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A diagram technique for Hubbard operators is used to develop a quantum theory of Heisenberg 
ferromagnets, with exact account taken of single-ion anisotropy of arbitrary symmetry. The 
Larkin equations and explicit expressions for the effective interactions were obtained. A disper- 
sion equation that describes all the branches of the spin-wave excitation of an anisotropic ferro- 
magnet is derived. The cases of easy-axis, easy-plane, and cubic anisotropy are considered. It is 
shown that the quantum spectrum of a ferromagnet with spin S = 2 and with cubic anisotropy 
consists in the low-temperature region of one longitudinal branch and two transverse ones. The 
correction to the ground state, necessitated by the zero-point quantum oscillations, as well as the 
low-temperature dependence of the magnetization, are calculated to first order in l/ri .  

The results of quantum-mechanical and phenomenolo- 
gical treatments of easy-axis ferromagnets do not agree, gen- 
erally speaking, even in the simplest geometry, when the ex- 
ternal magnetic field H is oriented along the anisotropy axis 
(a quantum description leads, for example, to new branches 
in the spectrum of the spin-wave excitations1-5). The differ- 
ence increases for easy-plane ferromagnets, as well as at arbi- 
trary direction of H, when the orientation of the equilibrium 
magnetization does not agree with that of the anisotropy 
axis6g7 In this geometry, a purely quantum "spin cancella- 
tion" effect manifests itself as a decrease of the magnetiza- 
tion of an anisotropic ferromagnet8 (or of the magnetization 
of an antiferromagnet ~ub la t t i c e~~ '~ ) .  The effect increases 
with increasing anisotropy, so that an adequate description 
of strongly anisotropic magnets calls for a quantum treat- 
ment. 

Quantum effects should manifest themselves to a 
greater degree in ferromagnets of higher symmetry (say, cu- 
bic), since the operators of the Zeeman energy and of the 
single-ion anisotropy do not commute at arbitrary orienta- 
tion of H. At the same time, development of a quantum the- 
ory for S>2 (spin values starting with which single-ion an- 
isotropy of cubic symmetry is possible) is seriously hindered 
by the large number of single-ion states. In an approach for- 
mulated in Ref. 11, single-ion anisotropy of arbitrary sym- 
metry is taken into account by including it in a single-site 
Hamiltonian, and the intersite exchange interaction is con- 
sidered in the anisotropic molecular field approximation. 

It has been found that the physical properties of aniso- 
tropic ferromagnets can be conveniently described by repre- 
senting the spin operators in terms of Hubbard opera- 
tors.''-l4 The diagram technique developed in Ref. 13 for 
Hubbard operators has made it possible to calculate, in the 
case of easy-axis ferromagnets with arbitrary spin S, the cor- 
rections cc r; to the spectrum and to the damping of mag- 
nons, as well as the contributions cc r; of the magnon-mag- 

theory of Vaks, Larkin, and Pikin for isotropic magnets. '"18 
The question of development of the theory of ferromagnets 
with arbitrary form of single-ion anisotropy has remained 
open. 

We develop here a quantum spin-wave theory of ferro- 
magnets with single-ion anisotropy of arbitrary symmetry, 
which is included in the Hamiltonian Ro( f ). It is shown that 
the exchange-interaction matrix is represented as a sum of 
three matrices with separated dependences on the indices 
(see below). This circumstance was decisive in the derivation 
of the Larkin equations, from which a dispersion equation 
was obtained to describe the total spin-wave spectrum of 
anisotropic ferromagnets. The theory developed has made it 
possible to consider quantum spin-wave singularities of a 
cubic ferromagnet, and to determine its spectrum and the 
quantum spin cancellation. The temperature dependence of 
the magnetization and ground-state correction connected 
with the zero-point oscillations are calculated in first order 
in l/ri .  

