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The general theory of decay and branching of arbitrary discontinuities is used as a basis for an 
investigation of the stability of a shock wave against perturbations of arbitrary intensity. The 
limits of stability of the shock wave against decay into other "elements," such as stable shock 
waves, isentropic rarefaction or compression waves, and tangential discontinuities, are deter- 
mined, and the evolution of a shock discontinuity is examined for those cases where these criteria 
are not satisfied. The range defined by these limits contains known limits of shock-wave stability 
against small perturbations of the front surface. This means that a shock wave that cannot be 
resolved into three "elements" is also stable against small perturbations. The assumption of 
instantaneous decay of a shock wave that can be expressed in terms of other, including stable, 
waves propagating with different velocities without overtaking leads to the following conclusion: 
there are no shock waves that are unstable in the usual sense, i.e., with slowly growing weak 
perturbations. There are only stable or decaying shock waves. The validity of the above assump- 
tion requires further examination. Analysis of the conditions for the existence and development of 
a three-wave configuration (one wave being weak, i.e., "acoustic") propagating along the original 
nondecaying shock front has shown that the criteria of stationarity and decay of this configura- 
tion are the same as the well-known criteria for the stationarity and decay of weak deformations of 
the shock front, found by linearizing the gas-dynamic equations for the perturbations. 

INTRODUCTION 

The fact that the limits of stability of a shock wave 
against small deformations of its coincide with 
points on the shock adiabat at which two shock waves propa- 
gating in the same direction without approaching one an- 
other can exi~t ,~" or the shock discontinuity can be repre- 
sented by a shock front of lower intensity and a rarefaction 
wave propagating in the opposite d i re~t ion ,~  suggests that 
problems on the stability of shock waves can be solved by 
analyzing the decay of discontinuities. Below, we investigate 
the decay of a shock wave into two other component ele- 
ments, using the general theory of decay of arbitrary discon- 
tinuities and of branching of shock waves. We shall deter- 
mine the criteria for wave stability and evolution for those 
cases where these criteria are not satisfied. 

1. DECAYING SHOCK WAVES 

The instability of a shock wave against particular (small 
or large) perturbations manifests itself either in that the per- 
turbation will slowly grow in time or the perturbed wave will 
assume a state that can spontaneously decay into other ele- 
ments (stable shock waves of other amplitudes, rarefaction 
waves, tangential discontin~ities~-'~) that propagate with 
different velocities without overtaking. This decay is, of 
course, irreversible. A wave specified as being in this state 
will be referred to as a decaying wave in contrast to a wave 
that is unstable against perturbations. In Sections 1-3, we 
shall implicitly assume that the front of a decaying wave 
cannot exist for any finite time and, having been produced 
instantaneously, it immediately decays into other elements. 
The generality of this proposition will not be proved. We 
cannot exclude the possibility that the region of decaying 
waves actually consists of adjacent subregions and absolute 

instability and instability against finite perturbations of the 
structure of the shock discontinuity. This question is exam- 
ined in Section 4. 

Accepting the above assumptions as valid, we shall next 
show that there are no shock waves that are unstable in the 
usual sense (i.e., with slowly growing perturbations). There 
are only stable or decaying shock waves. 

The essential mark of a decaying wave is that the "ele- 
mentary composition" of its front is not unique. To find the 
conditions for which this absence of uniqueness will occur, 
we shall apply to a shock discontinuity the general method of 
the theory of decay of discont in~i t ies .~-~~ Figure 1 illustrates 
possible nonunique decompositions of a shock discontinuity 
into the above three elements (ignoring the same variants for 
secondary waves). The four resulting wave configurations 
are shown by the thick lines. Two further configurations are 
shown in Fig. la. They are obtained by replacing the shock- 
wave traveling in the backward direction with a rarefaction 
wave and, in Fig. lc, by replacing the rarefaction wave trav- 
eling in the backward direction with a shock wave (dashed 
lines). The decay of a shock wave with the formation of these 
six configurations is conveniently represented by the follow- 
ing schemes: thz f ~ u r ~ c ~ e m e ~ c o ~ e s p ~ n d h ~ t o  Lh5solid 
curve in Fig. 1 (S-STSS, S-RTS, S-RTRS, S z S T 2  and 
two>c&mes corresponding to the dashed lines: S-RTSS, 
S+STRS (S is a shock wave, R is an isentropic rarefaction 
wave, T is a tangential discontinuity, and the arrows show 
the direction of propagation). Moreover, the front of any 
compression shock wave can always be formally decom- 
posed into other elements provided they include the isentro- 
pic compression wave. This resolution is, of course, mean- 
ingful only when the isentropic compression wave actually 
exists (i.e., is not compressed into a shock wave but is 
stretched out in time). The consequences of this in relation to 
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Consider a family of shock adiabats and isentropes on 
the ( p, u) and ( p, v) planes, and let us represent these families 
by the functions 

