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An approach is developed which represents generalization of the Feynman variational method in 
the theory of polarons and which can be used to determine the energy of the ground state of a 
polaron in the case of valence bands with a point of degeneracy. In the limit of a strong electron- 
phonon coupling when the spin-orbit interaction is ignored this energy is identical with that given 
in the literature and calculated allowing for spontaneous breaking of symmetry. 

1. INTRODUCTION 

Very detailed investigations have been made of the 
states of a large-radius polaron in a simple energy band. 
However, in the case of a hole polaron in a cubic crystal, 
when the band degeneracy at k = 0 is important, the ground 
state's2 and the characteristics of the spectrum near the 
threshold of emission of an optical phonon3 have been stud- 
ied only in the limit of small values of the electron-phonon 
coupling constant. The case of a strong coupling is more 
appropriate to a hole polaron than to an electron polaron 
because the electron-phonon interaction constant is propor- 
tional to the square root of the mass of a band carrier and 
because a hole is relatively heavy compared with an electron. 
Very recently the energy of the ground state of such a hole 
polaron has been determined by a variational method using 
the adiabatic approximation4 and it has been concluded that 
spontaneous symmetry breaking occurs. An allowance for 
the resultant lowering of symmetry complicates greatly the 
calculations. We shall develop a method which is a general- 
ization, to the case of degenerate bands, of the Feynman 
method in the theory of polar on^,^-^ which in principle 
should yield the ground-state energy for a polaron charac- 
terized by an arbitrary electron-phonon coupling. This gen- 
eralization makes it possible to derive an approximate effec- 
tive Hamiltonian with a spherical symmetry in the case 
when the Jahn-Teller symmetry lowering is important. The 
spectrum of this Hamiltonian considered in the self-consis- 
tent scheme can be found using functions with a fixed angu- 
lar momentum, which greatly simplifies the calculations. 
The values of the energy obtained for a hole polaron in the 
limit of strong coupling but without allowance for the spin- 
orbit interaction are practically identical with those found in 
Ref. 4. 

2. CALCULATION OF THE GROUND-STATE ENERGY OF A 
POLARON BY THE METHOD OF PATH INTEGRALS 

We shall take the initial Hamiltonian in the form of the 
energy operator for a free electron which is subject to a peri- 
odic potential W(r) and which interacts with longitudinal 
optical phonons of frequency w, : 

where m and e are the electron mass and charge; E, and E ,  

are the values of the permittivity at low and high frequencies; 
V is the volume of the crystal. 

In the method of path integral@ or in the equivalent 
trace method7 the problem under discussion reduces to cal- 
culation of the partition function 

where il is the reciprocal of temperature. 
We shall be interested in the ground-state energy, i.e., in 

the value o f 2  corresponding to the limit A-+a. Bearing this 
in mind, we can modify Eq. (2) by replacing calculation of the 
trace for all the phonons with averaging of phonons over 
their vacuum states. Consequently, we obtain the following 
inequality for 2 :  

ZLSP, --.. exp[ - H . ( A , ) ~ A ~ + ~  V;G. ( r )  ] , 
0 '4 

H,=pZ/2m+ W ( r )  , (3) 

where ill is an ordering index and the trace is assumed to be 
calculated for the electron coordinates. The form of the op- 
erator G, (r) is given in Ref. 7 and it is unimportant in the 
present context. The only significant feature is that it is inde- 
pendent of V, . 