1. HEISENBERG-FERROMAGNET HAMlLTONlAN WITH 
SINGLE-ION ANISOTROPY (GENERAL CASE) 

Consider a Heisenberg ferromagnet with arbitrary form 
of single-ion anisotropy (uniaxial, cubic etc.) and with a gen- 
eral direction of the external magnetic field H. The Hamil- 
tonian of such a system can be written in the form 

1 
2% = - NI. ( t ~ ) ' f  < S ~ ) ~ + ( S ~ ) ~ )  - iz Z f m  ( A S f )  ( A S - )  

2 
f m  

where the last term describes the influence of the single-ion 
anisotropy, of the external magnetic field, end of the self- 
consistent field Io(S  ) 

non interaction to the temperature dependence of the free The solution of the single-ion problem with Hamilton- 
energy and of the magnetization. l5 The theory of a uniaxial ian Po( f )  leads to diagonalization of the last term of (1) if the 
ferromagnet with collinear structure is thus constructed by spin operators are represented in terms of Hubbard opera- 
the self-consistent field (SCF) method, in analogy with the tors 
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f f In  

where En is the self-energy of the Hamiltonian ZO( f )  in the 
nth quantum state $ ) of site f, h fn = Xy, 
X "; = I$ fn ) ($ fn. I are Hubbard operators constructed on 
the complete basis of the states I$fn ). 

At arbitrary geometry of the problem, the representa- 
tion of the spin operators Sf , S j and S; in terms of the 
Hubbard operators takes the form19 

sf+= YL ( a )  xfa+ z r,. ( n )  h fn ,  s,-= (sf+) +, (4) 

Here a is the root vector (13) whose definition, as in Ref. 20, 
follows from the relations 

For a system with spin S, the total number of root vec- 
tors a is 2 s  (2s  + 1). Each root vector a has 2 s  + 1 compo- 
nents and at the present definition of a the 9th component 
can be represented in the simple form 

'as ( n ,  m )  =6,,-6,,. (6) 

It must be noted that in Refs. 13, 21, and 22 zero-trace 
atomic operators are used to construct the diagram tech- 
nique, whereas we use nonzero-trace Hubbard operators. 
One of the advantages of our approach, particularly conven- 
ient for the case of arbitrary spin, is the ease of calculating 
the root-vector components. On the whole, the physical re- 
sults of both approaches are the same. 

It follows from the general relations of quantum me- 
chanicsZ3 that the coefficients F, (n) and F,, (n) of the trans- 
formations (4) and (5) are connected with the derivatives of 
the energies En with respect to the fields zi : 

aEn 1 
-=-- 
a i r ,  2 

[ r L ( n )  +rL0 ( n )  I ,  

dE, - =-rll ( n )  . az, 
From the hermiticity of the spin operators and from the 

commutation rules for themz3 follow the relations 

0 

Substituting (4) and (5) in the initial Hamiltonian (I),  we 
get 

where 

fm an 
u 

f m  nn' 

The interaction-matrix components in (10) are given by 

z n n ' - ~  fm - jm {+trl(n)rr*(nf)+rL*(n)rL(nl) l+Pll ( n ) r I l  (n f ) } .  

(13) 

It follows from the foregoing explicit dependence of the 
matrix components on the indices that we are dealing in fact 
with a sum of three matrices, in each of which the index has a 
split character. This enables us to find the explicit forms of 
Larkin's equations and of the expressions for the effective 
interactions. 

2. LARKIN'S EQUATIONS FOR A FERROMAGNET WITH 
SINGLE-ION ANISOTROPY OF ARBITRARY SYMMETRY 

The dynamic and thermodynamic properties of an an- 
isotropic ferromagnet can be investigated with the aid of the 
MatsubaraZ4 Green's functions 

D,,,(f.; g.') = - ( T , X , ~ ( . ~ ) B , ~ . ' ( T ' )  ), (14) 

where the indicesA and A ' take on values from the following 
ordered set of (2s  + 1)' elements: 

The operators A ~ ( T )  and B ;'(TI) are defined by the relations 

and are taken in the Heisenberg representation.24 
It is convenient to calculate the functions (14) by the 

diagram method for Hubbard operators.13 Just as in Refs. 
16-1 8 we call a diagram irreducible if it cannot be cut along 
one interaction line into two unconnected parts (irreducibi- 
lity after Larkin). The total aggregates of irreducible dia- 
grams for the functions (14) are called the irreducible parts 
and are correspondingly represented as 

while the analytic expressions corresponding to them are 
designated by 

~ a 6 ,  Tan, pB, p n .  (16) 

