
Critical behavior of the thermoelectric power of binary composite materials 
A. S. Skal 

A. I;. Zoffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad 
(Submitted 6 January 1984) 
Zh. Eksp. Teor. Fiz. 88,516-521 (February 1985) 

An analysis is made of a composite material formed from two components with different electri- 
cal and thermal conductivities. When the ratio of the electrical conductivities of the components 
is high but the thermal conductivities are similar, the critical behavior of the thermoelectric 
power is governed by the critical behavior of a shunting effective resistance and has the same 
critical exponents. For large ratios of the thermal conductivities of the components there are 
"active points" of the thermoelectric power which make a large contribution to the effective 
Seebeck coefficient. This gives rise to aeff@) = const forp <pc (p is the concentration of the 
conducting component 1 andp, is the threshold concentration at which an infinite cluster is 
formed) and to a new critical exponent, which cannot be reduced to conductivity whenp >pc : 
aeff@)oc(p-.Pc)-k +a l ,wherek=2.0+0.1 .  

The high degree of interest which percolation theory is 
attracting is due to the fact that the site and bond problems 
are the simplest models which can be used to study first- 
order phase transitions.' The problem most thoroughly in- 
vestigated is the conductivity of a random network of resis- 
tances, which makes it possible not only to calculate the 
critical exponents of the electrical conductivity for a metal- 
insulator transition [p >p,* (Ref. 2), wherep is the concentra- 
tion of the conducting component 1 andp, is the threshold 
concentration at which an infinite cluster is formed] and for 
a metal-"ideal metal" transition lo <pc (Ref. 3)], but also 
to estimate the limits of validity of the theory of an effective 
medium for a two-component random mixture of materials 
with different electrical conductivities. 

The corresponding problem in the case of the thermo- 
electric power has been investigated much less thoroughly. 
Straley4 analyzed the matrix equation for the entropy flux 
and the current density, and came to the conclusion that the 
problem of determination of thermoelectric properties of 
composite materials reduces to that of finding the electrical 
conductivity. The matrix equation was solved postulating 
continuity of the normal component of the entropy flux 
across a boundary between two media, which is valid only in 
the case of equal thermal conductivities of the components, 
so that Straley's conclusions are valid only in such a case. 
Halpern5 developed further the Straley method4 and ob- 
tained an equation relating the electrical conductivity, ther- 
mal conductivity, and thermoelectric power, which is valid 
in the critical interval when the ratios of the electrical con- 
ductivities and thermal conductivities of the components are 
different, demonstrating that the critical exponents of the 
electrical conductivity and thermoelectric power are identi- 
cal. 

A formula for calculating the effective Seebeck coeffi- 
cient was obtained in Refs. 6 and 7 on the assumption that 
the temperature field of an external source does not change 
under the action of the thermoelectric current in a sample 
and which is valid for any ratios of the electrical conductiv- 
ities and thermal conductivities of the components. The ef- 

fective Seebeck coefficient is defined in this formula in terms 
of the effective Peltier coefficient found by summing the Pel- 
tier heat evolved at the interface between the components 
during the flow of an electric current through a sample: 

wherej, (S ) is the projection of the current density along the 
normal n to the interface S between the components, de- 
duced solving the equation V[u(r)VU] = 0 with the bound- 
ary conditions U = U 1, =, - U 1, =, . Although Eq. (1) is 
valid for any temperature distribution in a sample, in the 
simplest case the temperature T (S ) on the interface Scan be 
obtained by solving the same equation but replacing the local 
electrical conductivity a(r) with the local thermal conductiv- 
ity x(r) and using the contact boundary conditions 
T, = , = TI, T, = = T,, where a, and a, are the Seebeck 
coefficients of the components 1 and 2, aeff (p) is the effective 
electrical conductivity, and L is the length of the sample. 
Therefore, in the simplest case the problem reduces to the 
solution of a system of Kirchhoff equations for the electrical 
conductivities and thermal conductivities, which converge 
rapidly when iteration methods are used on a computer, and 
this is followed by calculation of the integral in Eq. (1). This 
method was used in Refs. 6 and 7 to calculate the effective 
Seebeck coefficients and to compare the results obtained 
from the effective medium theory. 

The critical behavior of the thermoelectric power was 
studied in Ref. 8 in a model experiment employing a system 
of glass beads some of which were covered with silver. When 
the concentration of metallized beads was altered, the effec- 
tive Seebeck coefficient was found to be independent of the 
composition in the rangep >p, [aeff @) = const]. The experi- 
ments results showed that aeff @) a @ - p, ) h ,  where h = 0, 
which disagreed with the results of Refs. 5-7. In the model 
experiment the ratio of the thermal conductivities of the 
components was large, but this case was not studied in Ref. 
7, so that we shall consider it below. After solving the prob- 
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lem we shall return to a discussion of the experimental re- 
sults. 

