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A nonlinear diffusion equation is used to study the process of spinodal decomposition of binary 
polymer mixtures. An analysis is made of the possibility of existence of kinetically stable spatially 
inhomogeneous steady-state solutions of the diffusion equation that correspond to partial equilib- 
rium states. A numerical solution of the diffusion equation in combination with a study of the 
initial (linear) state of the process shows that of all the possible steady-state solutions only the 
structures with a spatial period of the order of the period corresponding to the maximum gain in 
the linear theory can be achieved kinetically. Possible paths of the subsequent evolution of the 
investigated metastable states are considered. 

INTRODUCTION A 6F ?= div-grad-, 
The dynamics of phase separation of a system depends at  ksY' 6q 

strongly on its viscosity. If the viscosity is low, phase separa- 
tion begins in the metastable range by nucleation.' If the where A is a coefficient defined by the expression4 

viscosity is sufficiently high for the temperature of the sys- A =  N.9 (1-cp) aZ 
tem to relax more rapidly than its composition, then a rapid N a  (1-9) r:lcro +NB~FT;,,,, ' 
change in temperature may make the system thermodynam- 
ically unstable. A spatially homogeneous state of a system is here, .c,,, and Clcro are the microscopic relaxation times; 

then destroyed by a process known as spinodal decomposi- N, is the average number of monomers between the links 

tion, the initial stage of which is described using a linearized along the chain; p = SF/Sp is the reduced chemical poten- 

diffusion equation.'s3 It is natural to consider the whole tia13 which is described by the following expression after cal- 

phase separation process on the basis of a nonlinear diffusion culation of the variational derivative: 

equation. The analysis in the present study, based on a non- P 1 -=- 1 1 1  
linear equation, reveals a new intermediate stage of the pro- 1n.q--ln(l--cp)f --- 

kBT Na NB N a  N ,  
cess, which is typical of spinodal decomposition of polymer 
systems and is discussed below. aZV2rp +x (4-2cp) - . 

18cp(l-cp) 
51. DESCRIPTION OF THE PROCESS IN A LINEAR 
APPROXIMATION 

Thermodynamic properties of a binary polymer mix- 
ture consisting of components A and B can be described us- 
ing the Flory lattice model in terms of a free energy F which 
is defined (per lattice site) by the following expression3: 

Here, N, and N,  are the degrees of polymerization of the 
components; x is the interaction parameter; p is the volume 
fraction of A; a is the average distance between neighboring 
monomers in a polymer molecule, assumed to be the same 
for A and B; k ,  is the Boltzmann constant; T is the absolute 
temperature. 

We shall assume that a certain initial distribution of the 
concentrations p(r, 0) is established in space. We shall de- 
scribe mathematically the evolution of this distribution by 
means of the equation 

We shall assume that the average concentration in the mix- 
ture is p,. If the function Sp(r, 0) = p(r, 0) - p, is represent- 
ed by a Fourier expansion 

6cp(r, 0) = c (k) elkr, 

then linearization of Eqs. (2) and (3) relative to Sp  yields, 
subject to Eq. (4), the following expression for Sp(r, t ) (Ref. 
3): 

6cp (r, t )  = c (k) e-t/z(k)efkr, 

where 

'6" (k) = 
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Therefore, the function Gpjr, t ) can be represented by a 
superposition of elementary concentration waves. It follows 
from Eq. (6) that if 

l/Nacpo+1INB(l-~o) -2x>O 

(when the system is above the thermodynamic stability 
boundary in the form of the spinodal), all the elementary 
concentration waves are damped out; if 

1/Nacpo+1/NB(1-cpo) -2x<O 

there is a critical wave number 

such that for lkl <kc  the corresponding elementary waves 
Sp(k) grow exponentially with time. The wave number cor- 
responding to the most rapidly growing modes is given by 
the expression2 k, = kc /a. 

The actual nature of the process at times t,r(k,) can be 
established by a numerical investigation of the nonlinear 
equation (2). 

