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The shape of the line of ultrasonic absorption due to the various components of the real squashing 
mode in textures in 3He-B is analyzed. The additional splitting of the absorption line for the 
M = 0 component of the real squashing mode in a magnetic field is explained. The absence of such 
a splitting for the lines with M = + 1, + 2 in a planar geometry is also explained. Structural 
features in the lines of ultrasonic absorption by various components of the real squashing mode in 
a rotating cylindrical vessel holding 3He-B are discussed. 

1. INTENSITY OF ULTRASOUND ABSORPTION BY THE REAL ~ = o ~ = o ~ + M g  (T) aL 
SQUASHING MODE BETWEEN TWO PARALLEL PLATES 

(1) 

k ( T )  is an effective g-factor, w, is the Larmor frequency, 
The collective modes in superfluid 3He-B are oscilla- and @, = y~ if ~ ~ ~ ~ i - l i q u i d  effects are ignored]. ~t is also 

tions of the order parameter about the equilibrium value possible to observe a dispersive splitting of the squashing 
Aa?=ARaiei0, mode in a zero field.6 

which are coupled with oscillations of the particle distribu- 
tion function. Here A is the temperature-dependent modulus 
of the order parameter, Rai is an orthogonal matrix (i = 1,2, 
3 is the orbital index, and a = 1, 2, 3 is the spin index), and 
exp(i@) is a phase factor. In the case ofp pairing (the spin of 
the pair is S = 1, and the orbital angular momentum of the 
pair is L = I), the order parameter is generally a complex 
3 X 3 matrix A,, specified by 18 real parameters, whose num- 
ber determines the number of independent collective modes. 
The modes are by convention classified1 with the help of 
quantum numbers which are the eigenvalues of the following 
operators: the square of the total angular momentum Ji 
= L, + RaiSa , the projection (M)  of J, onto a direction (2) 
which we single out, and the parity of T under complex con- 
jugation. The operator Ji is the sum of the operator repre- 
senting the orbital angular momentum, L,  , and of the opera- 
tor representing the spin, RaiSa,  in a coordinate system 
whose spin unit vectors are rotated from those of the 
orbital system, x i ,  by the orthogonal matrix: Pa = RaiP. 
The equilibrium state of the liquid is characterized by the 
quantum number J = 0; i.e., J,A :i = 0. There are accord- 
ingly two (T = + 1) modes with J = 0, two triply degenerate 
modes with J = 1 (M = 0, + I), and two fivefold-degenerate 
modes with J = 2 (M = 0, + 1, + 2). 

The collective modes in 3He-B are seen as peaks in the 
absorption of ultrasound at frequencies corresponding to the 
various modes (see the review by Ketterson et and the 
bibliography there). The greatest progress has come in re- 
search on the "real quadrupole mode" or "real squashing 
mode,"' which has the quantum numbers J = 2 and T = 1. 
Its frequency is w = w, = (8/5) 'I2A(~), if we ignore Fermi- 
liquid corrections. This mode is an oscillation of the spin 
distribution function and is thus weakly coupled (the 
strength of the coupling depends on the asymmetry in the 
distribution of particles and holes) to ultrasound with quan- 
tum numbers J = 0, T = - 1. It thus becomes possible to 
observe4 the fivefold splitting of the real squashing mode in a 
magnetic field H, as predicted theoretically by Tewordt and 
Schopoh15: 

The dispersion relations for the various components of 
the real squashing mode, 

M=O: oZ=~02+0744~,2q2; 

1lf=k1: oz=o~+0.39v~2q2;  (2) 

M=+2: oZ=oo2+0.22~~2q2 

(q is the wave vector, and u, is the Fermi velocity), and the 
dispersion relations for all the other collective modes in 'He- 
B were first derived in a pioneering but unnoticed paper by 
Vdovin7 back in 1961 (!); these relations have since been rede- 
rived by several  author^.',^-'^ 

Recent experiments6 in comparatively strong fields, 
H > 500 G, have also revealed an additional twofold splitting 
of the central component of the real squashing mode 
(M = 0). This splitting has been explained theoretically by 
Volovik (Ref. 13; see Ref. 14 for more details). It has been 
shown that the frequency of the real squashing mode de- 
pends on the texture of the order parameter Rai : 