" 
P f  

v=(P(P, Pi, vi), (3) 

v='(P' (P, Pi, ut) 7 (4) 

wherep,, ui, and v, are the values ofp, u, and v at the initial 
point on the adiabat or isentrope, and c is the velocity of 
sound. The dependence of v and c onp under the integral sign 
in (2) is determined by the isentrope (4). The positive and 
negative signs in (2) refer to isentropic waves propagating in 
the forward and backward directions, respectively. All these 
functions can be found if we know the equation of state. By 
definition, f (p i ,  p i ,  v, ) = 0. The initial shock wave corre- 
sponds to the adiabat (I), (3) with u, = O,pi =pl ,  v, = vl: 

FIG. 1.  Possible decay modes of a shock discontinuity. Dot-dash line-- 
initial position of shock discontinuity. T-tangential discontinuity (in La- 
grangian coordinates it coincides with the initial discontinuity front). 
Dashed lines represent two further decay modes in which, instead of the 
compression (rarefaction) wave, there is a rarefaction (compression) wave 
propagating in the backward direction. 

additional possibilities for the decay of a compression shock 
wave are examined in Section 2. 

The analytic or numerical determination of the condi- 
tions for the decay of a shock wave and of the amplitudes of 
the resulting wave can be carried out in terms of the follow- 
ing coordinates: the pressurep and velocity u of the material 
(in the laboratory system) or the pressurep and specific vol- 
ume v. The coordinates ( p, u) are convenient in that they are 
continuous across a tangential discontinuity. 

To determine the possibility of decay of the initial shock 
wave with given pressurep, and specific volume v, into the 
configuration of Fig. l a  with known statep,, u,, v, behind 
the first shock wave [the first kink on the adiabat, see below 
and Fig. 2; u, and u, are expressed in terms ofp, by (I), (3)], 
we must consider the shock adiabats 

u=u3+f (p, p3, v3), v=q (P, p3, ~ 3 )  7 (6) 

u=u2-f (p, p2, vz) . (7) 

The necessary condition for decay into the configura- 
tion of Fig. l a  is that the shock adiabats (6) and (7) cross on 
the (p,  u) plane. The crossing point determines the pressure 
p, and the material velocity u, in the second shock wave of 
the configuration of Fig. la. The specific volumes on the 
right (v,) and left (v,) sides of the tangential discontinuity 
(Fig. la) are then given by 

Ur=(P (Ply ~ 3 ,  us) t 'JI =c~(P*t Par ~ 2 )  

A further condition for the decay of the original wave is that 
the second wave must lag behind the first, i.e., we must have 

(PL-P~) l ( ~ 3 - ~ , )  < (p3-pi) I ( v i - ~ ~ ) .  (8) 

FIG. 2. I-Shock adiabat with a sharp kink or a smooth 
bend (dashed line) at point 3. L = - 1 at L ; on the adia- 
bat with the smooth bend (which coincides with point 3) 
and L = - 1 at L ,+ . Shock adiabats I1 and I11 are drawn 
through points 3 and 2, respectively. Adiabat I11 corre- 
sponds to the shock wave propagating in the backward 
direction; see Fig. la. Pressuresp,,p,, andp, at points 2,3, 
and 4, respectively, determine the wave intensities in the 
configurations of Fig. la. 
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Figure 2 shows an example of a shock adiabatic on the 
(p,  v) and (p, u) plane that admits of the representation of a 
shock discontinuity in the form of the configuration of Fig. 
la. The adiabat has a kink at the point 3." At any point on 
the segment 3&$e shock wave can be represented by the 
configuration STSS (Fig. la, solid line). Condition (8) is then 
satisfied. The disposition of the shock adiabats I and I1 in 
Fig. 2 corresponds to the case where (dp/dT), > 0. above the 
kink on the curve. If the kink on the adiabatic is due to a 
phase transition, this inequality shows that dp/dT> 0 on the 
phase equilibrium line. When the reverse inequality is satis- 
fied, curves I and I1 above the kink ch$ngslaces. It is then 
readily shown that the configuration RTSS is former1 (Fig. 
la, dashed lin$ %is can be calculated by analogy with the 
configuration STSS. All that is required is to replace the 
shock adiabat (7) with the isentrope 

~ ' u z - f e  ( p ,  pz, ~ 2 )  * (9) 

Another variant of wave decay (configuration lb) can be 
found andzahulated in accordance with the scheme indicat- 
ed for the RTSS configuration, the adiabat (6) being replaced 
with the adiabats (1) and (3) of the original shock wave [the 
adiabat (6) need not be considered at all]. If it turns out that, 
in addition to the common point (p,, u,) the shock adiabat 
(1) and isentrope (9) have at least one further common point 
(p,, u,) such that p, <p,, the original wave will decay into 
the configuration lb. This does not require any condition 
such as (8), since the waves propagate in opposite directions. 
Figure 3 shows the shock adiabat whose segment L , L ,+ 
corresponds to shock waves decaying into configurations 

shape of the shock adiabat on thep, u plane. (See also foot- 
note 3 and Section 4 in this connection.) 