02. NUMERICAL MODELING OF THE SPINODAL 

DECOMPOSITION PROCESS 

Equation (2) was solved in the interval (0, L ) subject to 
periodic boundary conditions. The initial condition was a 
sinusoidal perturbation 

cp (x, 0) =cpo+A sin (2nmx/L) ,  

where m is the number of periods which can be fitted in the 
interval (0, L ). In a study of this perturbation on a computer 
there is no need to assume that m is large. This can be de- 
duced from the following considerations. 

Let us assume that there is a unique solution of Eq. (2) in 
the region D = (0, L ) X (0, t . ) with periodic boundary condi- 
tions and that p(x, 0) is a periodic function with a period L / 
m (m is an integer). Then, the solution in question is a solu- 
tion of Eq. (2) in the region Dl = (0, L /m) X (0, t . ) with peri- 
odic boundary conditions and with the initial condition p(x, 
0) which is extended periodically to D. 

Hence, it follows that the period p(x, 0) is a multiple of 
the period p(x, t ) in the problem under discussion. This can 
be applied directly to the multidimensional case. It is suffi- 
cient to take m = 1; the identity of the values of the solution 
at the ends and in the middle of the integral (0, L ) provides a 
good check of a solution of the difference problem (Fig. 1). 

Adopting dimensionless variables 6 = x/a and 
T = t /<Am,cro, and performing a discretization procedure, we 
obtain the corresponding difference approximation for Eq. 
(2) (see Appendix 1). The proposed difference scheme was 
realized in the form of a program. 

Figure 1 shows the concentration profiles at different 
moments in time. The initial data used in the calculations 
were as follows: N, = 50, NA = NB = 1000, x = 0.0025, 
p0 = 0.5, A = 0.05, r&,,, = 78,,,,, = lo-'' sec, Ag 
= (kca)-' = 14.91, L = d = 10Ag (the spatial periodd is in 
dimensionless coordinates). 

FIG. 1. concentration profiles calculated for different moments in time: 1 )  
r = 0 ; 2 ) ~ =  1 . 5 X 1 0 8 ;  3 ) 7 = 6 X 1 0 8 .  

The time taken to establish a steady-state distribution 
rSt is 8 X lo8. A comparison with the characteristic diffusion 
time r,,, = N 3/Ne, shows that in this case we have T,, / 
T ~ , ,  = 30. 

A comparison of the establishment time with the time 
during which a single chain passes through one spatial peri- 
od rd = T,,, d 2 / ~  (RO = N ' I3a is the diameter of a trian- 
gle) shows that rd and rst are quantities of the same order of 
magnitude. 

These numerical experiments demonstrated that the 
spatial period of the steady-state distribution may be differ- 
ent from the period of the initial distribution if there is a 
change in the dimensions of the integration region L. For 
example, when the difference equations are solved with the 
sinusoidal half-period as the initial condition (see Appendix 
I )  for L = 10(kca)-', the steady-state period is L (Fig. 2a); at 
L = 20(kca)-' the solution period has a tendency to de- 
crease (two humps in Fig. 2b), but subsequently the dip 
between the two humps filled up and finally the period of the 
steady-state structure became equal L. It is natural to expect 
that when L is increased then the periodic structures ob- 
tained, out of all the possible steady-state ones, is that with 
the maximum possible period (i.e., with the period equal to 
L ); such a structure is preferred for thermodynamic reasons 
because of the minimum number of changes in the sign of the 
derivative Sp/Sx which occur in the interval (0, L ). How- 
ever, if L = 25(k,a)-', then the steady-state solution is one 
with the period L /2, whereas for L = 30(k,a)- ' the period 
of the solution is L /3 (Fig. 2c) and for L = 40(k,a)-' the 
period is L /4. 

We can thus see that a numerical investigation of the 
solutions of Eq. (2) has revealed two main facts: firstly, a 
steady-state distribution of the composition is not homogen- 
eous and, secondly, the period of this distribution is relative- 
ly independent of the wavelength of the initial fluctuation. 

$3. INVESTlGATlON OF STEADY-STATE SOLUTIONS 

We shall consider steady-state solutions of Eq. (2) in the 
case of a single spatial variable on an infinite straight line. 

