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If, during the phase transition of an exciton gas into an electron-hole liquid, the liquid is nucleated 
homogeneously, and droplets escape from the sample through diffusion or drift, the observed 
nucleation threshold will be very high and dependent on the boundary conditions on the system 
but not on the temperature. An important role here is played by the capture of droplets by point 
centers and the detachment of droplets from these centers by external forces. If the droplets which 
arise in a crystal cannot be captured at centers, the state of the highly supersaturated gas and of 
the liquid droplets which are moving through the sample will be metastable. The system may go 
into a stable state with a low supersaturation and with all the droplets trapped in the volume. At a 
transition of this type, the density of the liquid should increase abruptly. An approximate method 
has been developed for solving the steady-state kinetic equation of the nucleation. 

At the gas-liquid phase transition in a pure system the 
threshold for the nucleation of the liquid shifts to a gas den- 
sity higher than the thermodynamic boundary for the transi- 
tion. This shift and the appearance of a metastable supersa- 
turated state of the gas result from the low rate at which 
viable nucleating regions of the liquid phase One 
such transition is the condensation of excitons into an elec- 
tron-hole liquid in pure germani~rn.~ 

On the other hand, there are situations in which the 
nucleation rate (in the ordinary sense ofthe term), is high but 
the metastable state is long-lived. A situation of this sort 
arises when the mobile nucleating regions ("nuclei") of the 
liquid phase can escape rapidly from the excitation region or 
can recombine at the wall of the  ample.^^^ In such cases the 
appearance of a viable nucleus is a consequence not of a com- 
petition between the evaporation and attachment of excitons 
but of a "successful" random walk of a nucleus through the 
sample or of the capture of a nucleus by a fixed force center. 
The nucleation threshold is essentially independent of the 
temperature, being determined by, for example, the thick- 
ness of the sample and the impurity concentration. The 
threshold exciton density may exceed the density of supersa- 
turated vapor by two or three orders of magnitude. 

It has been found e ~ p e r i m e n t a l l ~ ~ - ~  that the liquid can 
appear abruptly near the threshold; i.e., the observed 
amount of liquid increases sharply in a short time and upon a 
small increase in the pump level (Fig. 1). An abrupt behavior 
of this sort, which is natural for systems with an infinite 
lifetime "when one nucleus which has successfully grown 
reaches a macroscopic size and removes the supersaturation 
from the entire system,"' is unusual indeed for an electron- 
hole liquid. In the latter case the stable size of the droplet is 
bounded, and an increase in the density of the liquid is seen 
as a sequence of microscopic jumps which, at the ordinary 
experimental sensitivity, merge into a smooth curve. For 
condensation to occur abruptly, a large number of "super- 

critical" droplets would have to form essentially simulta- 
neously. 

We will begin with a qualitative explanation of abrupt 
nucleation. We will then (§§1,2) derive a system of kinetic 
equations describing steady-state nucleation, and we will 
point out a simple method for finding an approximate solu- 
tion of this system. In $3 we return to abrupt nucleation and 
calculate the contributions of time-varying effects. 

We consider a sample of pure germanium at whose sur- 
face electrons and holes are excited by an external light 
source. These electrons and holes are bound into excitons. 
Droplets of an electron-hole liquid are nucleated near the 
illuminated surface and are drawn into the interior of the 
sample by force due to, for example, the "phonon wind"' or 
a nonuniform strain.' When they reach the opposite face of 
the sample, the droplets adhere to it and rapidly recombine. 