2. DECAY INTO CONFIGURATIONS THAT INCLUDE THE 
ISENTROPIC COMPRESSION WAVE 

It is always possible to perform a formal decomposition 
of the compression shock front into an isentropic compres- 
sion wave and other component elements, which means that 
the shock front will actually decay only when the leading 
(trailing) edge of the compression wave propagates more ra- 
pidly (slowly) than the shock-wave front. Hence, in order to 
exclude isentropic compression waves from the discussion, it 
is assumed in gas-dynamic theory of shock waves that 
c, < D < c, + u,, where D is the velocity of the shock waves 
c, and c, are the velocities of sound ahead and behind the 
wave front. It is well known that these inequalities are violat- 
ed in the case of anomalies in the thermodynamic properties 
of the medium, which manifest themselves through the fact 
that the shock adiabat has regions on which 

( d 2 u l a p Z )  ~ ( 0 ,  ( lo) 

or kinks leading to a discontinuous increase in the isentropic 
compressibility with increasing pressure.8.9*4~5~11-13 

When (10) is satisfied, the entropy on the shock adiabat 
decreases with increasing pressure. Rarefaction shock waves 
then exist in a particular region of initial and final 
 state^.'^,^.^,'^ When (10) is satisfied at the intial point (p,,  v,), 
a sufficiently weak compression shock will decay in accor- 
dance with the scheme of Fig. 4a. As the intensity of the 
isentropic compression wave increases, we necessarily reach 
a pointp = p ,  ,,, at which the velocity of sound on the isen- 
trope is a minimum. (The region of anomalous thermody- 
namic properties is always bounded.) 

Whenp > p ,  ,,, , the inequality opposite to (10) is satis- 
fied on the isentrope. Hence, forp, > p ,  ,,, , we have, instead 
of the configuration 4a, the more complex system of waves 
shown in Fig. 4b. Further increase in pressurep, is accompa- 
nied by a reduction in the amplitude of the pressurep, -p, 
in the isentropic compression wave, reaching zero for 
p, = p:, for which D = c,. The corresponding pressure p: is 
determined by 

1b.' + t - - t t t + *  

Asfar asdecays of the form S-RTSS, S-STRS (Fig. 
lc) and S-~TS (Fig. Id) are concerned, and provided that 
the decay is not in conflict with any conservation conditions 
on discontinuties, the shock wave propagating to the right is 
unstable against decay into configuration la in the first case 
(Fig. lc) and against decay into the configuration lb  in the 
second case (Fig. Id). This is readily verified by analyzing the 

FIG. 3. Shock adiabat on which L = 1 + 2M at L , and L 2. The inequa- 
lity L > 1 + 2M is satisfied on the adiabat between these points. The isen- 
trope (dashed line) drawn between points 2 and 3 corresponds to the rar- 
efaction wave propagating in the backward direction; see Fig. lc. 
Pressures p, and p, at these points determine the wave intensities in the 
configuration of Fig. lc. 

FIG. 4. Shock-wave decay modes involving the formation of an isentropic 
compression wave (weak waves). The dash-dot line shows the initial posi- 
tion of the shock discontinuity. 
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The configuration 4b, which appears when the pressure in 
the original shock front lies in the rangep, ,,, <p2 <p:,  can 
be calculated in accordance with the above scheme for con- 
figuration la  if the functions (1) and (3) are replaced with the 
isentropic dependence of u and v on p in the compression 
wave: 

9 .= j (v/c)dp, v=q. (p, pi. ~ 1 ) .  

In the approximation in which p (p,p,,  u,) = p, (p,p,,  v,), 
which is good enough for weak waves, the pointp =p, (Fig. 
4b) can readily be found graphically from the condition that 
the Rayleigh line passing through the pointp,, v, must touch 
the curve u = p, (p,p,,  u,). 

All that we have said about the possibility of decay of a 
shock front with the formation of an isentropic compression 
wave is also valid for the second wave in configuration la. 
When (10) is satisfig b&ind g e a s h o c k  wave, configura- 
tions2' of the form WTCS or WTSCS will be formed for cer- 
tain ranges of the pressure p, [C is the isentropic compres- 
sion wave, W represents S or R; W=R corresponds to the 
inequality (dp/dT), < 0 (see above)] and can be represented 
by a more involved form of configuration la; the role of the 
second shock wave in configuration la  is now played by con- 
figurations 4a or 4b, where the coordinate of the leading edge 
of the isentropic compression wave coincides with that of the 
first shock wave. These configurations correspond to the 
segment L ,A of the adiabat shown in Fig. 2a, with a contin- 
uous bend (dashed line) instead of the kink. The point L , is 
then determined by the point at which the Rayleigh line 
touches the shock adiabat. 

