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Two possibilities whereby phase slip centers can generate electromagnetic oscillations of frequen- 
cy appreciably lower than the Josephson frequency of each phase slip center are considered. One 
possibility is that the entire structure can move along the sample at a constant velocity, and the 
other is that the oscillations can result from inequality of the Josephson frequencies of the phase 
slip centers that are under unequal conditions; in particular, one of the centers may be near the 
sample boundary. 

1. INTRODUCTION 

A superconductor through which a strong enough elec- 
tric current is made to flow can be in the so-called resistive 
state, which differs both from the purely superconducting 
and the purely normal states. In long narrow superconduct- 
ing samples the resistive state is realized by periodic vanish- 
ing, in time, of the order parameter in a set of sample points 
that can form a periodic chain (see the review'). These points 
are called phase slip centers (PSC), each of which can be 
regarded as a Josephson junction, the average voltage drop 
on which ( V )  is connected with the frequency of the oscilla- 
tions of the physical parameter by the Josephson relation 
2e ( V )  = w, . Each PSC exhibits typical Josephson proper- 
ties when interacting with external monochromatic micro- 
wave r ad i a t i~n .~ .~  When a sample was irradiated in an exper- 
iment2 by a microwave of frequency 109-10'0 Hz its 
current-voltage characteristics (IVC) acquired the distinc- 
tive Josephson current steps. The frequency interval indicat- 
ed is the typical scale of the voltage oscillations, of the order- 
parameter modulus, of the condensate velocity, etc., in the 
resistive state of thin superconductors such as tin, at tem- 
peratures T, - T- lo-' K (see also Ref. 4). 

When account is taken of all the foregoing, experimen- 
tal observation of generation of electromagnetic oscillations 
by a sample in a resistive state, at substantially lower fre- 
quencies (lo7 H z ) , ~ . ~  was unexpected. The appearance of os- 
cillations with such relatively low frequencies cannot be at- 
tributed in any way to only Josephson oscillations of high 
frequency a,. A hypothesis was advanced6 that the entire 
PSC structure moves as a whole along the sample, and the 
low frequency of the oscillations is given then by the relation 
w = 27rv/l, where I is the period of the spatial structure and v 
is its velocity. 

We consider here two possible mechanisms for the on- 
set of low-frequency oscillations in the resistive state of a 
thin superconducting sample. (We emphasize that we have 
in mind a frequency that is "low" compared with the Joseph- 
son frequency.) The first is connected with the motion of the 
structure as a whole, and the second is due to desynchroniza- 
tion of the neighboring PSC, so that the interaction between 
the PSC can cause low-frequency oscillations at the differ- 
ence frequency. The frequency difference between two or 
several PSC can be due to a difference in the conditions at 

their locations; some can be, for example, close to a defect or 
to the sample boundary. 

It must be stated that an exact description of the dy- 
namic behavior of a superconductor is a complicated math- 
ematical problem. At the same time, the physics of the phen- 
omenon can be tracked in many cases using a relatively 
simple dynamic model. Our case is no exception in this 
sense. We start with a simple dynamic model of the super- 
conductor (time-dependent Ginzburg-Landau equations), 
which corresponds in our particular case to the zero-gap 
situation.' 

On this basis, we consider in Sec. 2 the motion of a PSC 
structure in a homogeneous infinitely long channel. As 
shown in Ref. 8, a PSC system can be visualized as a regular 
lattice in two-dimensional space (x , t  ), at the sites of which 
the modulus of the order parameter is A = 0 (x is the coordi- 
nate along the sample). An immobile system corresponds to 
a rectangular lattice; motion of the system deforms the unit 
cell, which takes the form of a parallelogram whose sides are 
no longer parallel to the t axis. 

In Sec. 2 we shall also determine the conditions under 
which the structure can move, calculate the velocity of the 
motion v, and the period I. An immobile structure (in the 
sense that the PSC are produced at fixed points) can be made 
moving by increasing the current. In this case the system 
structure changes either because a new PSC enters the sam- 
ple, or else the number of PSC can remain unchanged but the 
entire structure is set in motion. The second possibility cor- 
responds to a lower energy dissipation j,. This can be seen 
from Fig. 3 below, where on the intial section of the charac- 
teristic, at a given value of the current, a weaker electric field 
corresponds to a state with a moving structure. 