The diffusion flux 

A v 6 F  - - 
~ B T  6~ 

vanishes and hence 
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FIG. 2. Kinetics of concentration profiles calculated for various initial 
conditions: a) same as in Fig. 1, but with a different initial condition 
(curves 1, 2, and 3 correspond to r = 0, T = 0.25X lo9, and 
r = 0.65 X lo9); b) same as a but with a doubled size L of the integration 
region (curves 1, 2, and 3 correspond to r = 0, r = 0.75 X lo9, and 
T = 3 x lo9); c)  formation of a domain structure on successive increase in L 
(curves 1, 2, and 3 correspond to T = 0, r = 0.4X lo9, and r = 2X lo9). 

where 

We then find that 

The constant Cis found by equating the average concentra- 
tion to p,. This means that among the solutions of Eq. (8) 
there is one constant solution p = p,. Hence, C = ,uo(po). 
The integral of Eq. (8) is 

where Fo = F d k B  T, y = dp/dl. The behavior of the phase 
curves of Eq. (8) was determined qualitatively using the stan- 
dard methods for investigating conservative sy~ tems .~  Sin- 
gularities of Eq. (8) are found from the conditions 

The nature of the functions jio(p) and Fo(p) depends on 
whether this system is above or below the critical point 

If the system is above the upper critical point, then for 
p2Cy ) > po > p,Cy ), the equation ,ii,(p) = jl,(p,) has three 
roots, whereas for p, > p,Cy ) and p, < p,(X ), it has only one 
root. [The values p,Cy ) and p2Cy ) can easily be found graphi- 
cally by parallel transfer of the tangents at the points of in- 
flection Fo until they become tangents to the required 
points.] The singularities p = 0, y = 0 and p = 1, y = 0 are 
unstable; the stability of singular points different from p = 0 
and p = 1 is governed by the sign of the derivative S 2Zo/Sq, 
at these points, namely when d 2Fddp2 > 0 the singularity is 
stable, whereas for d 2Fo/dp > 0 it is unstable. 

Region 1 of the phase plane (p, y) in Fig. 3a represents 
the range of existence of spatially periodic solutions and it is 
bounded by a separatrix passing through two unstable singu- 
larities. We can easily see that in the linear approximation 
the periodic paths close to the stable equilibrium position 
have the period dc = 27r/k,, where kc is given by Eq. (7). 
The period of the paths increases on approach to the bound- 
ary of region 1 (and this is why periodic structures with 
d <d, cannot exist) and becomes infinite on the boundary. 
Boundaries of regions 1, 2, and 3 and paths inside region 4 
are kink-type solutions. The solutions corresponding to 
paths inside regions 2 and 3 are symmetric relative to the 
origin of the coordinate system and have an extremum at the 
origin, whereas they tend to zero (region 2) or to unity (region 
3) at infinity. 

We shall assume that p,~[p,Cy ), p2Cy )] and that it ap- 
proaches one of its ends. Then the stable singularity and one 
of the unstable ones approach and the singularity obtained 
for p, = pi Cy), where i = 1 or 2, is a turning point of the first 
kind. When p, emerges outside the interval (p,, p,), this 
singularity disappears and periodic solutions are no longer 
possible in the system under consideration (Fig. 3b). A phase 
picture of the system forx <x,, obtained for any value ofp, 

FIG. 3. Solutions of Eq. (8) in the (p,  y)  phase plane: a) x>x,,, 
p,k ) < p0 < p2k ); b) remaining cases. 

292 Sov. Phys. JETP 61 (2), February 1985 Mitlin etal. 292 



does not differ qualitatively from the picture of the system 
forx  >xCr in the case when p0 < plCy ) or po > p2k ). 