Using the variational principle,6.7 we shall introduce a 
trial potential v(r) and then, enhancing the inequality (31, we 
obtain 

p2 H = - + W ( r )  + z h w q a q + a q +  z V,, (a,,eiqr+oq+e-''4') , where the average is calculated using the operator functions 
2m 

P '4 

1 1  
H' =H,+u 

ez 2nfioqc (5) 
VZ=-- , c = - - -  

qZ v Em Eo 
( I )  with an arbitrary potential u = v(r). 
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The operator V i  G, (r) is small, because V i  cc V  -' and, 
therefore, its average can be calculated by the methods of 
perturbation t h e ~ r y , ~  in which the second order gives the 
exact value. We shall not give the steps in detail, but only the 
final result for the ground-state energy of a polaron (more 
exactly, for the upper limit to this energy): 

where m labels the various functions of the ground state (if it 
is degenerate) of the Hamiltonian H '; Z?, and Z?, are the 
eigenfunctions of this operator; the summation with respect 
ton is carried out over all the states of H '. In this formula the 
trial potential is arbitrary: it should be selected from the 
condition for minimum of the energy E m .  An expression 
similar to Eq. (6) for the nondegenerate case has been used 
implicitly for a polaron in Ref. 7 and for a Wannier-Mott 
exciton in Ref. 8. 

We shall now employ the effective mass method. It 
would have been undesirable to employ this approximate 
method in the earlier stages of our calculations because the 
representation of the partition function as a path integral is 
standard for systems described by a classical Lagrangian5.6 
(the case of a carrier in a periodic potential in the absence of 
the spin--orbit interaction reduces to this Lagrangian) and 
for systems with double spin degeneracy9,10 (when a carrier 
is considered in a periodic potential subject to the spin-orbit 
interaction). However, in the effective mass approximation 
the degeneracy multiplicity for a hole in a cubic crystal is 
higher (it amounts to three or four), which complicates intro- 
duction of a path integral. Equation (6) is not affected if 
smoothed-out functions of the effective mass method are 
used to calculate the matrix elements. This approach is justi- 
fied subject to the standard restrictions on the smoothness of 
the electron-phonon interaction operator, which are satis- 
fied as demonstrated by the nature of the interaction costant 
V, in Eq. (1); the restrictions applicable to the trial potential 
will be formulated below. 

It follows that the "Feynman" approach provides an 
opportunity for calculating the energy of a polaron with an 
arbitrary electron-phonon coupling in a system with degen- 
erate energy bands. 

3. STRONG-COUPLING LIMIT 

In the case of a strong electron-phonon interaction the 
expression (6) for the energy simplifies greatly because the 
separation between the various energy levels of the trial Ha- 
miltonian H'  is large (for an ordinary polaron it is propor- 
tional to the square of the coupling constant) and, therefore, 
we can limit Eq. (6) to just terms with such values of n for 
which we have 8, = 8 , .  This approximation again in- 
creases the upper limit for the ground state. Since Eq. (6) 
contains now only the wave functions of the lowest level of 
the Hamiltonian H ', we can replace the explicit form of the 
trial potential v(r) with trial wave functions. Equation (6) 

then becomes 

int 
=Tmm+ V,,, (7) 

h h 

where k = - i7; T (k) is the Hamiltonian of a free hole; m 
and m' label the orthogonal trial wave functions for the low- 
est degenerate state. 

The kinetic energy operator of a hole considered in the 
spherical approximation can be written in the form1' 

T (k) =a[21+ E 1 ~  (c) 1, (8) 

where in the absence of the spin-orbit interaction (intrinsic 
momentum of a hole is j = 1) using a basis of functions trans- 
forming as x ,  y, and z (which is convenient for our calcula- 
tions), we find that 

B,,, (k) =k,k,-'l,k26,,,.; m, m'=x, Y, 2. (9) 

It should be pointed out that 

B2 (k) =2/9kI+'/3k2B ( k )  . 