Section 3 is devoted to the mismatch of the oscillation 
frequencies of neighboring PSC. We consider a dynamic 
model which, while incapable apparently of adequately rep- 
resenting the typical experimental situation, has the advan- 
tage of being exactly solvable and accounts for the basic 
physical features of the desynchronization effect. In this 
model the sample considered has a critical temperature Tc 
and a periodic system of defects, constituting small regions 
with locally increased critical temperature Tc, > T, , distrib- 
uted over the sample length. It is assumed that this system of 
defects is semi-infinite on an infinite sample and occupies the 
region x > 0. At temperatures in the interval Tc, > T, and in 
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a certain range of currents, superconducting nuclei are pro- 
duced near the  defect^.^.'^ Owing to the voltage differences 
between the nuclei, the order-parameter phase difference 
between them increases with time and leads to formation of 
PSC in the gaps between the nuclei. PSC located far from the 
edge oscillate at the Josephson frequency, which differs from 
that of the outermost PSC. As a result, we calculate in this 
section the difference beat frequency that causes the low- 
frequency voltage oscillations. 

2. MOTION OF STRUCTURE PHASE SLIP CENTERS 

As already mentioned, one possible explanation of the 
appearance of signals with a low-frequency spectrum is the 
motion of a PSC structure along a channel at a certain veloc- 
ity v. All the quantities, particularly the electric field, ac- 
quire then a slow time dependence with a characteristic fre- 
quency w = 27rv/l, where I is the period of the structure. An 
estimate of the velocity of this PSC motion is given in Ref. 4, 
with a value lo4-10' cm/s for tin. 

In this section we investigate the possibility of PSC mo- 
tion on the basis of the simplest model time-dependent Ginz- 
burg-Landau equations. For the complex order parameter 
$ = Aexp(ix) this system takes in dimensionless units the 
form 

where q, is the scalar potential. At u = 12 the system (I), (2) 
describes a zero-gap superconductor with paramagnetic im- 
purities.' The parameter u has the meaning of the ratio of the 
squares of the coherence length 5 and the depths of penetra- 
tion 1,' of the electric field (see, e.g., Refs. 11 and 12): 

u=g2(T)  /L2  ( T )  . (3) 

Of course, the system (I), (2) cannot describe all the de- 
tails of the dynamic behavior of the superconductor, but it 
does have a time-periodic solution that corresponds to a PSC 
system in the case of physical interest 5 (T)(I, ( T )  (Ref. 12). 
In a real superconductor of electric-field penetration depth 
I, exceeds considerably the coherence length 6 (T). For this 
reason, just as in Ref. 12, we shall consider below the case 
u4 l .  

Equations (1) and (2) can be written in the gauge, invar- 
iant form 

where @ = q, + ax/&; Q = - dx/dx (in our case the vector 
potential A = 0 in view of the narrowness of the sample). 

It was shown in Refs. 12 and 13 that a voltage is pro- 
duced in the sample in regions of approximate size I, (i.e., 
u-112 in our units) between the PSC. In these regions the 

order parameter A, the potential @, and the superconduct- 
ing current j = - A2Q are practically independent of time 
and are functions of only the coordinate x. A time depen- 
dence of these quantities occurs only in a rather narrow vi- 
cinity of the PSC, with dimension of the order of x, - u- 'I4, 
so that I, >xl. As a result of this ratio of the characteristic 
scales, solution of the system (4)-(6) for the time-indepen- 
dent quantities, at distances x from the PSC such that 
x1(x-lE, was sufficient to calculate the IVC (Ref. 12). 
When the distance to the PSC becomes xxl,, the following 
condition holds: 

