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We derive equations for the Green function and the correlation tensor of the magnetic field in the 
second approximation in the velocity amplitude of the conducting fluid, taking into account the 
temporal spectrum of the flow. For long times the average magnetic field is damped with time and 
its turbulent diffusion coefficient is determined by the magnitude of the spectrum at zero frequen- 
cy. For sufficiently large Reynolds numbers the second moment of the field, particularly its 
energy, increases exponentially with time. 

1. INTRODUCTION 

The problem of the transport and amplification of a 
magnetic field by a given turbulent flow of a conducting fluid 
is of interest both from a general physics point of view and 
also for astrophysical, geophysical, and, possibly, laborato- 
ry-technical applications. 

In a paper by one of the present authors' the behavior of 
a magnetic field was considered in short-range 8-correlated, 
mirror-symmetrical turbulent flow. In that approximation 
the damping of the average field is determined by the turbu- 
lent diffusion coefficient and one obtains for the correlation 
function a diffusion-type equation with a source. A detailed 
numerical study of this equation made it possible to establish 
criteria for the exponential growth of the field, to find the 
growth rate for a broad range of magnetic Reynolds 
numbers, and to find the structure of the correlation func- 
tion which grows with time.2 

The approximation of short-range correlated flow 
(white noise) is justified when the temporal spectrum of the 
velocity field is rather broad and large near the zero frequen- 
cy (section 3) so that it can be approximated by a constant. 
When we take into account a small, but finite time-correla- 
tion we get for the correlation function an integral equation 
with similar spectral proper tie^.^.^ 

For flows with more complicated spectra the short- 
range correlated approximation is no longer suitable. 
Acoustic turbulence can serve as an where the 
spectrum is concentrated in the shape of a sharp peak at 
w = ck (c is the sound speed, k is the wavenumber) and has a 
very small value in the vicinity of the zero frequency. 

In the present paper we derive equations for the Green 
function and the second moment of the magnetic field for 
flow with a temporal spectrum of general shape in the second 
approximation in the velocity field amplitude (more precise- 
ly, the Mach number). These equations [see (6) ,  (1 I), and (12)] 
are valid for a velocity field which has both potential and 
rotational components. They can be simplified in divergen- 

celess (incompressible turbulent flow) or potential (acoustic 
turbulence) velocity fields. For a flow with a power spectrum 
which is nearly a constant these equations generalize well- 
known results about the turbulent diffusion of an average 
magnetic field (or of a passive scalar) and on the generation 
of the second moment (section 3). In the case of a spectrum of 
acoustic-turbulence type we obtain for the second moment 
double-time equations which have solutions which grow 
with time (section 3). 

We note that in the present paper we consider the trans- 
port of the magnetic field by a given flow, i.e., a problem 
which is linear in the field. For the non linear problem in 
weak acoustic turbulence, see, e.g., Ref. 7. 

2. GREEN FUNCTION AND AVERAGE FIELD 

The evolution of the magnetic field in a given flow of a 
conducting fluid is described by the induction equation 

d H / d t = r o t [ v ~ H ]  +v,AH, div H=O, 

where v(r,t ) is the is the velocity of the flow, and v, the 
magnetic diffusion coefficient. In the Fourier representation 
the equation becomes an integral equation: 

XJ d3pH, (p, s )  v, (k-p, s )  , i, I, m=l ,  2,3. (1) 

Here Hi (k,O) is the Fourier transform of the initial field, Lil, 
= i(Si, kl - Su k, ), and g(k,t ) = 8 (t )exp( - v, k ' t  ) is the 
Green function in the fluid at rest (8 (t ) = 0, t < 0,8 (t ) = 1, 
t > 0). We introduce the total Green function 

Hi (k, t )  =Gij (k, t )  Hj(k, 0). 