It was shown in Refs. 9 and 10 that on approach to the 
threshold from either side @-+pc + 0) almost all the Joule 
heat is evolved at "hot spots" representing narrow bottle- 
necks or bridges between finite clusters of the component 1 
whenp >pc and thin spacers of the component 2 in the same 
places when p <pc . The main change in the electrical con- 
ductivity in the critical interval is governed by the number of 
such hot spots and by their contribution to the Joule heat. 
The closer to the threshold, the smaller is the number of such 
hot spots and the greater their contribution, so that at the 
threshold only one hot spot remains in a finite volume and 
almost all the Joule heat is evolved there. This is not predict- 
ed for the thermoelectric power" and the extension of the 
above results to this power will be made below. 

We shall introduce the concept of the contribution q to 
the Peltier coefficient representing the Peltier heat evolved 
as a result of passage through a unit area of the surface S of a 
current element J,  ( S )  per unit time: 

The parts of the surface in which the Peltier heat is evolved 
or absorbed are also responsible for the transformation of the 
thermal into the electrical energy during the passage of a 
thermoelectric current. We shall use the term " active points 
of the thermoelectric power" for those parts of the surface S 
where the contributions q are large. In order to understand 
how the active points of the thermoelectric power affect the 
effective Seebeck coefficient and how they disappear at 
x ,zx, ,  we must consider two limiting cases of similar or 
very different thermal conductivities of the components. 

1) Similar thermal conductivities of the components: 
x ,  zx,. We shall assume that the contributions to the ther- 
moelectric power are negative, since the current flows into a 
cluster made of the component 1 and positive when it flows 
out. Therefore, approximately half the surface S reduces the 
thermoelectric power, whereas the other half enhances this 
power. The calculations indicate that the contributions may 
differ by many orders of magnitude. For example, the re- 
gions parallel to the field are characterized by j, (S ) = 0 and 
q = 0 and are analogous to "dead ends" in the electrical con- 
ductivity problem. At these hot spots the high current densi- 
ties make the positive and negative contributions large, but 
they are similar in the absolute sense since the temperature is 
distributed uniformly throughout the sample and the resul- 
tant contribution is small. This results in the absence of the 
active points of the thermoelectric power and the role of the 
component 1 reduces entirely to shunting. This property is 
reflected in the Halpern formula5: 

from which it follows that if x ,  zx , ,  then the relative effec- 
tive Seebeck coefficient is proportional to the difference 
between the effective resistance of the component 1 since 
aeff @) - a, tends to zero when the component 2 disappears. 
A check of the formula (3) was made by computer calcula- 

tions and the left- and right-hand parts of the formula were 
determined independently: aeff(p) and xeff@) from the 
Kirchhoff system of equations and aeR@) was found from 
Eq. (1). An increase in the number of iterations and of the 
computer time reduced the relative error in the calculation 
of these functions from 0.5 to 0.005% and the overall error in 
Eq. (3) did not exceed the errors in the quantities occurring in 
it. The formula (3) becomes indeterminate for a,/a, close to 
x,/x,, since the denominator and the numerator both tend 
to zero. This gives us grounds for assuming that, outside the 
interdeterminacy interval in the case when the distribution 
of the temperature field in a sample can be calculated from a 
system of the Kirchhoff equations, Eq. (3)  becomes a conse- 
quence of Eq. (1) and is similar to the Dykhne relationship" 
between the effective electrical conductivity and the Hall 
coefficient. It should be pointed out that whereas the 
Dykhne relationship is valid only in the two-dimensional 
space, which is due to the sensitivity of the Hall effect to 
spatial dimensions (see Fig. 2 in Ref. 12), Eq. (3) is valid in the 
case of two-dimensional and three-dimensional spaces, since 
the thermoelectric power exhibits no fundamental features 
that might be associated with the dimensions of space. It 
readily follows from Eq. (3) that if x ,  zx , ,  then 

where t ,  and t, are the critical exponents of the effective 
electrical conductivity below and above the threshold. 

Moreover, it follows from formula (3) that aeR@) in- 
creases on increase in x ,/x2 and decreases on increase in a,/ 
a, (compare curves 1 and 2 in Fig. 1). 

2) Large ratio of the thermal conductivities of the compo- 
nents. When the thermal conductivity ratio becomes large so 
that x,/x,-+co, the interfaces between the components be- 
come isothermal, and those interfaces which touch the con- 
tact area assume the contact temperatures. Finite clusters 
which are separated spatially from contacts do not affect the 
magnitude of the thermoelectric power because aeR@) is in- 
dependent of the composition until the isothermal clusters 
from the opposite contacts are joined and this occurs at the 