The presence of singularities at p = 0 and p = 1 is asso- 
ciated with the nature of the function K (p) = 1/36p(1 - p). 
The singularity of K (p ) at p = 0 and p = 1 is due to the fact 
that the free energy of Eq. (1) cannot be expanded at low 
concentrations of the components. The correct expression 
should, as in Ref. 6, contain the nonlocal operator instead of 
the gradient term in Eq. (1) and then the steady-state solu- 
tions no longer have the singularities p = 0, y = 0 and 
p = 1, y = 0. In this case the phase curves in regions 2, 3, 
and 4 no longer begin or end at these points, i.e., the corre- 
sponding solutions are localized in finite spatial intervals. 
We are not interested in solutions over the whole straight 
lines; ifx >xC, and pOe[plk ), p2Cy )] then the required solu- 
tions are periodic solutions in region 1, boundary of region 1, 
and spatially homogeneous solution (center of region 1); in 
the remaining cases only the spatially homogeneous (saddle 
point in Fig. 3b) solution remains. 

It therefore follows that the very possibility of existence 
of nontrivial steady-state spatial distributions of the concen- 
trations is due to the structure of the free energy functional 
which is close to the structure of the Ginzburg-Landau Ha- 
miltonian7 [the difference is in the appearance of asymme- 
try-contributing terms Sp  and 6p3 in the expansion of Eq. (1) 
in terms of Sp] . 

The absolute minimum of the free energy Fcorresponds 
to the energy constant h = 0, whereas for periodic distribu- 
tions corresponding to h #0, there is only a local minimum 
ofF. In other words, these periodic distributions correspond 
to partial equilibrium states. Therefore, a selection of a spe- 
cific steady-state distribution is not determined by whether 
it is favorable from the thermodynamic point of view. The 
circumstance that the characteristic spatial scales of the 
structures found by numerical calculations are close to the 
length dm = 2n-/km leads to the conclusion that the kinetics 
of the process has the dominant influence already in the lin- 
ear stage. 

94. KINETICALLY ATTAINABLE PARTIAL EQUILIBRIUM 
STATES 

It follows from the nature of the gain defined by Eq. (6) 
that the harmonics with k = k 2/2 are amplified more 
than the others. During the early stages of spinodal decom- 
position we can use a linear theory and then the harmonics 
with k = k 2, mask all the others. Therefore, selection of the 
period is governed by the kinetic and not by the thermody- 
namic preference at the beginning of the process, and restric- 
tions on the exponential growth of fluctuations are imposed 
at later stages by "activation" of the nonlinear terms in Eq. 
(2). 

We note now that in the case of a problem with periodic 
boundary conditions there may be a finite number of periods 
withd, = L /nd, . Among these there are always two periods 
competing in respect of the proximity to dm = 2n-/km. 
Clearly, they are equal to L /n and L /(n + 1) for a certain 
value of n; one of them is slightly larger and the other slightly 
smaller than dm.  If we now alter L, we find that for a discrete 

number of values ofL, , both L , and L ,-:, are quite close 
to d ; and on passing through these values the kinetically 
preferred period changes from L /n to L /(n + 1). The condi- 
tion from which L, is found is 

which gives 

The values of the period before and after the abrupt change 
are 

The magnitude of the period discontinuity is 

It follows that when the size of the one-dimensional 
region is altered, the steady-state period exhibits a finite 
number of bifurcations; the values of L, and the parameters 
of the discontinuities are described by Eqs. (10)-(12). In the 
intervals from L, + 0 to L,, , - 0 the period clearly 
changes linearly (Fig. 4). It is clear from Fig. 4 that if L < dc , 
there are no steady-state structures. The first bifurcation 
halves the period. The subsequent discontinuities become 
smaller and for large values of n the bifurcation occurs at 
L, =dm (n + 1/2) and the period tends to dm (in fact, we can 
easily show that L, €[dm n, dm (n + I)] and L, - dm n+1/2 
as n+m J .  

The proposed description accounts qualitatively for the 
numerical results obtained above. [It should be pointed out 
that the value of L, found from Eq. (10) and its estimates 
deduced from the results of numerical experiments are dif- 
ferent. For example, L, is estimated (Fig. 2b) to be 20(kca)-I, 
whereas Eq. ( 10) gives L,  = dc fiz 14(kc a)- '. These discre- 
pancies are explained by the fact that in the linear descrip- 
tion of the period bifurcations we cannot allow for the spatial 
linkage between the growths of neighboring humps. The 
"precursors" of the first bifurcation of the period, governed 
by the two-hump nature of the concentration profile, appear 
already for L = 15(k, a) - ' ,  but because of the nonlinearity of 
the initial equation the bifurcation itself occurs at higher 

FIG. 4. Dependence of the period being established on the dimensions of 
the region. 
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values of L. Therefore, in reality the sequence of Eq. (10) 
corresponds to a series of values of L, slightly greater than 
the values obtained in the linear approximation.] 