3. LIMITS OF STABILITY OF A SHOCK WAVE AGAINST 
DECAY 

It is not, of course, necessary to investigate each point 
on the shock adiabat in order to elucidate the possibility of 
decay of a shock wave. What we need first is to find the limits 
of instability against decay. Simple analytic expressions can 
be obtained for instability limits that correspond to the limit- 
ing case of two neighboring crossings, i.e., contracting adia- 
bats. The amplitude of the second wave is then infinitesimal 
and the change in its state is infinitesimal and isentropic. The 
slope of the adiabat for this wave on the (p, u) plane is deter- 
mined by the isentropic derivative (6'u/dp), . 

The adiabats of the initial and isentropic waves will 
come into contact if 

The index H indicates that the derivative is evaluated along 
the Hugoniot adiabat. The derivatives 6'u/6'p satisfy 

+ - *  
where the plus sign corresponds to the WTCS configuration 
and the minus sign to configuration b (Fig. 1). Substitution of 
(12) in (1 1) yields 

yhe%M is the Mach number behind the wave front. For the 
WTCS configuration in which the second wave propagates 
in the same direction as the first, condition (8) must be satis- 
fied and means that M = 1 in the required limit (second wave 
weak, velocities of both waves equal). Thus, the required 
limits of*stabili+ty 2fAhe shock wave against the decays -+ 
S-WTCS and S-RTS (Fig. lb) are respectively by the con- 
ditions3' 

L=-I and L=1+2M. (13) 

The Rayleigh line touches the shock adiabat at L = - 1. 
This limit (L , ) occurs on smoothly bending adiabats such 
as the one shown in Fig. 2a (dashed curve). The limit 
L = 1 + 2M occurs on adiabats of the form shown in Fig. 3 
(point L , ). 

If we compare the mutual disposition of the shock adia- 
bat and the isentropes on the (p ,  u) plane in the neighbor- 
hood of these limits, we can readily verify that, for the shock 
adiabats shown in Figs. 2 and 3, the segments on which4' 

correspond to decaying shock waves. Their fronts decay for 
L < - 1 into the configuration 

t -  t -  t -  

WTSS (Fig. la), WTCS or WTSS , (15) 

which include at least two compression waves propagating 
in the fofplsd direction, and for L > 1 + 2M into the config- 
uration RTS (Fig. lb). (We recall that W represents S or R in 
our notation). 

Gardner7 has shown that the configuration of Fig. lb  
can be formed on shock adiabats of the form shown in Fig. 3, 
provided the condition for a second crossing of the shock 
adiabat and the isentrope, i.e., 

(az/ap) H> (aE/ap) 8 

is satisfied. (Here, E = - u. In the scheme of Ref. 7, the 
positive direction of the velocity of the medium is opposite to 
that adopted here). In reality, this inequality is sufficient but 
not necessary. The necessary condition for two (and only 
two) crossings with the isentrope in the case of adiabats of 
the type we are considering, which have segments with 
L > 0, is the more general inequality 

( a p ~ a u ) ~ <  (apiau) ,. 
This refinement refers to the segment of the adiabat on 
which the sign of L changes from positive to negative as we 
run along the shock adiabat in the direction away from its 
origin (p,,  v,) (see further text and Fig. 5). The derivative 
(dp/dE), is identically equal to c/v [see (12)] and is always 
positive by virture of the basic thermodynamic inequality, 
written in the form c > 0. [In Ref. 7, the positive sign of this 
derivative is erroneously attributed to the additional as- 
sumption that (6' 2p/6'v2), > 0 on isentropes.] 

Equations (13) are identical with the limits of stability, 
whereas the inequalities (14) are identical with the criteria 
for the instability of the shock wave against small deforma- 
tions of its front, obtained by linearizing the equations of gas 
dynamics for the perturbations, and by solving the charac- 
teristic equation for the complex (In the ensu- 
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FIG. 5. Shock adiabats I and 11. Points L, - ,  L ,+  andL,-, L,+ are 
the same as those in Figs. 2 and 3, respectively. The dashed lines 
show the isentropes. The isentrope drawn from point 2 to point 3 
corresponds to the rarefaction wave propagating in the backward 
direction; see Fig. lc. Pressuresp, andp, at these points determine 
the wave intensity of the configuration of Fig. lc. The isentrope 
drawn from point A touches the adiabat on the (p,  u) plane of point 
B. 

ing discussion, this approach will be referred to as the linear 
theory, for brevity.) This means that, for adiabats such as 
those shown in Figs. 2 and 3, shock waves that are unstable 
against small deformations of the front surface according to 
the linear theory are, in fact, unstable against decay as well, 
i.e., they are decaying shock waves.'' 

