h(x) Q in the energy). Thus, the 
equilibrium behavior of the system at the largest scales is 
described by the Potts q-component model19 in a random 
field, and q is determined by the symmetry group of the crys- 
tal. This model is the subject of a large number of recent 
contradictory papers.20-22 We shall not discuss this question 
here, all the more since a realization of any equilibrium situ- 
ation in a real experiment on systems of this type, with large 
domains, seems unlikely to us. 

4. The intensity of the thermal fluctuations is deter- 
mined by the parameter II [See Eqs. (5.9), (5. lo), and (6.7)], 
which can be conveniently written in the form 

Depending on the value of II, the longitudinal susceptibility 
xII ( T )  can behave in three ways, illustrated in Fig. 2. At 
II(y1'I9 the thermal fluctuations of the phase are small in 
the entire region where the helical phase exists ( l r l ~ y / ~ ) ,  
and the susceptibility has a cusp at T = T, . If y1119<II( 1 
the behavior of the longitudinal susceptibility is described by 
Eq. (6.4); in the region ?I3< 1r(<I16/" it grows in accord 
with the Curie law for a planar spin, i.e., with an additional 
coefficient 3/2; at Irl -r* = 116/" there is a smooth maxi- 
mum. At lI) 1 the longitudinal susceptibility increases as 
the temperature is lowered all the way to T * = T,/II, after 
which it assumes a constant value of the order of 1/T *. 

The transverse susceptibility X, does not depend on the 
parameter II and "freezes" at a value (3Tc)-' [at least at 
171 1, see (6. I)]. We emphasize that xll - X, > 0 also in the 
region of strong thermal fluctuations of the phase, where 
qAE z O  (since these fluctuations do not alter the direction of 
the normal n). At the same time, the susceptibility 
x = kl + 2x1,)/3 averaged over the directions is deter- 
mined only by the value of qEA [see (6.5)]: 

If the direction of n is fixed by an easy-plane anisotropy, the 
values ofxl l  and X, can be measured independently. In the 
absence of spin anisotropy the direction of n is determined 
either by the direction of Q via the dipole interaction), or by 
an external magnetic field h that tends to set n parallel (per- 
pendicular) to the vector h at X, >x I I  k, <xI I  ). 

5. In the case of greatest interest, y1119<II( 1, the maxi- 
mum of,yll (T, h ) decreases rapidly with increasing h, so that 
the nonlinear susceptibility Xll (T)  = a 2XlI /ah l h  = is large 

here [see (6.18), (6.19)]. With increasing magnetic field, the 
effective value of the disorder increases and the average spin 
(qAE ) decreases correspondingly. At h > ha, where ha [see 
(6.26)] is much less than the characteristic exchange energy 
T,, the parameter qAE + 0, therefore xll (T, h ) becomes 
purely paramagnetic in these fields, and the Curie constant 
has an additional coefficient 3/2 compared with the T >  Tc 
region (see Sec. 111). The subdivision into X, and xIl is pre- 
served, however, also in this case. Just as in weak fields, X, 
assumes a constant value when the temperature is lowered, 
and the entire paramagnetic growth ofx is due to the growth 
of xll . 

6. The model considered by us can be realized in several 
classes of systems. First, in rare earth alloys with Y or Sc as 
the host.23 In the pure state, the spectrum of the magnetic 
excitations has a substantial dip at a finite value of the mo- 
mentum and moreoverz4 this dip is almost symmetrical 
about the momentum directions. Inclusion of "magnetic" 
atoms in such a host leads to a glass-type low-temperature 
phase (see, e.g., Refs. 25 and 26), where the magnetic atoms 
were Er, Gd, and Tb). 

The second class comprises classical spin glasses such 
as Cu, - , Mn, with large magnetic-atom concentrations. 
Our calculations in Sec. I1 show that the appearance of a 
magnetic helical structure should be expected in the concen- 
tration region x k 0.1. A similar structure was indeed ob- 
served in experiment,' but at such high Mn densities the 
copper Fermi surface assumes a highly irregular form, made 
up of necks, and the interaction becomes anisotropic. This is 
evidenced, in particular, by the large period of the structure 
compared with n-p, ' (this period depends furthermore on 
the density c). Most probable for systems of this class is for- 
mation of a "soft" helix in alloys based on Ag, which has the 
most symmetric Fermi surface. 

The third group comprises alloys such as chromium 
spinel Zn, Cd, - , Cr2Se,, which was investigated in Refs. 
27. At ~ 2 0 . 5  the low-temperature phase of the chromium 
spinel is a helical antiferromagnet, and at 0.3 < x  < 0.5 is ob- 
served a phase of the spin-glass type. The possibility of ap- 
plying our results to this substance is not quite clear, since 
the anisotropy energy of the produced helical structure is 
unknown. 

We thank I. E. Dzyaloshinskii, A. I. Larkin, and V. L. 
Pokrovskii for helpful discussions, as well as A. A. Minakov 
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