In this section we consider the motion of the PSC struc- 
ture as a whole, at a certain velocity v. Being interested in the 
current-voltage characteristic of the sample, we assume in 
accord with the arguments above (see also the Appendix) 
that it suffices for this purpose to solve the system (4)-(6) in 
the region x-I,, where all the quantities will depend only 
on the variable y = x - vt. Near each PSC we assume as 
before satisfaction of the condition (7). Equation (4) for the 
self-similar solution contains v in the combination uv/l. 
Since u is small, we shall assume that the condition uv/l( 1 is 
satisfied for all the velocities considered. Over scales on the 
order of the distance 1 between the PSC, one can neglect at 
1) 1 also the term with the second derivative in (4). Equations 
(4)-(6) take the form 

Equation (8), which is valid atx) 1, leads on the basis of (7) to 
boundary conditions near the PSC: 

We introduce the notation 

In this notation, the electric field is E = - dp/dy. With the 
aid of (8)-(10) we can easily obtain an equation for the func- 
tion p(z): 

For the period of the structure we have 
1 

here yo is the point at which the potential @ vanishes and at 
which j, = z(l - z)'I2 and z( y) have extrema in accordance 
with (10) (Fig. 1). We note that the moving structure becomes 
asymmetric relative to the midpoint between two neighbor- 
ing PSC. 

Assuming that the pointy = j corresponds to vanishing 
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FIG. 1. 

of ,u(z), we can formally integrate Eq. (12): 

f ( z )  = up2 - 2uv ( I  - z)'lp'dp 1 

where 

[ j  - z (1 - z)'/2] (32 - 2) 
dz. 

z 

We consider first the case of low velocities. Expanding (14) in 
powers of v, we get 

Here 

Since @ = p  + vQ = p  - v(1 - z)'I2 vanishes at z = z,, we 
should have 

f ( 2 0 )  =-uv"1-2,). 

This relation yields the value of Z in (1 5). Ultimately we have 

The total voltage drop on the section between two PSC is 

U=P ( Y C Y O )  I z = i - ~  (y>yo) Iz=i=UO+6U 

It is obvious from (18) and (19) that the coefficient of u2 in (21) 
is positive. For the period of the structure we have from (13) 
and ( 16) 

1 

2a (z= 1 )  (32,-2) a ( z )  dz 
Z=l0+vZ 

It is easily seen that the correction to 1 is also positive. The 
integral in (22) can be easily calculated in the case whenj-+jc 
and u v 2 4  j - jc . In our case the IVC are a two-parameter 
family of curves in the sense that at a given current j the 
electric field depends on the period 1 of the structure and on 
the structure velocity v, i.e., E = E (1,~). The first question 
that must be answered is whether a state with finite structure 
velocity will decrease the electric field at a given current. We 
put, as in Ref. 12, zo = 2/3 and calculate the electric field. 
The period of the structure is 1 = lo + 81, where 

q=6-8 In 2-0.45. 

The results can be interpreted in the following manner. 
Assume that the channel in question is long enough to hold a 
large number of PSC, so that the influence of the boundary 
conditions on the end of the channel affects the behavior of 
each individual PSC relatively little. The current-voltage 
characteristic of such a channel is stepped (see, e.g., Ref. 2), 
as shown schematically in Fig. 2. Let the current flowing 
through the sample be in the intervaljin - < j <In1  between 
the (n - 1) st and the nth jumps of the voltage. When the 
current is increased abovej(n), the shortening of the period I, 
makes a structure with PSC in the channel impossible, an 
(n + 1) st PSC must appear, and an nth jump of the channel 

L 

FIG.  2. 
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FIG. 3. 

should occur. There is, however, an alternative: The PSC 
structure can begin to move at a velocity v such that the 
previous period I is preserved, and the decrease of the period 
by the increased current is offset by an increase of v. At cur- 
rents close to jc we have thus 

~ v ~ = 3 ~ ' ~ ~ j , / ~ ,  6 j=j- j (n) .  
If the sample is infinitely long, we determine the motion 

of the structure by considering the average electric field 
~=U/l=U,/lo+6U/lo-Uo61/1,2=Eo+6E. 