If the nucleation occurs homogeneously, and a mobile 
nucleus in the sample manages to collide with a force center, 
is captured by this center9 and grows into a macroscopic 

FIG. 1. Intensity of the emission from an electron-hole liquid, J, versus 
the rate of the external pumping, G. Curves 1-5-germanium sample 0.5 
mm thick with an impurity density N = 3.10" cm-3 in a microwave field 
of power P, which heats free carriers and creates a phonon wind4; 1- 
P = 0; 3-34 mW, 4 - 4 3  mW; 5-mW; 2-stable branch of the hysteresis 
function J ( G ) .  Curves 6 and 7 (Ref. 5)-germanium sample 10W3 cm thick 
with an impurity density N = 3.1010cm-3; 6-metastable branch ofJ(G ); 
7-stable branch of J ( G ) .  
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droplet containing v, particles (v, increases with increasing 
exciton density). 

The binding energy of a droplet with a point center does 
not depend on the size of the droplet, while the force which 
pulls the droplet into the interior of the sample is usually 
proportional to the number (v) of particles in the droplet, so 
that there exists a number 9 such that at v > 9 a center cannot 
hold the droplet. 

At v, > 1/ a droplet which has been captured by a center 
grows, breaks away from the center and escapes from the 
sample without reaching a stable size. Near the nucleation 
threshold the average density of the liquid is low, since the 
average number of droplets which have been captured by 
centers is low at any instant. This state is metastable, and if 
an external source is used to produce a large number of dro- 
plets at force centers (e.g., an intense and brief illumination 
of the samplelo) the system will go into a stable state in which 
all the droplets are captured by centers, the exciton density is 
low, and 9 >  v,. 

We now take into account the unavoidable fluctuations 
in the nucleation rate in the metastable state (these fluctu- 
ations might be caused by, for example, fluctuations of the 
external pump). If many droplets arise simultaneously, the 
exciton density and the value of v, decrease sharply, and we 
may find a situation with v, < 9. In this case all the droplets 
which are nucleated remain inside the sample; i.e., the sys- 
tem "remembers" a single, sufficiently large fluctuation. 
The system may therefore be in two different states at the 
same average pump level: a "static" state, in which the dro- 
plets are at rest, and there is essentially no nucleation; and a 
"current" state, in which the nucleation rate is high, and the 
droplets are captured by centers, grow to v > 9, detach from 
the centers, and move off to the wall of the sample. 

It is a transition from the current state to the static state, 
due to the competition between capture and detachment, 
which constitutes the abrupt nucleation of a liquid. 

$1. SYSTEM OF EQUATIONS 

A droplet of an electron-hole liquid consisting of v par- 
ticles changes size as a result of the attachment or loss of an 
exciton and thereby undergoes a transition from the class (v) 
to the class (Y + 1) (Refs. 2 and 3). The droplet disappearance 
as a whole is described in the kinetic equation by the 
term5." - g,/T,, where g,  is the number of droplets con- 
sisting of v particles, and T, is the time required for a droplet 
to escape from the sample. 

Taking capture and detachment into account, we can 
write the equations of motion of a droplet along the v axis as 

T,=T,exp(NdS,) for v<G, T,=To for Y>?, (2) 
cs 

n 
--xu- - a h  -G - - -nr.'v,x [n-n. (v) ]v"g.; (3)  
dt dt 7, v=2 

the coefficients a, and p, are given by the known expres- 
sions2v3 

where ro = (3/47~n~)"~,  no is the density of particles in a 
droplet, v, and re are the thermal velocity and lifetime of the 
excitons, n is their density, n, is the saturation vapor density, 
y = 20/nokTro, o is the surface tension of the liquid, and T~ 

is its lifetime. 
In Eq. (1) for the size distribution of the droplets at 

v < C, the last term contains a factor exp( - NdS,), which 
makes it possible to take into account the capture of droplets 
to fixed centers. The density of centers is N, the thickness of 
the sample (or the width of the excitation region) is d; and the 
capture cross section is S, = r r ; ~ ~ ' ~ .  The capture of dro- 
plets is described by analogy with the absorption of particles 
moving through a medium with an absorption length 
A = (NS)-'. At A>d, the capture can be ignored, while at 
A (d the term describing the removal of droplets is negligibly 
small; i.e., the nucleation becomes essentially heterogen- 
eous. The time required for the escape of a droplet of a sam- 
ple is To = d /v, where v is the drift velocity (to simplify the 
discussion we are ignoring the diffusion of droplets, which 
plays a major role in thin germanium samples5). To find a 
rough estimate of 9 we can equate the binding energy of a 
droplet with an impurity, E, to the kinetic energy acquired by 
a droplet due to the force F = vf over a distance equal to the 
"width of the surface layer," i.e., a distance on the order of 
the first Bohr radius of an exciton, a,. From E - fva, we find 