A ,. 
o Z = ~ M 2 + ~ l Z q 2 + ~ 2 2 q 2  (qh) '. (3) 

Expression (3) holds under the approximation14 
c:q2/w 4 wLg w,. Here c ,  and c, are the sound velocities; 
4 = q[q is a unit vector along the sound propagation direc- 
tion; hi = RaiHa / H  is a unit vector along the quantization 
axis for the total angular momentum Ji ; and Rai is the three- 
dimensional rotation matrix, which specifies the order pa- 
rameter in 'He-B. The matrix R,, is customarily parame- 
trized by means of the unit vector (fi) along the rotation axis 
and the rotation angle 8, which is fixed by the spin-orbit 
interaction: 8 = 8, = arccos( - 1/4), so that .. A 

Hai='lh (-6ai+5nani--15'"e,il&). (4) 

In the experiments of Ref. 6, the sound propated through 
'He-B between two parallel plane plates separated by a dis- 
tance 1 = 4 mm; the vector 4 was along .ir (the unit normal to 
the plates); and the magnetic field H was parallel to the plane 
of the plates. In fields strong enough that the distance 
between the plates exceeds the magnetic length l,, by virtue 
of the orienting effect of the magnetic-anisotropy energy (see 
Ref. 15, for example) 
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the vector C1 is parallel to the field H at a distance greater 
than 6, from the plates, while at the surfaces of the plates it 
is parallel to + .it by virtue of the orienting effect of the 
surface energy 

(d i. a constant). Figure 1 (see Ref. 13) shows the distribution 
of h in the volume between the plates. This distribution can 
be described by the simple expression (3112) 

h=G cos y ( z )  + (HIH) sin y ( z )  . (7) 

Here we have y( + 1/2) = 0 at the plate surfaces and 
y(0) = 1~/2 in the plane halfway between the plates. The fre- 
quency of the real squashing mode thus turns out to depend 
on the texture: 

02=0M2+ci2qZ+c22q2 c0sZ y ( z )  . (8) 

The ultrasonic wavelength q-'- = lop5 cm is 
much shorter than the magnetic length l,, over which the 
direction of 6 changes. We can thus use the approximation of 
local oscillators, according to which there is an independent 
real squashing mode, with a frequency determined by (8), at 
each point in the vessel. The damping of the ultrasound due 
to the excitation of the real squashing mode is proportional 
to the spectral density 

112 

which tends toward infinity at the two points 
w2 = = w& + c;q2 (the absorption component due to the 
central part of the vessel) and m2 = fl: = w& + c:q2 + c:q2 
(the absorption component due to the region near the plates) 
in accordance with 

To calculate the exact values of the derivatives we need to 
find the spatial texture of the vector fi (as discussed below). 
In sufficiently strong magnetic fields there is thus a texture- 

FIG. 1. 

induced splitting of the ultrasonic absorption line corre- 
sponding to the real squashing mode with M = 0 (Ref. 13). 
The magnitude of the splitting is independent of the field in 
strong fields and is given by 

Aw=Qz-Qi=c22q2/2wo. 

It is important to note that dispersion relation (8) holds 
for any component of the real squashing mode (with M = 0, 
+ 1, + 2), although the constants w,, c,, and c2 have of 

course different values for the different components. The 
frequency w, is determined by (1). Comparison of the ex- 
pressions given by Volovik and Khazan14 with Vdovin's re- 
sults, (2), yields 

We must therefore examine why experiments reveal a 
splitting of only the M = 0 component. A natural explana- 
tion arises when we note that the constant (A,) of the inter- 
action between the ultrasound and the real squashing mode 
depends also on the texture of the order parameter Rmi .  Ac- 
cording to Ref. 16, AM is small to the extent that the asym- 
metry in the distributions of the particles and holes is small, 
and it differs for the components of the real squashing mode 
with different values of M: 

h,mPzMY(r). (11) 

Here P2, are the associated Legendre polynomials, and y is 
the a?gle (introd5ced earlier) between 4 and the quantization 
axis h: cos y = 4h. The squares of the associated Legendre 
polynomials are written as functions of cos2y: 

To derive the intensity of the ultrasound absorption due 
to the excitation of the various components of the real 
squashing mode in the texture, we must thus integrate the 
frequency distribution S (w - w(z)) with a weight A,(z): 