In the case of an extremely strong spin-orbit interaction 
( j  = 3/2) the Hamiltonian of Eq. (3) should be supplemented 
by a term describing this interaction (it should be pointed out 
that a rigorous justification of the variational principle in the 
method of path integration has been provided so far only for 
the Hamiltonian with j = 1). Then, we find that 

B (k) = ( L k )  '-'/,I SI) (Lk) ' ,  (1 1) 

where 

B~ (k) =zk4,  

I is a unit matrix and L are the matrices of the momentum for 
j = 3/2. The parameters a and p are related to the masses of 
the light m, and heavy m, holes by 

The wave functions qm of the ground state of a polaron are 
selected in the form of combinations of sphyical functions 
which are eigenfunctions of the operator T (k ). Since in the 
case of wave functions of the ground state the total momen- 
tum of a hole is the same as its intrinsic momentum, it is 
found that, after allowance for the parity, 

where em is a column consisting of 2j + 1 elements in which 
thepth element is aPm. 

It should be noted that the functional (7) for an optical 
polaron (w, = w) can be represented in the form 
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where 

here, () denotes convolution of the spinors $. If we use Eqs. 
(10) and (12) and apply the theorem of addition of spherical 
functions,12 we can show that when the wave functions are 
selected in the form given by Eq. (14), then 

V [ q m ]  = [IF ( r )  +B(r)  G ( r )  ]em, (17) 

where F and G are functions dependent only on the modulus 
of r. 

We thus find that V[$,] has the same symmetry as 
T$, and not lower, contrary to the adiabatic approximation 
(see Ref. 4 and also Sec. 4 in the present paper). Therefore, in 
the adopted approach all the calculations may be carried out 
in a self-consistent manner using the basis of the spherical 
functions described by Eq. (14). 

We must bear in mind that, although the calculations 
are being carried out using trial wave functions, we are as- 
suming the existence of a trial Hamiltonian H ' which in the 
effective mass approximation is 

Since the wave functions (14) contain two independent radial 
components f,(r) and f2(r), it follows that a matrix Schro- 
dinger equation corresponding to H ' can be satisfied by arbi- 
trary functions fdr) and f,(r) only if V,, has a structure simi- 
lar to that of T(k), i.e., if 

The first term of V,(r) appears when we adopt the effective 
mass approximation for the smooth part of the trial poten- 
tial; the second term V,(r) exists if the trial potential v(r) in 
Eq. (5) includes Fourier harmonics with the wave vector of 
the order of the reciprocal lattice vector [Eq. (2.19) from Ref. 
131. It should be noted that this requirement differs from 
that adopted usually in the theory of local large-radius 
centers where only the smooth part of the potential is re- 
tained in order to simplify the calculations. 

Before considering the calculations, we must point out 
that the normalization of the functions (14) and the average 
kinetic energy are given by 

N = ( + , ,  j ~ ~ ~ )  = ( f o ~ f o ) + ~ ~ f Z ~ R ~ f Z ) ,  
TET , ,  .,,-n{(f,,)i21f,>+y (I-I- ' / ,pk3,) (f,lQ! f z >  

+ 2 Y ~ ( f O l ~ ~ l f 2 > ) ,  (20) 

where 

y = ' l g  for ?=I, Y=I for j = 3 / 3  (21) 

The matrix elements occuring in V,,, have the structure 

(elqr) , , , , , , r=F(q) fi,,,.+B,,,,,, (q) G ( q ) ,  (22) 

whereas the interaction energy itself is 

It should be noted that in the case described by Eq. (7) the 
virial theorem is valid so that the ground-state energy of a 
hole polaron can be expressed in the form 

4. GROUND-STATE ENERGY OF A POLARON IN THE 
ADIABATIC APPROXIMATION 

In the limit of strong coupling we can use the adiabatic 
approximation and the values of the energy calculated using 
this approximation in the principal order with respect to the 
coupling constant should in principle be identical with those 
obtained by the Feynman method. In the case of a nondegen- 
erate band the adiabatic method is self-consistent in the class 
of spherically symmetric functions. However, in the case of a 
degenerate band, self-consistency is attained only if an 
allowance is made for the lowering of symmetry.4 The calcu- 
lation given below is carried out in the adiabatic approxima- 
tion using spherical functions (14) which in this variant are 
not self-consistent. Nevertheless, a comparison with the 
j = 1 case considered in Ref. 4 shows that the energy differ- 
ences are only 3 %. 

