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We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the 
adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution func- 
tion for the soliton parameters which we use to evaluate its statistical characteristics. We derive 
an equation for the averaged functions of the soliton parameters. We determine the limits of 
applicability of the delta-correlated in time random field approximation. 

One of the basic characteristics of a dynamical system is 
its response to an external action. This refers, in particular, 
to a system of solitons described by completely integrable 
evolution equations. It is well known that such a set of soli- 
tons can be treated as a system of noninteracting particles. If 
the external force is a random function of the coordinates 
and the time, we must essentially be dealing with the Brow- 
nian motion of a soliton. In its general formulation such a 
problem is very complex as the dynamical equation is non- 
linear in partial derivatives while the equation for the distri- 
bution function, i.e., the Hopf equation, is an equation in 
functional derivatives. There are at present practically no 
methods to solve that kind of equations. However, if the 
random force in some sense can be assumed to be small the 
use of some variants of perturbation theory allows us to 
reduce the dynamical equations to ordinary differential 
equations for the soliton parameters, which can be treated as 
Langevin equations after which we can, under well defined 
assumptions about the nature of the external force, use the 
well developed apparatus of Markov processes. Notwith- 
standing its seeming simplicity such a program encounters, 
when one tries to realize it, appreciable technical difficulties; 
nonetheless is can be completed in certain well defined cases. 

In the present paper we have chosen as the evolution 
equation the sine-Gordon equation which describes the 
propagation of nonlinear waves in a semiconductor with a 
~uperlattice,~-~ Josephson  junction^,'.^ the motion of dislo- 

linear wave. In the third section we discuss the limits of ap- 
plicability of the proposed method. 

1. When a soliton moves under the action of external 
perturbations its parameters change and its shape is also dis- 
torted; moreover, emission may occur in the system. In the 
present paper we study the effect of random inhomogeneities 
on the parameters u and X of the kink. The evolution these 
quantities under the action of a perturbation is described by 
the equations2 

m 

d u  1-u2 
- = - e -5 dx  f ( x ,  t )seeh 0, 
dt 4 -m 

dX u - =u-c - - ( ~ - u ~ ) ~ ~  5 dx  f ( x ,  t )  e sech e, 
at 4 

-m 

(3b) 

which in the field of random forces are stochastic equations. 
To describe the statistical properties of the parameters that 
characterize the kink we introduce a distribution function 
(probability density) 

P ($1, $2, t )  =(ti ($1-u ( t )  1 6  ( $ , - X ( t )  1). (4) 

The angle brackets indicate averaging over the realizations 
of the random force f (x,t ). We shall in what follows consider 
the case when the field is a Gaussian (in time) delta-correlat- 
ed process: 

 cation^^.'^ and so on. The random force in this model corre- ( j ( x ,  t )  )=o, t I )  f ( x 2 ,  t 2 )  ~ = B ( ~ ~ - ~ ~ ~  6 ( t I - t2 ) .  (5) 
sponds to dynamic and static deviations of the superlattice 
from periodicity, to the presence of random contact inhomo- In that case the probability density satisfies an Einstein- 

geneities, or to slowing down of the dislocations. The start- Fokker equation" 

ing equations of the has the form 

--- "' "'+ sin q = e f ( x ,  t ) .  
dt2 ax2 

a a 
We study the evolution of a single-soliton solution of x d B  (xi-x2)  - Dj ( X I ) , - -  Di ( ~ 2 )  P, (6)  + ; J j d  I X I  

-- a $j a$i 
this equation-a kink, which in the unperturbed case has the 
form where i, j = 1,2, and 

rp=4 arctg exp [ ( x - X )  (1-u,:) -'"I , (2) I-$1" 
D, =- 

X-$2  

4 
sech 

whereX = u,t - x, is the center of the unperturbed kink, u, (I-$?)  ' 
its velocity, and x, its phase. 

D2 = 
$1 (x-$2) sech "-$2 We obtain in the first section the distribution function 

4 (1-$12)"* (7) of the kink and evaluate the statistical characteristics of its 
parameters. In the second section we obtain an equation for We consider the case when the kink parameters initially 
the average values of functions of the parameters of the non- are fixed: 
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P ( t = O )  =Po=G($i-u) 6 ($z),  (8)  
where without loss of generality we have set the initial phase 
of the kink equal to zero. 