It can be shown that this property of shock waves refers 
not only to adiabats such as those of Figs. 2 and 3 but, gener- 
ally, to all shock adiabats having segments satisfying (14). In 
addition to the anomalies shown in Figs. 2 and 3, there are 
also two types of anomaly on shock adiabats that are not 
thermodynamically forbidden and, therefore, at least for- 
mally possible; cf. adiabats I and I1 of Fig. 5 on the ( p, v) and 
(p,  u) planes. (An adiabat of type I was examined by D'ya- 
kov'.) These adiabats have segments between the points L , 
and L ,+ on which the inequalities (14) are satisfied. Adiabat 
I1 is distinguished by a large downward bend, so that it has 
points L ,- and L : for which L = - 1. If we analyze the 
position of the shock adiabats and isentropes (broken lines) 
on the (p ,  u) plane in Fig. 5b, we can readily verify that the 
shock discontinuity is unstable against decay into configura- 
tion b of Fig. 1 over the entire extent of the segments of 
adiabats I and I1 between L ,  and L ,+ and further up 
between L ,+ and A .  The point A lies on the exteme left-hand 
"branch" of the shock adiabat on the ( p, u) plane. The posi- 
tion of this point is determined by the fact that the isentrope 
drawn from A touches the adiabat on the (p,  u) plane at an- 
other point (B ). The point with pressure p, (Fig. lb) corre- 
sponds in Fig. 5 to the crossing of the isentrope drawn from 
any point 2 on segments L , L ,+ or L ,+A of the adiabat and 
the extreme right-hand "branch" (for an example of this 
isentrope, see the middle dashed line in Fig. 5b). 

The segment of adiabat I1 near L ,+ (Fig. 5) is qualita- 
tively no different from that of Fig. 2a near L , (adiabat with 
continuous bendis; E e  d 5 h e c l i e n  Fig. 2a) and corre- 
sponds to the S-WTCS or S--tWTSCS decays. However, in 
contrast to the adiabats shown in Fig. 2a, such configura- 
tions cannot actually appear in the case of adiabat I1 of Fig. 5 
because their first wave would then correspond to some 
point on the segment L , L ,+ of the adiabat, and should 
therefore decay in accordance with scheme b of Fig. 1. 

It is important to note that the range of values ofL for a 
decaying wave does not only completely include as subre- 
gions all values of L for which the wave is unstable in linear 
theory. Decaying waves also include those for which small 
deformations of the front do not grow with time in linear 
theory, i.e., those for 

-I<L<l+2M. (16) 
For example, the upper limit (point A ) of the region of decay- 
ing waves in the case of the adiabats shown in Fig. 2 [the limit 
of the region of existence of configurations (15)] lies above 
the point L :, but inequalities (16) are satisfied on the seg- 
ment L :A .  They are also satisfied on the segment L , L ,+ 
of adiabat I1 of Fig. 5. The conditions for decay into configu- 
ration b of Fig. 1 and inequalities (16) will also be simulta- 
neously satisfied on a certain segment of the adiabat of Fig. 3 
lying above the point L ,+ and segments L ,+A of the adia- 
bats of Fig. 5. 

4. ADDITIONAL NOTES ON SECTIONS 1-3 AND DISCUSSION 
OF RESULTS 

1. So far we have considered the stability and decay 
scheme of compression shock waves. The results can readily 
be generalized to the case of rarefaction shock waves. A 
graphical representation of the possible (nonunique) "ele- 
mentary composition" of a rarefaction shock wave front (not 
containing secondary compression shock waves) is obtained 
by mirror reflection of the configurations examined above 
(Fig. 1 and others) in the x axis. 

2. We must now consider whether waves defined above 
as decaying cannot exist for any finite time, i.e., whether, 
having been produced in this somewhat artificial manner, 
they immediately decay into the component elements. Di- 
rect proof (or rejection) of this proposition cannot be ob- 
tained within the framework of the differential equations of 
gas dynamics, or from integral conservation laws, because 
differential equations are not valid for discontinuities, and 
integral relationships do not lead to unique results in this 
case. This difficulty cannot be circumvented by smearing out 
the discontinuity by artificially introduced dissipative pro- 
cesses because the result may then depend on the width and 
the unknown initial discontinuity structure which is not nec- 
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essarily stationary. It is possible that the problem can be 
solved by numerical simulation of the evolution of a discon- 
tinuity within the framework of a microscopic description of 
the system, using the method of molecular dynamics. Of 
course, the interaction between the particles must then be 
specified so as to reproduce the corresponding anomalies of 
the shock adiabat. 

Arguments in favor of the rapid decay of the wave into 
the component elements may be summarized as follows. 

The decay of a wave with the formation of other (stable) 
waves is irreversible. Once they appear, these waves depart 
from one another and this, together with their stability, leads 
to the irreversibility of the process. The problem is thus re- 
duced to finding the probability that they will appear. If the 
initial structure of the discontinuity is specified in the form 
of a configuration of such waves, the decay of a discontinuity 
will occur immediately. 