112 

I 
I .  ( a )  - - 6 ( o w  ( z )  ) P2,'(cos2 y)  dz 

- l , 2  

The spectral density P (w) in (9) has square-root singularities 
[see (lo)] at the points w = a , ,  a,, but only for M = 0 do 
these singularities cause a splitting of the absorption line. 
The reason for this situation lies in the zeros of the Legendre 
polynomials. In the case M = + 1, they are at the same 
points, w = a , ,  a, (y = 0, 7r/2), while in the case M = f_ 2 
they are at the point w = R2 (y = 0). 

We thus find the following behavior of the ultrasonic 
absorption intensity near the singular points of the spectral 
density: 

I ,  ( w + Q i )  m(2Q1)"2/81~2qI y i f  I ( a - Q i ) ' " ,  (144 
I ,  ( w + Q 2 )  (2%) '"/21c2q I yzf 1 ( Q z - 0 )  '", (14'3) 

i + Q i , , ) ~ - i , ' I ( ~ ) ~ , ' ,  (15) 
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I,2(o+Qi)m3(2Q,)'"/1611c,Iql yI1I (o-Q,) '",  (16a) 
1,2(0+52~) ~ ( 2 Q z ) 5 ' a ( Q z - o )  "11 (Ic21 q )  lyZ1l. (16b) 

We also note that the absorption (I,) for the M = 0 compo- 
nent vanishes at 

o=Q,,,= (2/3Q1Z+'/3Q,2) ' I 2  

(the zero of the Legendre polynomial P,,). There is thus in 
fact a splitting of the M = 0 line. The intensity (I, ) of the 
absorption for the M = f 1 component vanishes at the 
boundaries of the absorption interval, w = a,, , ,  and it 
reaches a maximum at the intermediate point w = (fl,fl,)'". 
Finally, I,, tends toward infinity at the lower boundary, 
w = a , ,  and vanishes at w = a,. We recall that the values of 
w,, c,, c,, a , ,  and a, are different for the components with 
the different values of M. 

We have thus found a qualitative description of the 
shape of the ultrasonic absorption lines corresponding to the 
components of the real squashing mode for a planar geome- 
try and for a rather strong magnetic field, directed parallel to 
the surfaces of the plates. In this case there is a texture-in- 
duced splitting of only the central (M = 0) peak. In the case 
of an oblique field it is possible to observe also a splitting of 
the ultrasonic absorption lines corresponding to other com- 
ponents of the real squashing mode. For an exact description 
of the shape of the absorption lines we need to find the tex- 
ture of the vector ii in the volume between the plates. For 
weak fields, this texture has been found by Smith et al." (see 
also Ref. 15). For fields of arbitrary magnitude and direc- 
tion, this problem would obviously require numerical meth- 
ods. In the case of a strong field (6, 4 I ) parallel to the sur- 
faces of the plates, however, we can estimate the derivatives 
(dy/dz),,, near the singular points u = fils, of the spectral 
density P (w) in a rather simple way. 

Following Hakonen and Vol~vik , '~  we write the sum of 
the gradient energy and the magnetic-anisotropy energy (5) 
in the form 

F=F,+F, 

112 

1  = Z c  1 d z { ( v i G ) 2 - 1 6  [ 5 b ( i m t i ) + 3 " d i v h ] 2  
13 - l / Z  

where Y (T) is the Yoshida function. Here the 2 axis is along 
the magnetic field H (Fig. 2), and the vector ii is written in 

4c 41, 

FIG. 2. 

terms of the angles 8 and p: fi = (sin 0 cos p, sin 8 sin- 
p, cos 8 ). The surface energy in (6) is minimized when ii has 

the value 

To find the texture of the vector ii we must solve Euler- 
Lagrange equations for the functional in (17) with boundary 
conditions (20). Far from the walls of the vessel, i.e., at dis- 
tances I k 1 /2 - zl s CH, where 8 - ~ / 2 ,  p + 0, a solution 
of the linearized equations yields 