It is clear from (6)  and (7)  that in the case where the 
random field is statistically uniform the coefficients in the 
Einstein-Fokker equation are independent of the phase vari- 
able $, and the t  which makes it possible to Fourier trans- 
form with respect of $, and Laplace transform with respect 
oft, after which ( 6 )  reduces to the form 

aZP 8P 
A,,  +A, - + [Ao-o- ik  ($,-Az)  -k2AzzlP=-Po,  (9 )  

$ 1  aqi 

where 
m m 

We look for the solution of (9) in the form 

where P, satisfies the equation 

1 A , ,  I d  A --(-) 4 A, ,  -TG(k)+e jpi ( l l j  

=-:HoAi,-'exp { I S A i  - -d$,  } . 
2. A, ,  

We have obtained an equation which contains a small 
parameter for the leading derivative so that we shall consider 
its solution for times t(&-', meaning a>&', in the WKB 
approximation: 

x ( x )  dx 

where 
x 2 ( x )  = ~ + i k x + k ~ A , ~ ( x ) .  

We note that in the factor preceding the exponential we must 
retain the term of order E'. 

The solution of Eq. ( 1  I ) ,  which is found using a well 
known method,'' looks very unwieldy in the general case 
and we shall therefore give in what follows the form of the 
distribution function in two limiting cases: small and large 

spatial correlation ranges of the random force as compared 
to the kink dimensions. 

We use below the model of a random field with a Gaus- 
sian correlation function 

1 
B ( x - x i )  = --== exp 

1V2n 

We consider the motion of a kink in the field of inhomo- 
geneities which are large-scale as compared with the kink 
width: 

1>10= (I-uo2) Ih, (14) 

where I, is the width of the unperturbed kink. In that case a 
soliton which is in a field which fluctuates with time man- 
ages to adjust itself to the spatial inhomogeneities of the sys- 
tem. Evaluating the coefficients A i  and A, and using (12) we 
find 

3ikx ( I -x2) '"]  I }  + 
8x3  ( x )  1 

where 3t2(x) = w + ikx, Y = 1 6 C 2 .  
We have dropped in (15) terms of higher order in 1 -' 

and E.  It is convenient for the evaluation of the statistical 
characteristics of the kink parameters to have in what fol- 
lows an expression for the distribution function P"' ($ , , t )  
which is obtained from the probability density P ($,,$',t ) by 
integrating over $, and has the form 

The distribution function is obtained in the time interval 

O f  t<<'v; (17) 

hence, it is a rapidly decreasing function. This makes it pos- 
sible to calculate asymptotically the characteristics of the 
parameters u and X. 

For the mean value and the variance of u(t ), and also for 
the width of the adiabatic part of the kink A = ( 1  - u')"~, 
we get, using (16), 

To determine the width of the perturbed kink it is necessary 
to take into account the first correction to the adiabatic ap- 
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proximation. Similar calculations lead to the following sta- 
tistical characteristics of X (t ): 

(X>=u,t-3nT2-"uo (1-uo" )"t"vl) -', (22) 

It is clear from (18) and (22) that the average velocity of the 
kink is equal to (u(t )). It also follows immediately from Eqs. 
(3) that (X" (t )) = (un (t )). This expresses the fact that when 
the kink moves in a field with large-scale spatial inhomo- 
geneities P'" ($,,t ) is, apart from terms of order 1 -,, the ve- 
locity distribution function (in the general case a similar 
statement is not true-see below and also Refs. 11, 13). The 
statistics of the phase variables is thus in the case (14) com- 
pletely determined by the fluctuations in the velocity u. 

It follows from (18) that a wave which propagates in a 
medium with random inhomogeneities is slowed down and 
the most effective deceleration is found for waves which are 
incident with a velocity u, = m u p o n  a randomly inhomo- 
geneous region. 