In diagrammatic form, the system of equations for the 
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complete Green's functions can be written in the (k, w, ) rep- 
resentation in the form 

-= 
h 

(17) 

where the double line AA ' corresponds to DL*, (k ,  w, ), and 
the wavy line corresponds to the bare interaction I;*' ( 1  1- 
13). The split character of expressions ( 1  1)-(13) allows us to 
reduce the solution of the system of linear equations (17) of 
order ( 2 s  + to the solution of a third-order system and 
obtain the explicit connection between DL,, and ' . Omit- 
ting the intermediate operations, we write down the Larkin 
equation in the form 

Dm. (k ,  on) =-Tkk' (kl a n )  

+ Ik (ehF (k ,  mn)Ai)A?' (k ,  o n )  9 

2A (k ,  o n )  i=l 

(18) 
h 

where the matrix T ( k ,  w, )has the following block structure: 

T(") (k t  o n )  T("'(klon) ) 119)  
4 (k ,  o n )  = ( T ( m . ) )  ( k ,  on),  T ( ~ ~ )  ( k ,  o n )  

with matrices T(** ') (k, w, ) whose elements are the irreduci- 
ble parts of p* ' (k ,  w, ) (16),  and e, is a unit ( 2 s  + 1)2-dimen- 
sional vector whose only nonzero component is the one 
whose number is that of the element A in (15). The (2s + 
dimensional vectors Ai take in block notation the form 

(20) 
The third-order determinant A(k, w, ) is equal to 

A ( k ,  o n )  =deti16ij-'/21kBiT (k, on)  A,iI, (21) 
where the vectors B, have, in a notation analogous to (20), 
the form 

The determinants A"(k, w, ) are obtained from A(k, w, ) by 
replacing in the latter the ith column by a column made up of 
the elements 

-BIF(k,  on)eh,, - B , l ( k ,  on)eh, ,  -B,T ( k ,  o,)eh,. (23) 

A distinguishing feature of an anisotropic ferromagnet is, 
generally speaking, the connection of each Green's function 
with all the irreducible parts, each of which can be calculated 
by expansion in the reciprocal interaction radius. '"I8 This is 
due to the existence of the longitudinal-transverse interac- 
tion (12). By making the analytic continuation iw, -+ w we 
find that the spectrum of the spin-wave excitations is deter- 
mined from the equation 

A (k ,  io,-+o) =O. (24) 

The number of the collective branches of the spin-wave 
spectrum depends on the form of the anisotropy and on the 
concrete geometries of the problems, as is illustrated below 
by a number of examples [see (31)-(33) and (39)l. The maxi- 
mum number of collective branches is equal to the number of 
the different intra-atomic transitions 2 s  ( 2 s  + 1). 

3. ZEROTH APPROXIMATION IN THE RECIPROCAL 
INTERACTION RADIUS 

In this approximation we have 

m 

where T is the temperature, 

bml=Gm1Nm-N,Nrn, 

Nm=exp ( -Em/T)  /Zol Z. = e r p  ( -Em/T) ,  
m (26) 

Da (on)  = (io,+ aE) -', on=2nnT. 

The determinant A(k, w, ) takes in this case the simpler form 

YJ='IzZ*[~ (un) -Bii ( o n )  l r  ~ 1 = ~ 1 * ~  (28) 

Z Z = Y ~ ' ,  ZJ='/zZk[d(-~n) -Cii (an)  I ,  
and the functions that depend on w, are 

For easy-axis ferromagnets with a magnetic field oriented 
along the anisotropy axis we have15 y l l ( a ) = O ,  

325 Sov. Phys. JETP 61 (2), February 1985 Val'kov etal. 325 



yl (a)yl ( - a) = 0, and the dispersion equation (24) becomes 

and determines, as in Ref. 1, the 2 s  collective branches of the 
spin-wave spectrum. We note that allowance for biquadratic 
exchange or for another multipole interaction would lead to 
collectivization of new transitions (e.g., two-magnon ones). 