Here we have used the substitution v = frp/m*, where rP is 
the scale time for the momentum relaxation of a droplet 
through collisions with acoustic phonons. Substituting in 
the values E z 5.  eV (Ref. 12), T, - 10W9 s (Refs. 13 and 
14), and a, - 10W6 cm, we find 9-3-10'0/v. At typical ve- 
locities of the drift motion of droplets, v = lo3-10' cm/s, we 
find 9 to be lo5 - lo8 in order of magnitude, i.e., comparable 
to the stable size of the droplets, v, at which the condition 
a, = p, holds. 

Equation (4) describes the kinetics of the formation, re- 
combination, capture, and evaporation of excitons. 

§2. STEADY-STATE DISTRIBUTION FUNCTION 

We consider the steady-state situation near the nuclea- 
tion threshold; i.e., we set dg,/dt = 0, dn/dt = 0, and 
Gzn/ r , .  In this case the exciton density n is independent of 
g. Following Ref. 11, we sum Eqs. (1) from v to cc : 

The quantity j, is proportinal to the resultant flux of 
droplets containing more than v - 1 particles to the wall of 
the sample. Sincegi and Ti are positive quantities, the func- 
tion j, falls off monotonically with increasing v. We note 
that 
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Substituting (5) into (4), we find an equation equivalent to ( 1 ) :  

where 

To find an approximate of (6), we i n t r ~ d u c e ~ ~ "  the func- 
tion $, by means ofj, = exp( - $,). We can then write 

Subsituting (7) into (6), and solving the quadratic equa- 
tion for z = exp(d$/dv), we find 

(8) 
Sincej(v) is a monotonic function, the expansion in (7) is 

valid along the entire v axis. The boundary condition j-0 in 
the limit v+ c ~ ,  determines the choice of sign ( + ) in solution 
(8). Combining ( 5 ) ,  (7), and (8), we find 

T, In z 
g(v)=- T, In z, n e r p  (- j lnzdv)  4 , 

where the factor n/T,lnz, has been introduced to satisfy the 
boundary conditiong, = n. Expression (9) gives the approxi- 
mate WKB solution of steady-state equation (1). We turn 
now to some particular cases. 

We first assume tht T,, = To does not depend on v, i.e., 
that there are no effects resulting from the capture and de- 
tachment of droplets. Figure 2 shows the functiong(v) calcu- 
lated for various values of To and for an exciton density near 
the "thermodynamic" nucleation threshold; in these calcu- 
lations we assumed that under the conditions a < 1 and b g  1 
(at large To) we would have l nzzb  (with a > 1 and b< 1 we 
have z z a) .  

At large values of To (i.e., at a To = b - ') 1) the function 
g(v) decreases sharply up to v-v, (curve 1 in Fig. 2), where 
the critical size vc is the size at which the rates of evapora- 
tion and attachment are equal: a, = PC. At v k v, , the func- 
tional dependence ofg on v becomes a power law: g = vP2l3. 

Near the stable size v, (a, = 0, ), at which the attach- 
ment rate is nearly equal to the recombination rate, the func- 
tion g(v) has a sharp maximum, g, , as shown (in exaggerated 
form) by curve 1 in Fig. 2. The width of this maximum is 
Sv -~ i ' ~ ,  SO that it appears as a vertical line in the scale of 
Fig. 2. 