It is also clear from (1 8), (1 9) that if the kink is initially at 
rest the switching on of the external field sets it to oscillate 
about its original position and the speed of the oscillations 
increases with time. A similar behavior of a kink is also ob- 
served in the case of small-scale spatial inhomogeneities (see 
(27) to (29) below). In general the qualitative nature of this 
behavior is independent of the scale of the inhomogeneities, 
as a kink at rest does not feel the spatial changes in the medi- 
um. The scale of the inhomogeneities only affects the magni- 
tude of the accceleration of the wave. 

The other limiting case is the evolution of a kink in the 
field of small-scale spatial inhomogeneities: 

1<<1,. (24) 

In that case the distribution function has the form 
dl -. 

,,'h (1-U,2)1~8 
p = -  ?I (x) dx 

2 . , , ! x ( ~ p ~ ) x ( u ~ ) ~ - , / ~ e x p { - v ~ "  1 =O J-I} (1-x2) 51h 

Integrating over $, and taking the inverse Laplace 
transform we find 

Using (26) we calculate 

The phase variable X has the following statistical char- 
acteristics: 

(X)=uot-uo ( I - ~ , ~ ) ~ t ~ v - ~ ,  (30) 

We recall that (27) to (31) were obtained in the time 
interval (17). In all formulae describing the statistical char- 
acteristics of the wave the term following the zeroth order 
one is proportional to E ~ .  This reflects the fact that 
Cf(x,t )) = 0; hence the small parameter in the problem is not 
E but c2. It is, however, well known that there exist correc- 
tions to the adiabatic approximation which are connected 
with second order perturbation theory" and which lead to 
effects such as, for instance, the deceleration of a kink due to 
emission. It is clear that by virtue of the cause above indicat- 
ed these terms will make a contribution of order E~ to the 
adiabatic-approximation equations only when they are qua- 
dratic functionals of the random external field, otherwise the 
averaging increases the order of smallness. Moreover, the 
presence of corrections in the equation for u(t ) is important 
for the kink dynamics, as up to terms of order E~ they can be 
replaced by a constant and the appearance of a constant in 
the equation for X (t ) is not reflected in the dynamics of the 
wave. One verifies by a direct calculation that the averaged 
second-order corrections to the equation for u(t ) are propor- 
tional to E ~ .  This enables us to state that the effects of an 
interaction of the soliton with the radiation induced by ran- 
dom inhomogeneities are of higher order and are switched 
on at times for which the formulae obtained by us cease to 
hold. Problems referring directly to the radiation by a kink 
require a separate consideration. For this it is necessary to go 
beyond the framework of the approximation of a delta-cor- 
related process, as noise contains all frequencies, including 
resonant ones. 

In contrast to the case of large-scale inhomogeneities, in 
the approximation (24) P'"($,,t ), notwithstanding the fact 
that ( X  (t )) = (u(t )), is not a velocity distribution function, 
since (X" (t )) # (un (t )). To evaluate the moments (2 (t )) it 
is, in general, necessary to known the complete distribution 
function P ($,,$,,t). We note that the equality for n = 1 is a 
consequence of the statistical uniformity of the random field 
in the spatial variable. 

The indicated difference between the motions in a field 
of large- and of small-scale inhomogeneities is connected 
with the fact that in the first case the distribution function of 
the phases ofX (t ) retains, as time evolves, the form of a delta- 
function moving with a velocity u, whereas in the second 
case the distribution function spreads out symmetrically rel- 
ative to a center which also moves with the kink velocity. 

In concluding this section we note that the distribution 
function for the parameter u(t ) in the case (24) was consid- 
ered in Ref. 15. However, a stationary distribution was ob- 
served there when there was friction present in the dynamic 
equation. In the present paper we study a nonstationary 
problem and find a two-parameter distribution function. 

2. We obtained in Sec. 1 the probability density for the 
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kink parameters which we used to evaluate any function of 
u(t ) and X (t ). However, in a number of cases it may turn out 
to be more convenient to analyze the equations directly for 
the average values, in particular, for the average kink and the 
dispersion variance a,. 