As we may assume that the velocity field and initial field 
distributions to be independent, the time-dependence of the 
average field is completely determined by the average value 
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of the Green function. From (1) we have 

+LsIm(k) dsg(k, t-s) j cQvm(k-P, ~ ) G u ( P .  s). 
0 

(2) 
The velocity field is given by the correlator 

(vi(k, t) vj(kf, t') >=G(k+k') fij(k, t-t'), (3)  

and we assume that ( v i  (k,t )) = 0. To obtain the average 
Green function an equation containing the velocity field cor- 
relator we put 

Gi,=(Gij) +6Gij, (6Gij>=0, 

where the angle brackets indicate averaging over the velocity 
field. In first order in v(k,t ) we have 

bGij(k, t)=Lilm (k) J dsg(k, t-8) 1 d3pvm(k-p, s) 

Substituting this into (2) we find an equation for the average 
Green function in the second approximation: 

We can similarly consider the case of the flow of an incom- 
pressible fluid where f,, = (S,, - k, k, /k 2, f (k,t ). 

Of most interest for applications is the case of small v, , 
so that it is natural when considering the behavior of the 
average magnetic field, to neglect the effect of the molecular 
magnetic diffusion, i.e., to put v, = 0. Introducing the vari- 
able q = k - p and integrating in (6) over the angles which 
determine the direction of q 

q-' j (pq) (Sokq-qikj)dR=-- 4zk2( 6 - - -  z, k;.) 1 

3 

we find 
t m  

It is convenient to introduce instead of the correlation func- 
tion of the velocity field the power spectrum J(q,w): 

and to take the Laplace transform of (8). We find 

(Gij(k, t) )=aijg(k, t )+~, , , (k)  1 dsg(k, t-s) It is well known that the asymptotic behavior of the Green 
o function as t -+ cu is determined by the asymptotic behavior 

m 

of 8 (6 ) as 5 -+ 0. As f (t ) does not increase at infinity the 
xJ do d3pg(p, s-a) ~ 1 . .  (p) fm. (k-P, s-0) (Grj (k, 0 )  ), power spectrum is a decreasing function in the upper com- 

plex w half-plane. The integral over d o  in (9) can thus be 
or, in integro-differential form: replaced as 6 -t 0 by the residue at zero. As a result we have 

OD 

+L,,. (k) J do 1 d3pg(p, t-o)L~.. (p)fmn(k-p. f-0) 
0 

x(G,,(k, o) >. ( 5 )  

It is natural to seek the average Green function in an 
isotropic velocity field in the form of a tensor that is invar- 
iant under rotations and reflections, i.e., 

(Gij>=G,,kikj/k2+G (6ij-kikj/k2). 

Taking the components of Eq. (5) along the directions paral- 
lel to k and at right angles to it, we find that G ,, is the same as 
g(k,t ) while the transverse part satisfies the equation 

(d/dt+v,kZ) G (k, t) =6 (t) 

G (k, t )  exp (-v,kZt) , 
i+ m 

The average Green function, and hence the average 
magnetic field, is thus asymptotically damped at a rate deter- 
mined by the value of the power spectrum at zero. Although 
this fact is known for a number of actual velocity fields (see, 
e.g., Refs. 8, 9) the derivation given here demonstrates its 
general character. The magnitude of the diffusion coefficient 
depends in an essential way on the form of the field. In the 
short-range correlated approximation v, is a maximum and 
is of the order of Iv, where I is the correlation length and v the 
mean square velocity. In acoustic turbulence v, is very 
small, of order M2 x where M = v/c is the Mach number and 
x the sound-wave damping coefficient defined by 

arcz 
f (kt) a - J (k, 0) exp (-?ckzt) cos (ckt) . 