For easy-plane ferromagnets with a magnetic field ori- 
ented perpendicular to the anisotropy axis, the following re- 
lations hold: 

yl ( a )  y ,, ( a )  =0, r, (n)  =O for all a ,  n. 

Writing (24) out fully, we find that the spectrum of the longi- 
tudinal oscillations is obtained from the equations 

whereas the transverse branches of the spin-wave spectrum 
are solutions of the equation 

In the particular case S = 1 and T4Tc, Eqs. (32) and (33) 
yield the spectrum calculated in Ref. 13. For arbitrary S and 
T, Eqs. (32) and (33) were derived here for the first time. 

We shall consider cubic ferromagnets separately, after 
calculating the effective interactions. 

4. EFFECTIVE INTERACTIONS OF AN ANISOTROPIC 
FERROMAGNET 

The existence of a bare longitudinal-transvefse interac- 
tion (12) causes the longitudinal interaction (13) to contri- 
bute to the effective transverse interaction. A coupled sys- 
tem of equations is thus obtained for the effective 
interactions, in the graphic form 

(if the index A corresponds to a root vector, an arrow is im- 
plied at the end of the interaction line). Such a system of 
equations of order (2s  + can also be solved explicitly in 
view of the already noted split form of the bare interactions 
(1 1)-(13). After a number of transformations we find that the 
solution of (34) can be written in the form 

where the three-dimensional vectors c, are defined by the 

expressions 

and the matrix ir is equal to 

The component numbered i (i = 1,2, 3) of the vector RAP (q, 
w, ) is written in the form 

where the determinants A: (q, w, ) are obtained from A,(q, 
w, ) defined by (27) by replacing in it the ith column by the 
column (c, x, c, y, c,z), in which the three-dimensional vec- 
tors x, y, and z are defined by their components (28). Know- 
ing the explicit expressions for the effective interactions and 
for the Green's functions in the zeroth approximation in 
l/ri of the SCF method, we can deduce an actual analytic 
expression with each diagram and develop by the same token 
a regular procedure for calculating the physical quantities in 
the form of expansions in powers of the small quantities T /  
Tc or 1 /ri. 

5. FERROMAGNETS WITH SINGLE-ION ANISOTROPY OF 
CUBIC SYMMETRY 

We confine ourselves to the case when the magnetic 
field is directed along the C4 axis, which is simultaneously 
the easy-magnetization a ~ i s . ~ ~ , * ~  In this case (see Ref. 10) 
yl (a)yll (a) = 0, y1 (a)yl ( - a) = 0 and from (3 1) we find that 
the equation that determines the spectrum of the longitudi- 
nal oscillations has the same form as (32), and the branches of 
the transverse collective excitations satisfy the equation 

The number of branches of the longitudinal and transverse 
excitations is determined by the number of nonzero param- 
eters of the representation yll (a) and y, (a). At T(Tc the 
degrees of Eqs. (32) and (39) are lower because of the expo- 
nential smallness of the terminal factors b (a) for those a(n, 
m) in which neither n nor m is an index of the ground state. 

Let us consider in greater detail a cubic ferromagnet 
with S = 2, inasmuch as at S < 2 the energy of single-ion 
anisotropy of cubic symmetry becomes constant2' and mag- 
netic-anisotropy effects are possible only through anisotrop- 
ic interaction between the atoms. From the solution ob- 
tained in Ref. 19 for the single-ion problem it follows that in 
the region T4Tc the following parameters are of impor- 
tance: 

~11(1 ,5)=y11(5 ,1)  =-2 sin 20(y(n, m)=y[a (n ,  m ) ] ) ,  

y1(4,1) =2 sin 0, y1(1,2) =2 cos 8, (40) 

where 
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U 
sin0 =, 

K 
cos 0 = 

(P+ U Z )  " ' ( P + U Z )  '/* ' 