It follows that competition between the thermodynam- 
ic preference and the kinetic attainability, discussed in Ref. 6 
in connection with coil-spherulite transitions, is observed 
particularly clearly in the present case. In spite of the fact 
that the steady-state distribution that oscillates the mini- 
mum number of times corresponds-among the finite num- 
ber of possible structures-to a minimum of the free energy 
functional (1), this distribution cannot be attained because it 
is not kinetically preferred since the difference between its 
period and dm is large. 

We might gain an impression that the thermodynamic- 
ally most preferable state can never be achieved because the 
period d is finite. In reality this is not true because in the case 
of initial distributions close to those preferred for thermody- 
namic reasons the linear theory based on the expansion near 
the average value p, can be immediately found to be inappli- 
cable (the expansion is only valid for small deviations from 
p,, whereas at large values of L the thermodynamically pre- 
ferred structures correspond to large deviations from q,). In 
this case the expansion should be carried out near a steady- 
state distribution which varies in space but is thermodynam- 
ically preferred. This problem is analogous to an investiga- 
tion of the stability of steady-state distributions. The 
coefficients in front of the unknown function Sp(x, t ) in the 
linearized equation (2) become dependent on the steady-state 
solution and the problem of determination of the kinetically 
preferred period becomes much more difficult. We shall not 
consider it here, although it is quite clear that in the case of 
the initial distributions close to the thermodynamic mini- 
mum the concepts of the kinetic attainability and thermody- 
namic preference are identical. 

The reasoning concerning the bifurcation of the period 
as a result of a change in the dimensions of the region under 
consideration can be applied to the case of k spatial varia- 
bles. We shall be interested in the bifurcations of the compo- 
nents of the vector function d = (d,, . . . , d, ), specified in a 
space of the dimensions of k-dimensional parallelepipeds, 
where a parallelepiped is described by a vector of dimensions 
L = (L ,, . . . , L, ) and L, >O. The kinetic preference criterion 
remains the same. We can easily see that the bifurcations 
cannot occur simultaneously for several components of d 
(because in this case there is a suitable vector closer to a 
sphere of radius dm ). 

The bifurcation surfaces for the component j are found 
from a condition similar to Eq. (9): 

The system of inequalities appears in Eq. (13) because 
when they are not satisfied, there is a more suitable vector d 

in the sense of the kinetic preference. The expression for Lj 
follows from Eq. (1 3): 

Using Eq. (14), we obtain the parameters of the discon- 
tinuities from the formulas 

It is clear from Eqs. (14) and (15) that the bifurcation surfaces 
for each component j are labeled by k natural numbers and 
represent sections of k-dimensional pseudoellipsoids with 
semiaxes which are functions of ni lying within the ranges 
where the inequalities of Eq. (13) are obeyed. Families of 
surfaces for different values of j  intersect and at the points of 
intersection there may be an abrupt change in the value of 
each of the components dj. Figure 5 shows the bifurcation 
lines for L,  (k = 2 and j = 1). The lines for L, are obtained by 
relabeling of the axes. There are no steady-state solutions in 
the range L I p 2  + L2-2 >d, -2. 

We can see that the structure of the bifurcation surfaces 
is very complex, but we can expect that in the multidimen- 
sional case (or at least along one of the spatial dimensions) 
there is always a kinetically stable periodic structure with a 
scale close to d,. Depending on the structure of the initial 
distribution p(r, 0), it may belong to one of three types (in a 
three-dimensional space): spherical, layered, or cylindrical. 

CONCLUSIONS 

The fact that the above theory does not describe the 
coalescence stage, i.e., the transition to a complete thermo- 

dc 

FIG. 5. Bifurcation lines for L,. 