FIG. 2. Steady-state droplet size distribution g(v) (T = 1.9 K, N = 0, 
n = 2.1012 ~ r n - ~ )  at several values of To: 1-10W4 s; 2-2.10-5 s; 3- 
2.10-6 s; 4--10-6 s. 

That simple expression (9) can be used to describe the 
rapidly varying function g(v) along the entire v axis is an 
advantage of this method solving Eq. (1) in comparison with 
other methods." On the other hand, this method is not free 
of disadvantages: Near v, the curves corresponding to dif- 
ferent values of To intersect, but this could of course not 
happen for real functions g(v). Furthermore, the maximum 
g, shifts slightly upward on the v scale from the actual extre- 
mum point v, . 

As To increases, the distribution function essentially re- 
tains its shape; there is only an increase in the height of the 
maximum g,. The physical meaning of this result is that at 
large values of To the neighborhood of the critical nucleus v, 
is a "source" which furnishes droplets to the state v, (§3), 
and if the time required for the transition of one droplet from 
v, to v, is short in comparison with To then we would have 

where T, is the Zel'dovich time,' equal to the time required 
for a droplet to traverse the critical region (the usual values 
are4 7, = 10-5-10-6 s). A decrease in To leads to a change in 
g(v) in the region v 2 vc ; in the interval v, < v < v3 at small 
values of To the denisty of macroscopic droplets falls off 
sharply (curve 3 in Fig. 2). As has been pointed out else- 
where,5 we are seeing here a difference between the recom- 
bination of a droplet as a whole and recombination due to the 
finite lifetime of the particles in a droplet. 

When capture and detachment are taken into account, 
we find fundamental changes in the function g(v) in the re- 
gion v - ~ ,  . If the large droplets "stick" in a sample (because 
of capture by defects, decrease in the velocity toward the 
boundary, etc.), the density g, will increase exceedingly ra- 
pidly. Curve 2 in Fig. 3 shows the changes in the distribution 
function caused by introducing 3. lo9 impurity per cubic cen- 
timeter in a sample 1 mm thick: At v 2 lo3 the density be- 
comes the same as a large values of To, and near v, the height 
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FIG. 3. Effect of capture and detachment on the steady-state distribution 
functiong(v) (T = 1.9 K, n = 2.10" cmF3, To = 10W6 S, sample thickness 
d = 1 mm). 1-Pure sample ( N  = 0); 2-density of capture centers 
N =  3.109 ~ m - ~ ,  i.> 10'; 3-N = 3.109 cm-', 3 = lo7. 

of the maximum turns out to be prodigious, g, - [this 
result becomes understandable when we note that2' 
T, = Toexp(NdS)- S. Using (lo), we find gs - in 
order-of-magnitude agreement with the calculation from 
(911. 

Finally, if we assume that droplets containing more 
than Y = lo7 particles cannot be captured by impurities and 
escape from the sample in a time To, we find curve 3 in Fig. 3. 

To conclude this section of the paper we note that the 
solution of the steady-state problem of nucleation with es- 
cape of the liquid from excitation region leads to a distribu- 
tion function g(v) which is physically reasonable and which 
can be arranged experimentally. The analogous solution for 
the limit3 T-+ cu yields excessively large values g, - exp(v, ), 
showing that time-varying effects must be taken into ac- 
count. 

FIG. 4. Metastable state of the composite system consisting of excitons 
and electron-holeliquid ( T  = 1.9 K, N = 3.1010cm-3, To = s; d = 1 
mm, i. = lo6). I-n = 5.10" cmP3, g, - lo-'; 2-n = 6.10'' ~ m - ~ ,  
g, - loz4; 3-n = 2.10" cm-); 4-n = 4.10'' cm-3 

53. METASTABLE STATES AND ROLE PLAYED BY TIME- 
VARYING PROCESSES 

Figure 4 shows steady-state functions g(v) for 
To = 10W6 s and Y = lo6. We first look at curves 1 and 2, for 
which the density of macroscopic droplets, g, , is large, but 
the density of droplets in the intermediate region 
(v, < v < vs ) is very small. If an experiment is carried out in 
such a manner that the pump (and thus the exciton density) 
increases gradually from zero, then each droplet must spend 
some time in this region before it reaches the size v, . Conse- 
quently, the high steady-state density g, occurs because the 
droplets accumulate for a long time at the point v, , and if the 
duration of the experiment, 8, is short in comparison with 
the accumulation time, T, = Toexp(NdS ), the term dg, /dt, 
rather than g,,/Tv, will dominate Eq. (1). 