In the case j--+jc, it is readily seen that SE<O. In other 
words, at a given current the IVC is on the left of the charac- 
teristic of the immobile structure (curve marked v = 0 in Fig. 
3), i.e., a finite structure velocity corresponds to the state of a 
system with a lower dissipationjE than of an immobile struc- 
ture. From the viewpoint that the system tends to a state 
corresponding to minimum dissipation (see Ref. lo), it can be 
concluded that the structure velocity should increase. 

Since the minimum of the electric field corresponds to 
finite structure velocities, we consider the case ~ ) u - ' / ~  (but 
uv/l( 1 as before). We turn to Eq. (12), which we write in the 
form 

a f i  ao, --=-- v 
dz 2u@ dz 2(1-2)'" ' (23) 

At large v there are two solutions: 
1 

These two solutions correspond to the sections y <yo and 
y >yo (see Fig. 1) at v > 0, and conversely toy >yo and y <yo 
at v<0. 

We consider below for the sake of argument the case 
v > 0. The solutions @, and @, to the left and to the right of 
the pointy =yo respectively should match at y =yo. A more 
accurate solution of (23) in the vicinity of the point z = zo 
yields 

As z+zO the functions @,,, go over respectively into f ( fo/ 
u)"', and at z - zo- 1 and v)u-ll' these expressions yield 
Eqs. (24) and (25). 

For the period of the structure we obtain I = I, + I, (see 
Fig. l), where 

Since @, -v and @,-u-', we have I-v-' and I,-v. The 
structure thus becomes strongly asymmetric, with I,)I1. 
The total period is 1zI2, i.e., 

i 

The total voltage drop is 
U= ( p i - p z )  l r = I = ( @ t - @ 2 )  Jr= t=v  (1-zo)'". 

The aveage electric field E = U/I is 
1 

and the frequency w of the low-frequency nonJosephson 
oscillations will be 

The results are valid under the condition uv/l(l and 1 ~ 1 ,  
with I taken here to be the shortest scale, i.e., I,. Since I, - 1/ 
uv must have v(l/u. These results take place therefore at 

We assume below that zo = 2/3. In the limiting case 
j+j, we have 

In the case j>jc we get 

where o = 2.3"'~. Comparing these expressions with the 
IVC of the sample at zero velocitylO: 

ci. 
E,= 10.32/ ln =, i-i. 

we see that the initial section of the characteristic at high 
velocity of the structure lies higher than the section of the 
characterstics with zero velocity (curve marked v = oo in 
Fig. 3); the situation is reversed for large currents. A numeri- 
cal calculation shows that the curves for v = 0 and u = w 
intersect at j = 1.68jc. 

If we start from the minimum-dissipation principle, we 
can conclude that at j <  1.68jc the PSC structure tends to 
acquire a higher velocity whose value is limited only by the 
sample length L, namely v -L. We must note, however, one 
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very important circumstance. When solving the equations 
we have discarded the term with ad /& in Eq. (4), since we 
have assumed the parameter u to be small. From the view- 
point of Eq. (4) smallness of u means rapid relaxation of A to 
its equilibrium value. It must be noted, however, that this 
circumstance is an artifice peculiar only to the chosen mod- 
el. In real superconductors the relaxation time of A is long 
(see, e.g., Ref. 14) and is proportional to the electron-phonon 
collision time. This introduces into the system an additional 
dissipation mechanism not accounted for in the present 
model. As a result, the PSC structure velocity may stop 
growing much earlier than in our case. 

To illustrate the foregoing, we consider the equation 
obtained for the order parameter from the microscopic the- 
ory in the case when the order parameter varies slowly in 
space and in time compared, respectively, with the diffusion 
length (DT,,)"* and with the electron-phonon relaxation 
time T,,. In dimensionless variables the equation takes the 
form15 

where uo = 5.79 and r = (2r,, A,,)-' is the so-called pair- 
breaking factor; T(1. The equilibrium value of the order 
parameter is 

The electric-field penetration depth is in this case 

zE= (uOr) - l + ~ .  

Consider the behavior of the gap A in the vicinity of a 
PSC, where j, = 0. We obtain for the self-similar solution 
A(x - vt ) 

This equation has an exact solution 

where a satisfies the equation 

u,vcc/I'-2a2+1=0. 