By analyzing all the possible variants of the nonunique 
representation of a shock discontinuity, we can verify that 
the wave is of the decaying type, i.e., it exhibits all the marks 
of a decaying wave noted in Section 1, provided at least one 
of the following two conditions is satisfied: (a) if the elements 
into which the discontinuity is decomposed include a wave 
propagating in the forward direction with a lower pressure 
and higher velocity than the original wave and (b) if the 
structure of the resulting configuration attains a high veloc- 
ity (and, correspondingly, high density and momentum) of 
matter as compared with the original wave. The increase in 
the velocity and momentum of the medium is assured by a 
rarefaction wave propagating in the backward direction. 
[Condition (a) constitutes a violation of the requirement of 
ultrasonic propagation of the original wave relative to the 
medium in front ofjt ,  geyalized from acoustic to finite 
perturbations.] The S-RTS decay is possible only for very 
strong and essentially nonisentropic shock waves. The de- 
velopment of an initial discontinuity in a strong shock wave 
is accompanied by very large fluctuations in the state of the 
medium as compared with regions of steady flow in front of 
and behind the discontinuity. Under these conditions, the 
development of the discontinuity involves the likelihood of a 
practically instantaneous onset of the above maximum ve- 
locities and compressions of matter, which correspond to the 
onset of the irreversible decay of the wave. We note that, if 
the i s t i g  shock discontinuity, represented by the configura- 
tion RTS (Fig. lb), is specified in the form of a structureless 
and infinitesimally thin discontinuity, at the start of the 
shock development the velocity of the medium immediately 
behind the discontinuity rises rapidly to a finite value and a 
finite-amplitude rarefaction wave traveling in the backward 
direction appears. It is then found that the original discon- 
tinugyjecays irreversibly, and probably immediately, into 
the RTS configuration. 

For the anomalies on shock adiabats that are known 
experimentally (adiabat a in Fig. I), the decay of the wave 
has actually been ~bserved.~.' 

We cannot, however, exclude the possibility that, if the 
structure of the original discontinuity is specified to be sta- 
tionary, it may turn out that, for values of L for which the 

stability criterion (16) of the linear theory is satisfied, the 
shock wave satisfying the decay conditions will nevertheless 
not, decay spontaneously. When this is so, segments of adia- 
bats on which both the stability conditions (16) of the linear 
theory and the decay conditions are simultaneously satisfied 
will correspond to relatively stable shock waves that decay 
only upon sufficiently major restructuring under the influ- 
ence of external sources of perturbation. A relatively stable 
shock wave will then correspond to definite segments of the 
extreme "branches" of the adiabats shown in Fig. 5, which 
are separated from the intermediate "branch" by the points 
LC and L ,+ . For a sufficiently large perturbation of the 
shock discontinuity, there will be a transitio~ $om one ex- 
treme "branch" to another by decay to the RTS configura- 
tion (transitignyith a reduction in pressure in the first shock 
wave) or the STS configuration (the reverse transition; on the 
(p, u) plane this is a transition from the extreme right to the 
extreme left "branch" of the adiabat). 

These questions require further investigation. 
We note in conclusion that, in addition to the problem 

of shock-wave stability that we have discussed, there is the 
independent problem of the stability of flows containing 
shock waves (see, for example, Ref. 18). In particular, a wave 
that is itself stable may lead to the flow instability when it 
interacts with a piston. This type of instability occurs for 
L > 1 (Refs. 19 and 20). 

5. PROPAGATION OF PERTURBATIONS ALONG THE SHOCK- 
WAVE FRONT 

We shall now consider, in terms of plane-wave configu- 
rations, small distortions of the front of a nondecaying shock 
wave and their development in time. We shall first be inter- 
ested in the development of deformations that are not subject 
to external perturbations, i.e., perturbations arriving on the 
wavefront from flows taking place ahead of and behind the 
front. The basic elements of such deformations are the three- 
wave configurations containing a weak ("acoustic") com- 
pression or rarefaction wave. Figure 6 shows an example of a 
configuration of this kind. The numbers 1, 2, and 3 in this 
figure label, respectively, the fronts of the initial (direct, in 
the laboratory system) wave, an oblique wave, and a weak 
perturbation. The dashed line shows a tangential discontin- 
uity. The three-wave configuration divides the flow region 

FIG. 6. Configuration consisting of three waves with a peak compression 
wave 3: 1-unperturbed shock wave, 2-perturbed shock wave, T-tan- 
gential discontinuity. Arrows show the directions of current line in the 
coordinate frame with fixed point 0. 
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into sectors, i.e., the initial state in front of the wave (I), the 
undisturbed flow behind the wave (11), and the undisturbed 
flow ahead of the wave (111). Front 3 propagates through the 
gas with the velocity of sound c. The point 0 in the laborato- 
ry frame moves to the right along front 1 with velocity V, 
given by 

Vt= (c-V cos y) /sin y, (17) 

where Vis the velocity of the medium behind the direct wa- 
vefront relative to this front and y is the angle between fronts 
1 and 3 of the undisturbed and weak waves. This angle de- 
pends on the initial state and the thermodynamic properties 
of the medium, which determine the shape of the shock adia- 
bat, and on the intensity of the undisturbed shock wave. This 
dependence is determined by the conditions for the existence 
of the three-wave configuration, namely, equal pressures 
and the same directions of flow lines throughout sector 111. 