The solution of time-varying equation (1) is not known 
for arbitrary a,,#,, and T,, . For a qualitative analysis of the 
transient processes, we transform from (1) to the second- 
order differential equation 

If we ignore the derivative d p  /dv and da/dv in com- 
parison with 1/T, we find that Eq. (1 1) describes a mixed 
diffusion and drift with a finite lifetime T. Far from the 
points B = a ,  Eq. (1 1) reduces to a first-order equation, 

ag/at= ( p-a) aglav-g/T, 

i.e., the equation of the drift motion of an arbitrary perturba- 
tion with a finite lifetime and a "velocity" P - a .  We can 
thus find the scale time for the motion of the droplet over the 
intervals 1 < v < vc and v, < v < v, in the form t - Sdv/ 
- a ) .  For the region 1 < v < v, this time, equal to the evap- 

oration time of a critical nucleus, is approximately equal to 
the scale time for relaxation to a steady state; with v, - lo2 
and n - 1012 cmP3 it is 5 s in order of magnitude. The 
scale time for the motion of an individual droplet out of the 
supercritical region is also extremely short ( -  5.10-5 s for 
n - ~ m - ~  and v, - lo7). If, however, the density of sta- 
ble droplets, g,, is large in comparison with g,, the time 
required for relaxation to a steady state, t,, will be large in 
comparison with t. If, at v > vc , we have a parameter value 
b = a- ' T - ' & 1, then we can find the time t, approximately 
as the ratio of the steady-state density gs to the fluxg, /T, , of 
droplets through the critical region, where T, is the time 
required for droplets to traverse the critical region. This time 
was found in Ref. 2 in the diffusion approximation. As we 
show in the Appendix to the present paper, the solution of 
the diffusion-drift equation of motion of a nucleus near 
v = v, gives a result essentially the same as that found in 
Ref. 2. 

Accordingly, we can use (10) to estimate t , .  If the condi- 
tion b k 1 holds in the supercritical region, i.e., if the time T, 
is short, we would have to replace g, by the minimum value 
ofg on the interval v, > v > v, . If t,%B, the system is metasta- 
ble (no significant amount of liquid accumulates in the sys- 
tem over the time 8, although the steady-state density g, may 
be very high). For example, a time 8- 1015 s would be re- 

315 Sov. Phys. JETP 61 (2), February 1985 I.M. Fishman 315 



quired for a single droplet to reach the state vs in the case 
shown by curve 2 in Fig. 4. The exciton density would have 
to be increased for a detectable amount of liquid to form over 
a realistic experimental time 6 5  lo5 s. At n > 6.10" ~ m - ~ ,  
however, the relation between v, and .C. changes (v, > 9); the 
relation between the typical time 6 and the value of T, also 
changes (OsT,). For this reason, experiments deal with a 
steady-state functiong(v), and the value ofg, may be exceed- 
ingly small (curves 3 and 4). Near the nucleation threshold 
(2-lo1* cm-3 < n < 4.1012 ~ m - ~ )  the liquid phase consists 
primarily of small droplets, and the exciton gas is highly 
supersaturated. 

Using the functions g(v) shown in Fig. 4 along with Eq. 
(3), we easily find that for a given external pump G there can 
be two different steady states: a static state 
(5.10" 5 n 5 6-10" ~ m - ~ ,  v, 5 lo6) and a current state 
(2.1012 5 n 5 4.10'2 cmP3). A transition from the current 
state to the static state would require the simultaneous (on a 
scale - To) fluctuational nucleation of - lo6 liquid droplets. 