From this we get 

a,,2=u,u/4r* [ (uov/4r) 2+'1z] '". 

The upper and lower signs correspond to the behavior of A 
on the right and left of the PSC, respectively. At uov/4r) 1 
we have a, = uOv/2r and a, = - r/4v. Thus, to the left of 
the PSC the order parameter increases quite slowly into the 
interior of the superconducting region. Clearly, when a; ' 
becomes noticeably larger than I, the order parameter can- 
not reach finite values and the resistive state is destroyed. 
This occurs at a; ' -IE, i.e., at u,u- Thus, the maxi- 
mum velocity is restricted in this case to the rather low value 

Of course, a numerical comparison of results obtained 
on the basis of the time-dependent Ginzburg-Landau equa- 
tions with experimental data on low-frequency generation4p5 
is not very meaningful. The qualitative picture obtained, 

however, should apparently be observed in a real situation. 
According to the minimum-energy-dissipation hypothesis, 
which is certainly valid for certain superconductor-dynam- 
ics models,1° at a given current the system tends to decrease 
the electric field E. This is achieved by simultaneously in- 
creasing the structure velocity v and its period 1, as follows 
from (26), (27a), and (28). In the case of the simple time- 
dependent Ginzburg-Landau equations, the spatial period 
will increase right up to the length of the sample, and the 
velocity will also increase. For the real dynamic model (30), 
the increase of the structure velocity ceases to ensure a dissi- 
pation gain quite early, since the effective mechanism of the 
order-parameter modulus relaxation comes into play. Esti- 
mating at j - j ,  , in dimensional units, the characteristic fre- 
quency w = 2.rrv/l of the low-frequency oscillations, and us- 
ing (31a) and the dimensionless units in which Eq. (30) is 
~ r i t t e n , ' ~ "  we get 

which is much less, within the range of validity of (30) (Ref. 
l), than the Josephson part of the oscillations at each PSC: 

a,-o ( T = Z ~ ~ ) '  (1-TIT,) 'I*. 

3. LOW-FREQUENCY OSCILLATIONS AS THE 
CONSEQUENCE OF DESYNCHRONIZATION OF INDIVIDUAL 
PSC 

We consider in this section the other mechanism of low- 
frequency generation by the PSC system. As already men- 
tioned, inequality of the Josephson frequencies of two neigh- 
boring PSC (desynchronization) can lead to low-frequency 
oscillations at the beat frequency. Desynchronization of two 
Josephson junctions was considered, for example, in Ref. 16, 
from which it follows that synchronization can take place 
even if the individual properties of the junctions are differ- 
ent, and to obtain desynchronization it is necessary that in a 
certain sense the difference between the parameters of two 
junctions exceed some value. 

Similar phenomena can occur not only in a system of 
artificially produced Josephson junctions, but also in a sys- 
tem of freely produced PSC in the resistive state of a long 
superconductor. In an infinite and homogeneous supercon- 
ducting channel, for example, all the PSC are synchronized. 
Desynchronization effects can be expected near places 
where the homogeneity of the sample is disturbed, particu- 
larly near its boundaries. 

We study in this section the desynchronization of PSC 
located near the boundary of a sample occupying the region 
x > o .  

It is known that the study of the dynamics of supercon- 
ductors is in general an exceedingly complicated problem. 
We shall use therefore a simplified model based on equations 
of the type (1) and (2), the same as in Refs. 9 and 10. We 
assume a periodic sequence of defects distributed over the 
length of a sample with critical temperature T, ; the defects 
increase the superconductivity, with a critical temperature 
T,, > T, . The length of each defect is d ( c  (T). We assume 
also that the temperature range is 
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T,<T<T,,. (32) 
The analog of Eqs. (1) and (2) takes then the form 

8 T j=E+j,, E =  -- 
ax'  

The chain of S functions describes the change of the critical 
temperature in the region of the defects7 

The unusual sign preceding the unity in the square brackets 
in (33) is due to the fact that T> T,. 