It can be shown that there are altogether four qualita- 
tively different configurations of this kind. They can be ob- 
tained from the configuration of Fig. 6 by replacing the weak 
compression wave with a weak rarefaction wave or by inter- 
changing the direct and oblique waves. To find the above 
dependence on the angle y, we can consider any of these 
configurations without loss of generality. Suppose that this 
is the configuration shown in Fig. 6. In the coordinate frame 
in which the point 0 at which the fronts intersect is at rest, 
the oblique wave is the unperturbed wave. The angles a, and 
a between the flow lines and the normal to front 1 before and 
after refraction are, respectively, determined by 

tg ai=Vt/V,=V,lOV, tg u=Vt/V, (18) 

where 0 = p,, /p, is the degree of compression in shock wave 
1 (ratio of densities in sectors I1 and I) and V, is the compo- 
nent of the mass velocity in sector I at right angles to front 1, 
and its modulus is equal to the velocity D of the initial shock 
wave in the laboratory frame. Substituting 

r=ctg 7, ~ = t g  a (19) 

in (17) and (18), we obtain 
A= (I+I'Z)'h/M-I'. (20) 
Relative to front 2, the normal and tangential compo- 

nents of the velocity of the incident material are respectively 
given by 

Vnf=V,, cos X+ V ,  sin X, Vtf =Vt cos X- Vn sin X, (21) 

wherex is the angle between fronts 1 and 2 (Fig. 6). The angle 
x is small in the case of the weak wave 3 and is related to the 
difference AD between the velocities of shock waves 2 and 1 
by 

x=AD/Vt=D'AP/Vt, (22) 

where A P  is the increase in pressure in wave 2 relative to 
wave 1 and D ' is the derivative of D with respect to pressure. 
In the approximation linear inx, Eq. (2 1) leads to the follow- 
ing expressions for the angles P, and P between the current 
lines and the normal to front 2 before and after refraction 
(Fig. 2), respectively: 

where 0 ' = p,,, /pI is the degree of compression in wave 2. In 
the linear approximation we have 

Qr=O (l+Ap/p), AP=PIII-PII, tg P=(I-h)A, (23) 
h=x (B/A+A/Q) -Ap/p. (24) 

Expressing A ~ / P  in terms of Ap and (du/dp), , we can write 

k=x (0/A+Al0) +p (avldp) wAp. 
(25) 

According to (22) and (25), the quantity A is proportional to 
Ap and, consequently, in the case of a weak perturbation, 
A<1.  When this inequality is satisfied, it follows from (23) 
that 

B=a-kA/(1+A2). (26) 

Analogous calculations, which will not be reproduced 
here, lead to the following expression for the angle 7 through 
which the flow lines rotate as they refract in the weak wave 
(front 3): 

q=- (Ap.lp)Sl(1+S2), (27) 
S=tg (y-a) , (28) 

where Ap, is the density discontinuity on front 3, which is 
related to Ap by 

Ap.=Aplc2. (29) 

The angle 7 is assumed to be positive when the flow lines 
rotate in the clockwise direction. From (19), (20), and (28), it 
follows that 

S=M (i+r2)'"-r. (30) 

All the flow lines in sector I11 are parallel, provided 

B+x=a+ q. (31) 

Substituting (26), (27), (22), and (39) in (3 I), and express- 
ing A and Ap, in accordance with (25) and (291, we obtain 

The derivatives (dv/dp), and D ' are related by [see (12)] 

(This is readily verified by differentiating with respect t o p  
the known expression for the shock-wave velocity as a func- 
tion ofp  and v ahead of and behind the front.) Substituting 
(33) in (32), we obtain the following expression after simple 
rearrangement: 

This is the relation between the angle characterizing the 
orientation of front 3 and the quantities L, M, and 0 that are 
uniquely determined by the equation of the shock adiabat 
and the given point on it. The quantitiesA and Sin (34) can be 
expressed in terms of cotan y [see (20) and (30)l. 