Using (5 ) ,  such an equation has in the adiabatic approxi- 
mation the form 

1 6 + - ( jj dx, dx, B (x,-r,) -2 X) . 
2 -_ 6 f ( x i ,  t )  6 / ( ~ 2 ,  t )  

Herex is a function of u and X. Equation (32) is not closed in 
(x). One can close it by decoupling the correlators, using the 
small parameter E .  However, there arises then a restriction 
on the time during which one can retain in the decoupling 
only the lowest terms of the expansion in E.  

To obtain a closed equation we consider the correlator 
(@ (t ),x(t )),where @ = @ (u,X,t )and~arefunctionalsofthe 
random field f (x,t ). We expand @ in a functional series (it is 
sufficient to retain the first three terms): 

m t 

where 

and the limits of integration are established taking into ac- 
count that 

--- 6 @ ( t )  -0 at t,<O and t,>t 
s f  ( X I ,  t i )  

We consider the last term in (33). Using ( 5 ) ,  we have, 
accurate to .c2 

( f  ( x i ,  t , )  f ( x2 ,  t2)x)=B (xi-$2) 6 ( t i - t ~ ) ~ ~ .  (34) 
In the case whenx = x (8) (such a function is, e.g., the 

kinkx = p, ) we can write the last term in (33) in the form t / - 
tv (uo,8 ), where - 

The second term also reduces to a similar form t /tv (uo,8 ); 
here 

= 

We thus have 

(0 ( t ) ,  x ( t )  )=@o(x>+tt,-'(uo, O ) ,  (35) 

where T; ' = t ; ' + 1 ; I .  It is immediately clear from the 
expression for 7, that for large-scale spatial inhomogeneities 
T, - YI. Hence, for the decoupling of correlators of the form 
(33) we can limit ourselves to the first term in (33) for times 
t<rv .  

In the case (14) we have 
m 

Changing to a reference frame that moves with the soliton, 
we get an equation for the average value (X ) in the form 

This equation has the solution 

We introduced here the notion lo = uo( 1 - ui ) - 
( = x - uot, andx, is the unperturbed value of the function 
X. For the dispersion of the adiabatic term we get 

3. In the preceding sections we studied the motion of a 
kink in the approximation of a Gaussian random process 
which is delta-correlated in time. We now discuss the limits 
of applicability of this approximation. 

The Einstein-Fokker equation for a process with an ar- 
bitrary range of correlations has the form13 

where P (x,t Ixl,?) is the correlator of the field f (x,t ). The 
expression under the averaging sign can be rewritten in the 
form 

We have here introduced the notation 

Di(t lx, T )  =6$i/6f(x, .t). 

From the set (3) we find 

Dl ( t  lx, t )  =-2-'~ (1-u2) sech 0, (42) 

~ ~ ( t l z ,  t )  = - 2 - 2 ~ ~ ( 1 - ~ 2 ) ' 1 z 0  sech 0. (43) 

Expanding Di (t l x , ~ )  in a functional series in f (x,t ) we 
write (J) in the form 
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where (J, - , ) (J, )-'-E-'. The approximation of a delta- 
correlated process corresponds to the fact that, up to the 
accuracy in a small parameter T,, (J,) is the same as the 
corresponding expression for the random field f (x,t )which is 
delta-correlated in time, and (J, )((Jo) for n ) l .  A direct 
calculation of (J, ) and a comparison of it with (Jo) shows 
that for % = s2T( 1, where Tis the radius of the time corre- 
lations of the random field f (x,t ), we have (J, ) ( (Jo), and for 
T~ = Tuol ; '( 1 the first requirement is met. 

The conditions which we obtained here for the applica- 
bility of a process delta-correlated in time can be explained. 
This approximation means the smoothness of the change 
with time of functions of the kink parameters as compared to 
the correlation function of the field. The rate of change of the 
kink parameters is determined by the action of the external 
field ~f (x,t ). The condition 7, ( 1 means that the intensity of 
the action of the external field on the soliton is sufficiently 
small while the condition T ~ (  1 is the requirement that the 
kink in its motion in space feel a smooth variation of the 
field. The region of applicability of the delta-correlated pro- 
cess approximation when a kink moves in a field with large- 
scale inhomogeneities is thus a broad one. 

The authors express their gratitude to Yu. S. Kivshar' 
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ent paper. 
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