3C 

x (k-p, t-0) G (k, 0). (6) 3. EQUATIONS FOR THE SECOND MOMENT 
We consider a velocity field of potential form ui = Tip ,  To obtain the equation for the correlator 

for which 
(H,(k, t) Hj(kl, t') > = G  (k+k') P,j(k)&' (k, t ,  t'), 

(7) P. =G..-kik./k2 
I 1  i 3  I 
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it is sufficient to evaluate the expression 

(G(k, t )  H(k, O)G(k', t ' )  H(k', 0) > 
={(G(k, t)>(G(kl,  t1))+(6G(lr, t)GG(kf, t ' )  > )%(k ,  0, O), 

using Eq. (4). The averaging is over the velocity field and the 
initial field distribution. We get 

pil. (k)%(k, t, t ' )  =<G,i (k, t) >(Giz (k, t') ( k ) z  (k, O,O) 
t t '  

-5 d3q 5 ds 1 do(G, (k, t-s) ) (G,, (k, t7-o) )Ljm. (k) LIP. (k) 

To eliminate the initial field we act on this equation with the 
operator 

( 2 vmk2) Gi.-Li~m (k) Jdo J d3pp (p, t-0) 
at 

0 

As a result we get an integro-differential equation for the 
second moment of the magnetic field 

We get a similar equation for the derivative with respect to 
the second time: 

In the case of short-range correlated incompressible 
flow with 

fij(k, t-t ')  =Pijf(k) 6 (t-t') 

(1 1) changes into the equation for the equal time correlation 
function derived in Ref. 1: 

Let the velocity field have a small but finite correlation 

time E. For the sake of argument we put 

1 (t-t')" 
f ij=Pii (k) f ( k )  --- erp [ - 

(4ne2) "' 48 

We then get instead of (13) the equation 

where we have substituted 

1 
Gij (k, t) =P. (k) exp (-v,k2t), v,= -J f (0 d3q, 3 

v, is the turbulent-diffusion coefficient (10). In deriving (14) 
we considered the integrals in the right-hand side of (1 1) as 
integrals of the product of a rapidly changing exponent and a 
slowly changing function Z(k, t ,o) .  In that approximation 
the kernel O can be estimated for small x as follows: 

O (x) = 1-2n-"x+ . . . . 
Equations which have a very similar contents were obtained 
in Refs. 3, 4. 

For small v, the kernel O (v, &p2) may be set equal to 
unity. The integral on the left-hand side of (14) then simply 
gives the turbulent-diffusion coefficient. The behavior of the 
kernel O (vT&k 2,  on the right-hand side is equivalent to an 
effective scale cutoff, i.e., it operates only for k < k ,  
=(Y,E)-"~. One can understand this in the sense that what 
operates effectively is not the true correlation function f (r )  of 
the velocity field but a smoothed function that is close to 1- 
const . ? up to scales of the order of k ; '. We note that the 
hydrodynamic viscosity v does not affect the form of this 
effective function when k , ' is larger than the Kolmogorov 
scale ~ R e - ~ l ~ ,  i.e., when v < v,, if&-I /u. The condition for 
the excitation of the second moment of the magnetic field in 
a flow with a finite correlation time does in particular, in 
contrast to the 8-correlated case,' not depend on the ratio of 
the hydrodynamic and the magnetic viscosities, but only on 
the magnitude of v, , more precisely, on the dimensionless 
magnetic Reynolds number. 

When the temporal spectrum of the flow differs consid- 
erably from white noise we no longer obtain from (1 1) a 
closed equation for the equal-time correlation function of 
the field (cf. the opposite conclusion reached in Ref. 10). 
Equations (1 1) and (12) turn out to be in principle integrals 
over time. This important point was not drawn attention to 
earlier. It is interesting to compare the situation with hydro- 
dynamic turbulence. There one can obtain a closed equation 
for the equal-time correlation function of the velocity field 
(equation of the von Karman-Howard kind) and equations 
for the double-time correlator (of the Chandrasekhar kind; 
see, e.g., the monograph by Monin and ~ a ~ l o r n " ) .  In the 
problem considered for the induction equation even when an 
equal-time velocity-field correlator is specified the magnetic 
field correlator turns out, in general, to depend on two times. 