The exposition that follows is based on the results of 
Refs. 9 and 10. It follows from these results that when the 
current decreases below a certain value j,, islands (nuclei) of 
the superconducting phase are produced and are localized 
near the inhomogeneities described by the S functions in Eq. 
(33). The amplitude of the nuclei increases with decreasing 
current. Just as in Refs. 9 and 10, it will be assumed that the 
nuclei are far from one another, 1 ~ 6 ,  and their overlap is 
small. In view of the presence of current and of normal resis- 
tance between the locations of the neighboring nuclei, a vol- 
tage drop exists and causes the phase difference between two 
neighboring nuclei to increase with time. This leads in turn 
to oscillations of the modulus of the order parameter in the 
overlap regions and to formation of PSC at several points 
between neighboring nuclei. In analogy with Ref. 10, this is 
precisely the picture chosen as the model for the resistive 
state in the present section. 

The summation in (33) is over n>O. A resistive state is 
produced in that sample region where there are stimulating 
inhomogeneities (i.e., at x > 0); the region x < 0 remains nor- 
mal (Fig. 4). Thus, Eq. (33) simulates a system in which a 
superconducting sample in the resistive state (the region 
x > 0) is joined to a normal conductor (regionx < 0). The PSC 
on the extreme left, located near the boundary with the nor- 
mal state, is under conditions that differ from those for the 
remaining PSC, so that its Josephson frequency can differ 
from the frequencies of the remaining PSC, and it is this 
which leads to desynchronization. The model chosen is quite 
special, but offers the advantage that it can be solved exactly. 

We represent the order parameter in the form 

FIG. 4. 
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where the X, (t ) are the phases of the individual supercon- 
ducting nuclei, and the p, (x) describe the form of the nth 
nucleus whose amplitude A, is determined by the difference 
j, - j. A solution for p, was obtained in Ref. 10 in a definite 
region of the parameters a and I for the case of an unbounded 
system of defects (nsO). It was assumed, in particular, that 
j ,(l  and 1) 1 (smallness of u is not required in this case). 
Using the method developed in Ref. 10, we can obtain for a 
semi-infinite system of defects a solution similar to that of 
Ref. 10. Assuming that the parameters a and I are such that 
uj,l 2< 1, we have 

ex- (2ilujl) e-x-22 -l<z<O, 
O<x<1, (36) 

(2ilujl) e-", l<x. 

We take into account the interaction with only the nearest 
neighbors, so that the functionsp, ( x )  that describe the shape 
of the nucleus are the same for all n > 0. At n = 0 the func- 
tion p, differs from the others, since it has no neighbor on the 
left. The proportional subcritical value is 

It is assumed here that la 1 - 2 4  1 [a < 0 according to (32)]. 
Introducing the quantities 

and proceeding in analogy with Ref. 10, we obtain the sys- 
tem of equations 

dgi 
--- =y (sin g3-2 sin g,) f q ,  a t 

ag2 -= y (sin g,-2 sin g,) , 
at 

agn -= 
d t Y (sin g,+,+sin g,-,-2 sin g,) , n 2 3 ,  

We have used here the values for A and j, at n > 0. It follows 
from Ref. 10 that the electric field at the nth site, averaged 
over the period of the cell, can be written in the form 

E (n, t )  =j-5u3ji2/81- ( j l - j )  [1+12e-21 cos gn ( t ) ]  . (40) 
The last term is the average of the London current j,. 

The meaning of g, can be understood from the follow- 
ing. In Fig. 4 the PSC are produced in the regions between 
the nuclei. The Josephson frequency is 
on + ,,, = d ( X, + - X, )/dt , for the PSC located between 
the (n + 1)st and nth nuclei and 
w , ,  - 1 = d ( x ,  - X, - 1 )/dt for the PSC between the nth 
and the (n - 1)st nuclei. The superior bar means time aver- 
aging. Therefore 
- 
a g , l a t = ~ ~ + ~ ,  ,-on, ,-,. (41) 

The desynchronization is just the difference between this 
quantity and zero, i.e., the fact that the Josephson frequen- 
cies of two neighboring PSC are unequal. 