0=n/2+AI sh ( z l gHf )  +A2 sh (2'"2/gH1), 
(21) 

cp=- ( 3 / 5 )  "AI  sh (Z/EH') + (5/3) lhAz ~ h  ( 2 1 1 ' ~ / t ~ 1 ) .  
A 

Using (4), we can then find the behavior cos y(z) = ii Rai Xa 
at IzI ( f L, in which we are interested: 

y ( 2 )  ~ d 2 + 2 A i  (2lE.H'). (22) 

To find the constant A ,  we must join solutions (21) at inter- 
mediate distances, lzl % & and I + 1 /2 - zl s g H ,  with the 
solutions of the nonlinear Euler-Lagrange equations satisfy- 
ing boundary conditions (20). Using the results of Ref. 18, we 
find 

As for the derivative y;, we note that in the absence of nu- 
merical calculations we can at best assign it an order of mag- 
nitude: 

The quantity 6, depends on the field, the temperature, and 
the pressure. For P = 29.4 bar, for example, we have, ac- 
cording to Ref. 18, 

Expressions (23) and (24) differ by an exponentially small 
factor. Consequently, as the field or the temperature is in- 
creased the intensity of the left-hand ultrasonic absorption 
peak I,(@ -+ a,) should become greater than that of the 
right-hand peak I,(@ -+ a,),  according to (14a) and (14b). 

2. REAL SQUASHING MODE IN =He-B IN A ROTATING 
CYCLlNDER 

Let us examine the absorption of ultrasound by the real 
squashing mode in a rotating cylinder with 3He-B. For sim- 
plicity we restrict the discussion to the case in which the 
angular velocity a ,  the magnetic field H, and the sound 
propagation direction 6 are parallel to each other and direct- 
ed along the axis (&) of the cylinder. Writing the vector ii in 
polar coordinates as ii = (cos a sin P, sin a sin P, cos f l  ), we 
find 

cos y  (r) = ~ i ~ a i ~ a / ~ = L ~ 4 [ - 1 + 5  cosZ @ ( r )  1, (25) 
where r is the distance from the axis of the cylinder. In the 
case of axisymmetric textures, the lines of constant frequen- 
cy, u(r) = const, 
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o y r )  =oMZ+cl2q2+c2Zqz cos2 y (r) , (26) 
are circles. We thus find the intensity of the ultrasonic ab- 
sorption by the real squashing mode to be 

where R is the radius of the cylinder. 
The distribution of the vector ii in the rotating vessel 

must minimize the sum of the magnetic-anisotropy energy 
(5), the gradient energy, and the energy of the orienting effect 
of the vortex cores, 

and it must satisfy the boundary  condition^'^.'^ 
;1 (R) = ( 5 4 ,  ("A "", 5 - 9 .  (29) 

Here the dimensionless parameter A is proportional to the 
angular rotation velocity of the vessel, i.e., to the density of 
vortex filaments, n, = 2 m R / d .  The type of texture is de- 
termined by the relations among the parameters A, n,, and 
6,. Typical experimental values are19 angular velocities 
R =: 1-2 rad/s in fields H = 284 (or 568) G, corresponding to 
the inequality R ) 6, > n Y2,. Two types of axisymmetric 
textures arise in this region, depending on the value of A. 

IfA < 1 we have a so-called flare-out texture,18 with the 
vector 8 deviating slightly from the 2 axis nearly throughout 
the volume of the cylinder, while at distances on the order of 
CH from the walls it approaches the boundary value in (29): 

P(r-+O) -P,r, 
cos fi (r-+R) -5-'h+Pz (R-r) . 

Here we have, for R % fH,  

(see Refs. 18 and 19), and cl - 1. 
The maximum value of the frequency, R: = w& + c: q2 

+ c:q2, is reached at the axis of the vessel, while the mini- 
mum value, = w& + c:q2, is reached at the surface of the 
cylinder. Since the minimum is degenerate, it corresponds to 
a square-root singularity in the spectral density. By analogy 
with the plane-geometry case, for the M = 0 component we 
have 

Since 10(m2 = (2R: + R:)/3) = 0, and Dl is exponentially 
small, the ultrasonic absorption line corresponding to the 
M = 0 component of the real squashing mode splits in two, 
as in the plane geometry. At the phase transition in the vor- 
tex cores, at whichp, changes discontinu~usly,~~ Io(w - R2) 
also changes discontinuously. 