U=2H+ (4E2+KZ) Ih, H=H+Zo<S'>, 
(41) 

and K is the cubic-anisotropy c o n ~ t a n t . ~ ~ , ~ ~  Substituting ex- 
pressions (40) in (32), we find that the dispersion law of the 
longitudinal branch of the collective excitations is of the 
form 

oll ( q )  = ( ~ ~ ~ ~ - 8  sin2 2 0 ~ ~ ~ 1 ~ )  lhr ~ ~ ~ = 2  ( 4 g 2 + K 2 )  Ih. (42) 
At H = 0, the gap in the spectrum of this branch is equal to 

AI, (H=O) =4ZoS,, S0=2 ( I -  (K/4Zo)2)'1' (43) 

and at K = 410 it vanishes. This means that a restructuring of 
the ground state will occur in the vicinity of K = 41,. We 
therefore confine ourselves hereafter to the region K < 41,. It 
follows from the self-consistency equation for (S, ) that at 
H<O the average magnetization, accurate to terms linear in 
H /Io, is equal to 

(S '>=2  cos 20=S,+ (H/Z,)  (K/41,)'  (2 /So) ' .  (44) 
We find then from (42) and (41) that at H<Io 

all (9) =(A11"(4KZ/Z,2) (Io-HISO) (10-1,) "', (45) 

where 

From (39) we find that the spectrum of the transverse 
oscillations consists of two branches 

01,2=[ ( ( E ~ ~ + E ~ ~ ) / ~ - I ~ ) ~ - Z ~ ~  sin2 201 lh 

T ( ~ ~ ~ - & ~ 1 + 2 1 ~  COS 20) 12, (46) 

where 

E,,=E+K+ ( 4 E 2 +  K 2 )  ' I 2 ,  E ~ ~ = - E + K +  ( 4 R 2 + R 2 )  'Iz. (47) 

The first term in (46) in the radicand is always substantially 
larger than I sin226, therefore the spectrum of the trans- 
verse spin-wave excitations can be represented in the simpler 
form 

At H(Io we obtain from (47) 

E ~ ~ = Z ~  (&So) +K+4H ( 1 - l / S o )  /So ,  
(50) 

E l i = Z o  (4+So)  +K+4H(1+1/So)  /So ,  

from which it follows that at small K the gap in the spectrum 
of the first branch of the collective excitations is equal to 
K + H, whereas for the second branch A, = 61, + K + 3H. 

Let us calculate in first order in l/ri of the SCF method 
the low-temperature magnetization and the correction to the 
ground state for the zero-point quantum oscillations. It fol- 
lows from (5) that 

and the calculation of ( S , )  reduces to calculation of the 

mean values of Hubbard operators. At T< T, and K < 410, in 
the approximation considered here, the mean values of diag- 
onal Hubbard operators are represented by the diagrams 

whereas the diagrams for (Xu ) are of the form 

The analytic expressions for the effective interactions pD(q, 
w, ) in the diagrams (52) and (53) can be easily calculated 
from Eqs. (35)-(38). For our case we obtain 

Setting (52) and (53) in correspondence with the analytic 
expression, we find from (5 1)-(53) that 

2 ( 2  cos 20-1) cos2 0 (e,1-02) 
< ~ . ) = 2 c O s 2 0 - - C . ~ q { ~  (02+E2i )  (01+02)  

N q  

4  sin 20 sin 40 (2 cos 2 0 + l )  sinZ 0 ( e 2 , - o 1 )  + +, 8 

011  mi+^&^) ( m i f a )  
4  cos 20 sin2 ~ ( E ~ ~ - w ~ ~ )  2  sin2 20 o ~ - ~ ~ + E ~ ~  + -- 