It is convenient to begin directly from the effective mass 
Hamiltonian b~replacing the first two terms in Eq. (1) with 
the operator T (k) and assuming that the phonon operators a, 
and a: are c numbers, which corresponds to a polarization 
static relative to the instantaneous position of a hole. The 
variational functional corresponding to this Hamiltonian 
has the form (7) after minimalization with respect to phon- 
ons, but now this equation consists of just one term with 
m' = m and it is identical with the result obtained in Ref. 14; 
hence, it is clear that in the case of a degenerate Hamiltonian 
and an extremely strong coupling the Feynman method 
gives lower values of the energy than those deduced in the 
spherical nonself-consistent approximation. 

The trial wave function of a hole is selected in the form 

where $, are defined by Eq. (14). The difference from the 
preceding case is manifested only in the interaction energy, 
which is now 

When the kinetic energy of a hole is selected in the form 
of Eqs. (8) and (9), it can be shown that the minimum of Em 
for a polaron with j = 1 is obtained for real values of Cm . 
Then, Em depends only on the invariant combination (C, C) 
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FIG. 1. Dependence of the polaron energy on the ratio of the masses of 
heavy and light holesx (n = 2; F is the Feynman approach and A is the 
spherical adiabatic approximation; the numbers outside the curves are the 
values of the angular momentum j). 

equal to unity. For a polaron withj = 3/2 it is found that Em 
depends only on (C, C) for any value of C. Therefore, the 
main term of a hole polaron does not become split when 
spherical functions are used. 

The final expression for the interaction energy obtained 
in the adiabatic approximation is 

the total energy is still given in terms of Vin, and Eq. (24). 

5. RESULTS OF CALCULATIONS 

Two variants of trial radial functions f ,  and f ,  from Eq. 
(14) were used: I) polynomials multiplied by exp ( - ar); 11) 
functions defined by 

where A ,  and a, are the variational parameters. The num- 
ber of terms in the above sum was selected in accordance 
with the required precision. The second set of functions gave 
lower values of the energy for the same number of param- 
eters: the results are presented in Fig. 1. 

The form of Eq. (28) for the radial functions with n = 3 
and p = 0 (nondegenerate polaron) gives the energy 
- 0.1085 12 (the energy will be given in units of m, e2c2/2fi2), 

identical with the value found in Ref. 15. This is the lowest 
energy among those given in the literature. Calculations 
based on Eqs. (23), (24), and (27) with n = 3 give for the 
x = 10 case the following values of the energy calculated in 
the Feynman (adiabatic) approximation: El = - 0.06887 
( - 0.06632), E,,, = - 0.05188 ( - 0.04921). In the self- 
consistent adiabatic approximation with j = 1 it is found4 
that E C = - 0.06844, which is practically identical with El 
in the Feynman approximation; i f j  = 3/2, the value of the 
energy1) obtained in Ref. 16 is higher and amounts to 
E S,, = - 0.047. 

6. CONCLUSIONS 

The method based on the continued integration makes 
it possible to calculate the energy of a hole polaron with an 
arbitrary electron-phonon coupling and still remain within 
the framework of the spherically symmetric model, which 
simplifies greatly the calculations and provides a realistic 
opportunity of finding not only the energy but also other 
parameters of a polaron (such as the structure of the polaron 
band). It is very remarkable that exact exclusion of phonons 
in the initial stage of calculations carried out in the path 
integration model has the effect that the spherically symmet- 
ric approximation is applicable to systems in which sponta- 
neous lowering of symmetry is possible. In contrast to Ref. 4, 
the Jahn-Teller effect does not appear directly. The numeri- 
cal agreement between the energies obtained for j = 1, in 
spite of the difference between the basis functions, shows 
that both approaches are valid. 
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