FIG. 1. Effective Seebeck coefficient a e 8 ( p )  calculated for: 1) a,/ 
a, = lo5, x,/x,  = 1.001; 2) ul/u2 = ~c , / x ,  = lo5. 
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threshold. The value of aeff (p) is independent also of the ratio 
o,/a2. This follows from the fact that the difference between 
the potentials at any points on isothermal surfaces with con- 
tact temperatures TI and T, is the same, (a, - a,)(T, - T2), 
and there is no shunting of any kind. In the rangep < p ,  the 
effective Seebeck coefficient assumes the maximum possible 
value aeff(p) = a,, which is evidence of the absence of shunt- 
ing (see curve 2 in Fig. 1). When the external circuit is closed 
across a load, the thermoelectric current measured in the 
critical range has the highest density at the hot spots, but 
now not only are the contributions to the positive and nega- 
tive parts of the thermoelectric power large, but their differ- 
ences are also large since the temperature gradient is high. 
We shall call these the active points of the thermoelectric 
power. If we can assume for the rest of the surface S that 
a, = a, = 0, then aeff(p) changes only slightly. 

When the concentration of one of the components is 
above the threshold, two processes occur simultaneously: 
electrical and thermal percolation. A system of isothermal 
clusters is rapidly broken up in the critical interval, the tem- 
perature of an infinite cluster tends to a linear function, and 
curves 1 and 2 in Fig. 1 approach one another. The greatest 
difference between them occurs in the critical interval where 
a new critical exponent now applies: 

p+pc+O, aeff (p) - (p-pe) -k, k=Z.Of 0.1, (6)  

and can be related to the exponents of the correlation radius 
of an infinite cluster13 and of the electrical conductivity. The 
relationship can be obtained by selecting the value of e close 
to unity and finding the lower limit of the integral C(E)  from 

where @ (q) is the density ofthe probability ofthe distribution 
of thermoelectric power contributions. We shall use Na (p, 
a,/u,, tt,/x2, E )  to denote that fraction of the surfaces which 
contributes &aeff (p) to the effective Seebeck coefficient: 

Near the threshold we go to the limit as p-+p, + 0, ol/ 
u2+m, x1/x2-fm, and&-1: 

Iim N ,  (p, ai/02, xilxz, E) =O. (9) 

The limit of E is taken last. The fraction of the surface on 
which the Seebeck coefficient reaches the fraction &aeff (p) of 
its value tends to zero on approach to the threshold. The 
procedure of going to the limit can be justified numerically 
by graphs demonstrating that the function Na (p, ol/u2, x , /  
tt2, E )  approaches zero for each of the arguments, as is shown 
in Figs. 1, 2, and 3 of Ref. 10 for the electrical conductivity 
and the Hall coefficient. For reasons of space, Fig. 2 demon- 
strates only the case Nu (&). 

The active points of the thermoelectric power can be 
represented by the average contribution to this power: 

FIG. 2. Fraction N,  ( E )  of the surface between the components responsible 
for the fraction ~ a " ( p )  of the effective Seebeck coefficient, plotted as a 
function  of^ and calculated for the following concentrations: 1)p = 0.3; 2 )  
0.34; 3 )p  = 0.5. The calculations were carried out on the assumption that 
u1/u2 = X ~ I I C ~  = lo5. 

lim <a(p, E) )- (P-P~)-~, 
P - P ~  +O,e-+i 

by analogy with the procedure for the hot spots of the Joule 
heat We,@): 

lim < w (p, E) )- (p-p,) - I .  
P - p C  +O,e-t 

It readily follows from Eq. (9) that 

where v is the exponent of the correlation radius of an infi- 
nite cluster; aeff(p) a Na (p, E )  < a ( p ,  E )  > ; Nu (p ,  E )  cc ( p 
- p, )" ; n = dv; d is the number of spatial dimensions. If we 

u s e t = d v - I  (Ref. 9), w e f i n d t h a t k = t + I - - m .  
The model experiment of Ref. 8 did not yield Eq. (6) 

because the dependence of the thermoelectric power on the 
composition for materials with such a difference between the 
electrical conductivities of the components should be mani- 
fested only very close to the threshold where the conductiv- 
ity of a sample is sensitive to the conductivity of glass. It is, 
however, not possible to attain experimentally such a close 
approach to the threshold. The experimental conditions for 
p >p, correspond to the metal-insulator model, which can 
be used to study the critical behavior of the electrical con- 
ductivity and the Hall effect. The thermoelectric power 
found using this model is the trivial expression aeff(p)  
= const, which follows from Eq. (1) when j, (S) = 0 and is 

associated with the fact that the thermoelectric power ap- 
pears when the current through the surface S between the 
components is j, (S ) # 0, and both components should con- 
duct (02#O). It is impossible to study the critical behavior of 
the thermoelectric power beginning from the ratio9 a,/ 
a2> los. 

It therefore follows that the active points of the thermo- 
electric power together with the hot spots of the conductivity 
and the active points of the Hall emf provide a unified pic- 
ture of a phase transition in disordered composite systems 
and allow us to draw the conclusion that other transport 
coefficients which are affected significantly by percolation 
problems in systems of this kind also have singularities at the 
threshold. 
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