L,  
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dynamic equilibrium, is related to the approximate nature of 
Eq. (2). This equation ignores two fundamental factors. 

Firstly, as shown in Appendix 2, the true relaxation 
equation is not local, in contrast to Eq. (2). The absence of an 
explicit dependence on the spatial coordinate imposes non- 
physical restrictions on the cooperative behavior of a system 
and on the selection of a kinetically preferred steady-state 
structure, because the appearance of a characteristic sized of 
the initial distribution which is at first glance unrelated to 
the physics of the process of spinodal decomposition." For 
example, if the initial distribution has n periods in the inter- 
val [0, nd ], then the kinetically preferred period is given by 
the expression dn/k, where k is divisible by n; however, a 
slight change in the initial condition which makes it nonper- 
iodic has the effect that k is no longer divisible by n (this is the 
general situation described in the preceding section). We can 
see that the dependence of the equation in respect of the 
spatial coordinate may result in a structural instability of the 
solution, i.e., it may alter greatly the period of the steady- 
state structure for a small change in the initial condition. 
The nonlocal nature of the correct equation should, how- 
ever, suppress this structural instability. In fact, it follows 
from physical considerations that the processes of formation 
of macroscopic phases are related specifically with the coop- 
erative behavior ofa system on a larger scale; the cooperative 
behavior is a synonym for the nonlocal nature of the diffu- 
sion process. 

Secondly, the correct equation contains a random ex- 
ternal field which reflects the influence of small-scale fluctu- 
ations. After a long time it may result in the overcoming of a 
barrier separating the kinetically stable structures described 
above from those which are thermodynamically preferred. 
Further studies with allowance for both these factors are 
needed. 

It follows that a qualitative picture of spinodal decom- 
position is as follows. During the first stage in a time t -T, ,  a 
kinetically stable structure is established and it depends on 
the initial distribution. We can apply here the local theory 
developed above. Then, after times T,, ( t ( ~ ,  there is a slow 
change in this structure which results in the initial distribu- 
tion being "forgotten" (this removes the structural instabil- 
ity of the system mentioned above). 

The ratio T,, /T, can be a small parameter in view of the 
smallness of the ratio R,/d, . 

Coalescence may be expected after times much longer 
than T ,  because of the influence of real boundaries of the 
system or because of noise. 

APPENDIX 1 

The difference scheme can be written in the form 

AT 1 
X - -  (a)" ( A i i , n + A i , n )  

Here, A6 and AT are the steps in space and time, Nnd is the 
number of nodes in a difference network, 

(Pin 1 - ~ i , n  B. = I 8  A+ -- 
*,n [ NB N ,  2 x v i , n  ( i -q i ,n )  J 7 

i l= i+1  for l<i<Nnd, i l = l  for i=Nnd, 

i2=i+ 2 for i< i<Nnd-I ,  i2=1 for i=Nn,-I, 

i2=2 for i=Nnd; 

3 - I  for i n d  i3=Nn, for i = l ;  

i4=i-2 for z<i<Nnd, i4=Nnd for i=2,  
i(l=N,,,-I for i = l .  

The adopted two-layer difference scheme is explicit in 
time, and this imposes restrictions on AT. In a numerical 
solution of the problem (2) it is more effective to apply im- 
plicit methods, for which the maximum possible time step 
can be considerably greater. A check of the stability of the 
calculations and of convergence to the solution of the initial 
equation is made by comparing the results obtained cn re- 
duction in the time and space steps. Moreover, in each time 
layer a check is made of the balance condition 

and of the above condition of the space periodicity of p(x, t ). 
Numerical experiments show that for large periods of 