Stationary solutions of Eqs. (1 I), (12) must depend only 
on the time difference t - t ' = T. It is therefore convenient 
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when studying stability to change from t and t '  to T and -G ( k ,  s )  [ F  (T-s)  % ( k ,  T-s/2, r-s) 
T = ( t  + t ')/2. Bearing in mind that 

+F(r+s)i%(k, T-s/2, z + ~ )  I ) .  (16) 
t=T+z/2, t'=T-r/2, d/dt+ d/atr=d/dT, 

We look for a solution of the form 
dldt-didtf=2dld.t. 

8 ( k ,  T ,  7 )  =h (t) exp ( 2 y T ) ,  
by adding and subtracting (1 1) and (12) we get in the new 
variables where y and h depend on k. Substituting this into (16) and 

using (10) we get 
T+r/Z 

m 

k2 
T,h(r)=-- Sds[exp(-rmlsl)F(ls~)h(r--s) 

6 -m 

-exp(-~,1s-r1)F(s)h(r)], (17) 

where 

I',=y+vmkz, I',=y+v,k2. 

For a further study of Eq. (17) we must choose the actual 
velocity field spectrum. We consider the simple acoustic tur- 
bulence model, in which case 

- 5 ds j ~ q t ~ , ~  (k, s )  )~,.,(k) L n P ( k )  f,,(q. r-s) 2 (ak2+hk2) 
0 

1 ( k ,  t )  = - - J(k .  0) exp (-Ad) cos w,t. 

XP,, ( ~ ) % ( k - q ,  T-s/2, r-s) (15) 
It is especially easy to study the case when 

and a similar equation for dX(k,t,r)/dr. 
In the limit of small v, the center of gravity of the 

required solution X(k,T,r)  is positioned at large k. It is 
therefore natural to study Eq. (15) as T+ oo using in the 
integrands the fact that k)q. We get 

x( 5 hj(q, s)d3p)  [ l ( k .  T-s12, r-s) +i%(k. T-s/2, r+s) 1 

+ '/,Pi, ( k )  kmkn I d s t ~ , ,  ( k ,  s )  ) 
0 

+ J f m .  (n, 7-s)d3q%(k, T-s12, r-s) ] . 
For an incompressible (rotational) flow one can easily check 
that the right-hand side vanishes. Hence, in that case the 
large-k approximation does not apply and the contribution 
from large scales is always important. The right-hand side of 
this equation vanishes at .r = 0 also in the case of an arbitrary 
6-correlated type of compressible flow. 

We consider the acoustic turbulence kind of flow (7) and 
introduce the notation:F (s) = J f (q,s)d 3q. The equation then 
becomes 

(d/dT+2vmkZ)%(k, T ,  r )  

i.e., isotropically distributed interacting waves which have 
wavelengths. We assume that A, = xk and ok = ck, where 
x is the damping coefficient and c the sound speed, and we 
introduce the Mach number M = v,/c, where v, is a charac- 
teristic amplitude of the acoustic turbulence velocity which 
is determined by the complete spectrum. According to (10) 
we have then v, = 47rM2x/3. Changing to the Fourier 
transform h (o) we get 

where A, and o, are values at k = k,. In this integral equa- 
tion o,)A,, r,,, , rT. 

We can show that the spectrum of the solution which 
increases in time is concentrated in the frequency region 
o <a,. In that approximation (18) reduces to the simpler 
equation 

2 fT (a2+r:) h (m) = I F ( a - P )  h (Q) dQ, 
k2 r. -- 

m 

k 
which is equivalent to a Schroedinger equation type equa- 

=-- 5 ds {g ( k ,  s )  F ( s )  tion 
0 d2h ( z )  /dz2+2 (E-U) h ( r )  =O 

x [%(k ,  T-s/2, z-s) +l ( k ,  T-s/2, z+s) 1 with E = - r $/2 and a potential 
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It is well known that the spectrum of the problem consists of 
bands formed by close lying levels. Bound states appear 
when U,> at, i.e., r,T ; 'k 'u;  >a; or close to the genera- 
tion threshold (y  = 0) when 

(x/v,  > M-4 in the simple model considered here). The 
growth rate y  of the magnetic field can be estimated from the 
equation U, zag which gives (v, -+ 0) 
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