The lines corresponding to the components M = + 1, 
+ 1 do not undergo a texture-induced splitting. Their be- 

havior near the corresponding minimum and maximum fre- 
quencies of the absorption spectra is 

The absorption intensity I,, reaches a maximum at 
w = (R1R2)1'2. 

The parameter A increases with increasing angular ve- 
locity, and at values A > 1 the minimum of FH + F, corre- 
sponds to the valuez0 cos y = A -'. For A > 1, we thus find a 
plateau in the texture of the vector 8: Near the axis of the 
cylinder the angle P is approximately zero, 

P (-0) -Plr (40) 

(here pl - l/gH). Further out, at a distance on the order of 
6, from the axis, the angle p assumes a value of approxi- 
mately 

sin2 p=4/s(l-h-') --sin2 Po, (41) 

and it retains this value all the way out to the surface layer, of 
thickness - lH ,  near the walls of the vessel, where ii tends 
toward the boundary value in (29). The value of p is thus 
given by (41) almost everywhere in the vessel. The behavior 
o f p  near the inflection point r,, where relation (41) is exact, 
can be described by 

P (r+ro) =Po+P3 (r-re) 3. (42) 

The inflection point in the texture of the vector ii corre- 
sponds to a singularity in the ultrasonic absorption intensity 
corresponding to the components of the real squashing 
mode, described by 

J?r (o-+Q3) 

-2r& (2%) '"PzM2 /3R2 ( c ~ ~ ) ~ " ( ~ / ~ P ~  sin 2P0) ''1 u-Q3[ ' I3,  

5232=Q,Zf ~ - 2 ~ 2 2 q Z .  (43) 

We thus find that as we go from the flare-out texture to 
the Gongadze-Gurgenishvili-Kharadze texture,20 with 
A > 1, the ultrasonic absorption corresponding to all compo- 
nents of the real squashing mode has a singularity 
I w - R3 I -'I3 near w = R, 5 R2. The behavior of the absorp- 
tion lines near w = Rl, R, remains the same in form as for 
the flare-out texture [see (34)-(39)], except that here both 8, 
andp2 are on the order of I/<,. The existence of two singu- 
larities, at w = R, and w = a,,  in the ultrasonic absorption 
at the M = f 2 components will be observed as a splitting of 
the absorption lines corresponding to these modes, similar to 
the splitting of the M = 0 line. In this texture we should thus 
observe an eightfold splitting of the absorption lines in a 
magnetic field: two lines for each of M = 0 and + 2 and one 
line for each of M = + 1. 

Finally, in even stronger fields, at which the magnetic 
length becomes shorter than the distance between vortices 
(more precisely, under the condition21 f 5 < A  /nu )-fields 
H > lo3 G for angular velocities R- 1 rad/s-there should 
be a transition to a spatially inhomogeneous texture of the 
vector 8 (Ref. 21; this texture stands in contrast with the 
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textures discussed above, which are essentially homogen- 
eous through the volume of the vessel). In this texture, fi and 
correspondingly the anglespand y vary periodically in space 
with the period of the unit cell per vortex. The behavior of 
the absorption intensity for all of the modes remains the 
same as in (34), (36), and (38) by virtue of the degenerate 
frequency minimum at the boundary of the vessel, i.e., as 
w -+ a,. In addition, however, the frequency in (26), which 
is now a doubly periodic function of the point r, must in 
general have (according to the Morse theorem) at least one 
minimum, one maximum and two saddle points in each unit 
cell. Nondegenerate maxima and minima correspond to fin- 
ite discontinuities in the spectral density, while the saddle 
points of the frequency, 

o=o,+a, (s-z,) 2-sa2 (y-y,) ' 9  (44) 

give rise to Van Hove logarithmic singularitiesZ2 in the spec- 
tral density and thus in the ultrasonic absorption intensity 
for all components of the real squashing mode: 

Here N is the number of unit cells (vortices) in the vessel, and 
Aw is of the order of the change in the frequency within one 
unit cell. The phase transition to the spatially inhomogen- 
eous texture in a rotating cylinder with 3 ~ e - B  can thus be 
detected from the appearance of additional logarithmic sin- 
gularities in the ultrasonic absorption intensity correspond- 
ing to the components of the real squashing mode. 
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