the initial perturbation the solution p(x, t ) may lie beyond 
the limits of physical validity. This can be explained as fol- 
lows: the surface energy which is responsible for the forma- 
tion of structures is concentrated at relatively large values of 
d in small (compared with the spatial extent of the ground 
states) regions (this follows from an analysis of the periodic 
phase paths of the steady-state problem close to the bound- 
ary of region 1 in Fig. 3a; the corresponding concentration 
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profiles are obtained from one another and the period d is 
increased by elongation along the spatial axis and then the 
ratios of the lengths of the regions corresponding to an 
abrupt change in p in the surface layer to the length of the 
horizontal regions corresponding to the ground states tend 
to zero in the limit d--t a~ ). The step in space in the difference 
scheme should be less than the size of these regions, i.e., it 
should be of the order of (k,a)-'. In the case of large d such a 
step is impossible to use because machine calculations would 
be too long. In the selection of the step considerably greater 
than the thickness of the surface layer we in fact exclude the 
gradient term from Eq. (2) and solve numerically the equa- 
tion for outdiffusion which grows without limit beyond the 
spinodal for t-t co (Ref. 8). 

Figure 2a shows the concentration profiles at different 
times; the initial condition is half the period of a sinusoid. 
The initial data on the period are the same as in the preceding 
calculations, except that 

The time for the establishment of the steady state is 
T,, = 0.65 x lo9. 

Calculations carried out assuming that A6 = (k,a)-I, 
L = 20(kca)-', d = 40(k,a)-' give at T = 3 x lo9 a solution 
which is outside the physical validity range. However, when 
calculations are carried out using A$= 1/2(k,a)-', 
L = 20(kc a)-', d = 40(kc a)- '  (corresponding to a doubling 
of the nodes in the same interval), a steady-state distribution 
is established in a time r,, = 3x lo9 (Fig. 2b). It should be 
noted that the results shown in Fig. 4 were checked for dif- 
ferent steps in time: the unlimited rise of p(x, t ) is due to the 
fact that the surface layer cannot be "calculated satisfactori- 
ly" for the selected step. Therefore, in contrast to the usual 
situation encountered in difference solutions of evolution 
equations, such as the nonlinear heat conduction equation, 
when for any value ofAc there is a stability threshold of the 
difference scheme AT, in our case there is such a value of 86. 
that ifA6 2 A{. , then the difference scheme may be unstable 
for any reduction in the time step. 

APPENDIX 2 

For the sake of simplicity, we shall consider a symmet- 
ric case of a mixture of AN-mers and BN-mers with equal 
average volume fractions = $B = 1/2. The relaxation 
equation for the density ofmonomers belonging to some spe- 
cific chain S is meaningful because of the macroscopic na- 
ture of the chains, and in the linear theory7 this equation can 
be written in the form 

where ~ ( r ,  t ) is the molecular field acting on a point r at a 
moment t and affecting each chain link A (for links B this 
field has the opposite sign) and the kernels ofLhe nonlocal 
operators of the kinetic Onsager coefficients A and of the 
correlation functions 2 can be calculated by methods of sta- 
tistical t h e ~ r y . ~  The field E consists of a regular contribution 
which is governed by the deviation of the local composition 
of the mixture from equilibrium and a random force which is 
a source of chain fluctuations: ~ ( r ,  t ) = E~ ( (p  (r, t ) ] )  + 6. 
Both contributions to E depend on the local composition and 
on its space and time derivatives, exactly as in the case of 
linear relaxation. (This is true if the characteristic scale of 
collective relaxation of the system is small compared with 
the corresponding scale of relaxation of individual macro- 
molecules.) Therefore, they can be obtained by comparing 
the results of summation of both parts of the above equation 
over all macromolecules of the system with the linearized 
form of the de Gennes equation, which finally gives 

where $ = pA - p, = 2p, - 1, and A,  is a corresponding 
~ n d o m  force. [The approximation for the integral operators 
A, and is with differential operators of the lowest nonzero 
order gives Eq. (2).] It should be pointed out that the physical 
idea of the above conclusion-that on a relatively small scale 
the relaxation is linear and the nonlinearity appears as a con- 
sequence of modulation of molecular fields on a large scale- 
clearly corresponds to the familiar Landau-Khalatnikov ap- 
proximation.' 

"In the case of real systems this scale is governed by the correlation radius 
representing the system before the onset of cooling. Therefore, the re- 
sults obtained are strictly speaking applicable to the situation when be- 
fore strong cooling the system is in equilibrium quite close to the spino- 
dal. 
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