011 (all+ ~ 5 1 )  851 O I + W ~  

- -2- z{ ( 2  cos 20+l ) s in2  ~ ( E . ~ - W ~ )  sin2 20 2wi+ei2 
I .  --- 

N q  ( o ~ + E ~ ~ )  (01+02)  E s 1  o i + 0 2  

( 2  cos 20-1) cos2 0 ( o , + e , , )  +. } ) , (55) 

where fB  (x )  is the Bose-Einstein function. The first term of 
(55) describes the behavior of (S, ) with change of the system 
parameters in the zeroth approximation in l/ri of the SCF 
method. The temperature-independent sum over q describes 
the first-order correction in l/ri to the ground state of the 
system, necessitated by the presence of zero-point quantum 
oscillations. The last sum over q determines, in the approxi- 
mation considered, the temperature dependence of the mag- 
netization. We have left out of expression (55) for (S, ) the 
terms containing Bose-Einstein functions of the form 

f~ ( o z / T )  f~ ( ~ l l / T ) ,  fB ( E Z ~ / T ) ,  f s ( ~ n l / T ) ,  f ~ ( E s i / T ) ,  

since they all lead to a temperature dependence with an acti- 
vation energy substantially higher than that in the w, spec- 
trum if the anisotropy parameter satisfies the condition 

0<&G3fO.  (56) 

To simplify the final expression, we can use in this range of K 
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the small parameter 

where the functions that depend on (S, ) are taken at the 
magnetization value determined by the zeroth approxima- 
tion of the SCF method [see Eq. (44)l. 

Calculating the integrals with respect to q in (55), we get 

<S)=2 cos 20+ 6s' (0 )  + 6 S  (2') , (58) 

where the correction SS, (0) takes, accurate to terms linear in 
E, the form 

where 

W =  ( E ~ ~ + E ~ , )  / Io-2 .  

The temperature dependence of the magnetization 
(T< T, ) is given by 

where a was calculated in the same approximation linear in 
E:  

a= (2  cos 20-l+as) /cos3 0 cos2 20, 

Expresion (60) shows that the presence of cubic anisotropy 
affects the temperature dependence of the magnetization not 
only through the appearance of the function - 

2. (x) = C .-.=ha, 

n-I 

as in easy-axis ferromagnet~,~~ but also through the appear- 
ance of an additional factor a that depends on the anisotro- 
py, with a + 1 as K -t 0. This factor, as well as the quantum 
cancellation of the spin, appears because the Zeeman-energy 
and the single-ion anisotropy energy do not commute. It fol- 
lows from (60) that at T<A, when Z,/,(A/T)z exp ( - A/ 
T) ,  the temperature dependence of the magnetization con- 
tains, as is usual in anisotropic ferromagnets, an activation 
factor besides the factor T 3'2. In the region A(T(T,, how- 
ever, whenZ,/,(A/T) = f (3/2) - 2 ( d / ~ ) " ~  + . . .,wefind 
that 

i.e., that a term linear in Tis present besides the Bloch term. 
These singularities should manifest themselves primarily in 
ferromagnets with large anisotropy K - I,, so that the singu- 
larities predicted in this paper might be observed, e.g., in 
rare-earth compounds, in most of which the anisotropy 
plays the principal role.28 

6. CONCLUSION 

Many workers have attempted to take exact account of 
the single-ion energy when developing a theory for aniso- 

tropic magnets, and have succeeded in particular cases."" 
Moreover, there exist a general formalism, making use of 
unitary symmetry, which permits exact construction of a 
single-ion states at arbitrary geometry of the system, as well 
as a realization of this formalism for S = 1 (Ref. 29). Up to 
now, however, there was no consistent method of taking into 
account the interatomic interactions between single-ion 
states with arbitrary nonequidistant spectrum. The use of a 
diagram technique for Hubbard's atomic operators, as noted 
in Ref. 30, provides such a method, and such a program was 
implemented in the present paper for Heisenberg ferromag- 
nets with arbitrary form of single-ion anisotropy. Anisotrop- 
ic multisublattice magnets can be considered similarly. 

A diagram technique for arbitrary single-ion anisotro- 
py and for an arbitrary geometry was developed recently.,' 
For S = 1 and for the easy-axis and easy-plane cases consid- 
ered above, the spectrum of the excitations obtained in Ref. 
3 1 coincides with our results and with earlier results by oth- 
ers. At the same time, as noted in Ref. 31 by the author 
himself, his method is difficult to apply to cases with S > 1, 
but in our approach there are no spin restrictions. 
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