In the approximation considered the system (36) breaks 

Ivlev etal. 342 



up into unconnected parts with odd and even n. At even n 
one can assume that all g, = 0. The presence of a boundary 
affects only g, with odd n. The behavior of the solution de- 
pends on the quantity 

If R < 1, a static solution sing, = R, which is stable in the 
small, is possible, and there is no desynchronization in ac- 
cordance with (41). At R > 1, no static solution is possible. 
We consider here the simplest case R) 1, when 

gi=qt, g3-R-' cos q t < f .  (43) 

We see that in this case oflargeR) 1, in accordance with (41), 
the PSC that is desynchronized from all the others is the one 
farthest to the left (Fig. 4). It follows from (40) that it leads to 
an alternating component of the total voltage across the sam- 
ple: 

V ,  ( t )  = - 5 / 8 ~ 3 j , 1 2  ( j , - j )  ecZ1 cos q t .  (44) 
The Josephson frequency w, -El-jl, therefore the ra- 

tio of the low oscillation frequency w to the Josephson fre- 
quency is w/w, - exp( - 21 ). We note that generation of low- 
frequency oscillations in this model is possible only at 
currents 

where the generation current j, is determined from the con- 
dition R = 1, i.e., 

Since the approximation considered is suitable only at 
j1 - j( jl Eqs. (45) and (46) are meaningful only at j,l 3( 1. 
Just as in the preceding case, the effect exists in a finite cur- 
rent interval. 

4. CONCLUSION 

Although the two considered mechanisms whereby 
low-frequency oscillations are generated were analyzed here 
using particular models of superconductor dynamics, the 
physical nature of these phenomena is nevertheless com- 
mon. The principal statement of Sec. 2 is that the structure 
can move and therby decrease the dissipation. In this case 
the oscillations are of lower frequency than the Josephson 
oscillations because of the relatively slow velocity (31a) of 
the structure. 

It should be noted that the low-frequency oscillations, 
as follows from our results, occur in the entire range of cur- 
rents, whereas in experiment they are observed in practice at 
one value of the generation current. 

The authors thank A. I. Larkin and D. E. Khmel'nitskii 
for a discussion of the results. 

APPENDIX 

Consider the solution of Eqs. (1) and (2). Assume that 
j)l and that the current j, can be neglected in (2). This re- 
striction is cot fundamental and is imposed only for simpli- 
city. The solution of the equation 

can then be written in the form 

9 ( x ,  t )  =exp ( i j v t 2 / 2 )  exp ( i n j l t ) R  (x -u t -n l )  , (A.2) 
n 

where R (x) satisfies the equation 

a R ( x )  + ( l + i u j x )  R ( x )  - +uv - ax2 a x  
r l  (A.3) 

- R [x-1 (m-n) ] R ( x - l n )  R*  (x-lm) . 
m,n 

At v = 0, Eq. (A.2) recalls the known Abrikosov solution for 
a vortex system in a type-I1 superconductor; in our case the 
spatial coordinate is replaced by the time. The set of local- 
ized functions R (x) is then such that the gauge-invariant 
quantities ($1, Q, and @ depend on the time only in a narrow 
regionx, -u-'I4 about the PSC, and the period of the struc- 
ture is I- I, - u-'I2 (Ref. 12). The existence of such a set of 
functions R (x) is equivalent to the presence of a stable time- 
periodic solution of Eq. (A. 1). Since such a periodic solution 
was obtained for v = 0 by numerical intergration, this means 
that Eq. (A.3) has localized solutions at v = 0. 

It can be assumed that Eq. (A.3) has localized solutions 
also at v # 0, which will mean physically motion of the struc- 
ture with velocity v. Ify = x - v t  is not too close to the PSC, 
then 191, Q, and @ will depend only on y, and this region is 
subject to the largest voltage drop (cf. Ref. 12). 

It precisely in this sense that the solutions considered in 
the text can be taken to be self-similar. We note that the PSC 
lattice is rectangular in the coordinates (y,t ) . 
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