CONCLUSION 

In this paper we have analyzed the nucleation of the 
liquid for the case in which, in contrast with the Becker- 
Doring not only the critical nuclei but the droplets 
of all sizes escape from the sample over a finite time. In this 
case the steady-state nucleation rate depends strongly on the 
mobility of the macroscopic droplets; if this mobility is high, 
there are essentially no large droplets in the system. 

It is convenient to describe the nucleation process qual- 
itatively as a diffusion-drift motion of a nucleus having a 
finite lifetime in size space. 

In the metastable state the exciton gas is highly supersa- 
turated, and the liquid which has been nucleated "flows" 
through the sample. A transition from the metastable state 
to the ground state requires the capture of a large number of 
droplets by force centers. Experimentally, this transition is 
seen as an abrupt increase in the total volume of liquid. 

The abrupt nucleation is a fluctuational process in an 
open system far from equilibrium, in which a nucleation bar- 
rier is erected not by the "thermodynamic force," i.e., by the 
competition between the evaporation and attachment of gas 
particles, but by the kinetics of the flow and capture of liquid 
droplets. In a sense, there are two successive first-order tran- 
sitions. The first is the nucleation of mobile droplets (this 
transition is essentially not observed unless the experimental 
apparatus is very sensitive), while the second is the abrupt 
appearance of a large number of immobile droplets; here the 
droplets which are moving through the sample play the role 
of the atoms of a gas, while the entire ensemble of rather 
small liquid droplets which have stopped plays the role of a 
single droplet of the new phase. 

APPENDIX 

To determine T, we work from Eq. (1 1). Near the point 
v = v C  we can set /?-a=:(pf-af)(v-v,) ,  and (a+p)/  
2 = a, .  We transform to the dimensionless variables 

Equation (1 1) can then be written 

where 1/77 = 2/T(af - P '). In Eq. (A. 1) it is convenient to 
use the substitution 

p=g exp (-x2/2), 

so that this equation becomes 

Since we are intereted in the crossing of the barrier by 
an individual particle, we supplement Eq. (A.2) with the ini- 
tial conditionp(x,O) = S(x - x,). We solve Eq. (A.2) by Four- 
ier transforms," setting 

m 

p(x,t)= jf(k,t)eiUdk, 

For the transform f (k,t ) we then find the equation 

Integrating this equation, 

using the initial condition to determine f,, and returning to 
the function g(x$ ), we find 

(A.3) 
Setting 1x1 = Ix,I, wherex - xo = 2x0, we consider the tran- 
sition of a particle to the equivalent position ( - x,) on the 
opposite side of the barrier: 

1 1  1 
( 4 4 )  -* e i p  [x,' (;i - ?) -5 ( I+x,'+ -) n ] . 

The maximum of g is reached after a "time" Cc given by 

In the limit V-CC, i.e., in the absence of a current, we have 
Cc z 1 at xo k 1. If we identify the time interval found here, 
T = 2CC/(a1 - p I ) ,  with the value of T,, we find T, =:2/ 
(a' - p '), in essential agreement with the time introduced by 
Zel 'd~vich.~ 

"Equation ( 1 )  was solved directly in Refs. 5 and 11 .  Since the functiong(v), 
in contrast withj(v), has extrema, the expansion in (7) is not valid near v, 
and v,, and it becomes necessary to match the approximate solutions 
obtained in different v regions or to resort to numerical methods. 
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2'This estimate is on the high side. If we take into account the possibility of 
the detachment of a droplet from a force center as a result of a thermal 
fluctuation, we find that the "settled" droplet lifetime is r , ~ , ~ / ~ ( r n * /  
3 k ~ ) ' ~ ~ e x ~ ( ~ / k T ) -  10" loL6 s. 
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