The density jump Ap, on the tangential discontinuity is 
due to the fact that the same change in pressure on the left of 

281 Sov. Phys. JETP 61 (2), February 1985 N. M. Kuznetsov 281 



line T in sector I11 is achieved by an additional (as compared 
with wave 1) change in shock-wave intensity, whereas on the 
right it is achieved by compression in the weak wave 3: 

The angle y can assume values between 0 (fronts 1 and 3 
are parallel and both waves propagate in the same direction) 
and a (fronts 1 and 3 parallel and waves propagate in oppo- 
site directions). For angles in the range O< y <yo  
=arc cos M, the weak wave 3 is the incident wave, whereas 
for all other angles (yo < y < a) it is the outgoing wave (ac- 
cording to the Landau and Lifshitz classificati~n)~. The an- 
gle yo corresponds to the propagation of a weak wave 3 along 
the front 1. We then haveA = (1 - M')"~/M, S = 0, a ~ d  the 
flow lines cross front 3 at right-angles (in the stationary 
frame). 

From (34), (20), and (30) with y = 0, yo and n-, we obtain 

L (x)  =1+2M. (36) 

It may be shown that the quantity L, calculated for 
fixed values of M and 8, decreases monotonically as the an- 
gle y increases from yo to a. Hence, in accordance with (35) 
and (36), the conditions for the existence of the triple config- 
urations with a weak departing wave 3 are determined by the 
inequalities 

For angles in the range 0 < y < yo (incident waves 3), the 
dependence of L on y will, in general, be nonmonotonic, and 
it may be that L < 1 - 2M. However, the values of L then 
always lie in the range6' 

and the lower limit is reached only for M = 1. 
Whatever its dependence on L, the angle y for the inci- 

dent wave regarded as an external perturbation can be arbi- 
trary. If it does not satisfy (34), other configurations are 
formed instead of the three-wave configuration. In particu- 
lar, in a certain range of values of y there is a configuration 
consisting of four waves crossing at a single pointuv9 (configu- 
rations with four waves were examined by Fowles2'; see also 
the reflection of sound by a shock wavez2). Within the frame- 
work of the approximation employed in Ref. 21, we cannot, 
however, determine the range of values of y in which the 
four-wave configuration can exist. The essential point for 
our further analysis is that such configurations must neces- 
sarily contain an incident wave, quite apart from the unper- 
turbed wave. 

The configurations involving the outgoing and incident 
wave 3 (Fig. 6) evolve in time in qualitatively different man- 
ners. Let us suppose that the shock wave satisfies (37) and 
that there is a random perturbation of the front in the form of 
a three-wave configuration with a weak outgoing wave. It is 
readily verified that the front line of this wave lengthens 
continuously, so that the configuration that we are consider- 

ing will exist for an infinite time in an infinite medium, and 
its component waves will retain constant intensities. 

Let us now suppose that the shock wave satisfies (38) 
and a perturbation of its front results in the appearance of 
the triple configuration (or a configuration consisting of four 
waves with an incoming weak wave whose front has a limited 
size)." Any such configuration will exist for a finite time. It 
will vanish when the outer boundary of front 3 coalesces 
with the shock-wave front. Thereafter, the deformation of 
the wave front will decay rapidly as a consequence of the 
local character of the initial perturbation and because the 
triple configuration with outgoing weak wave cannot arise 
when (38) is satisfied. The three-wave configuration with an 
incoming wave will not decay only when the front of wave 3 
extends without limit in the downward direction along the 
flow right from the beginning. The incoming wave is then a 
constant external factor, and the stationary perturbation of 
the shock-wave front is the reaction of a stable system to this 
factor. 

These properties of three-wave configurations, which 
refer to their stationarity and decay, are in complete agree- 
ment with the results deduced in linear theory,'-3 in which 
small deformations of the shock-wave front are stationary 
and decay accordingly when (37) and (38) are satisfied. 

In conclusion, let us briefly consider the generation of 
acoustic disturbances by a shock wave.' When conditions 
(37) are satisfied, weak perturbations of the front, produced 
by some external causes (surface irregularities on the shock 
tube wall, inhomogeneities in the original material, and so 
on) remain on the front surface and propagate downward 
along the flow. In terms of the three-wave configuration, this 
constitutes the propagation of an outgoing weak wave 3 (Fig. 
6). When (37) is satisfied, one expects to see a sharp enhance- 
ment of acoustic noise behind the wave front. The propaga- 
tion of unattenuated perturbations along the shock wave 
front and downward along the flow when (37) are satisfied in 
undoubtedly one of the reasons for the breakdown of uni- 
form flow that is often observed when strong shock waves 
propagate through gases (see, for example, Refs. 33 and 24). 

We emphasize that the generation of sound waves 
should not be looked upon as the effective loss mechanism 
responsible for the attenuation of the shock wave. The shock 
wave constantly transfers kinetic and thermal energy to the 
material flowing into it. The type-3 outgoing wave (Fig. 6) 
constitutes only one (and not the most important by far) 
component of the overall energy flux. The time dependence 
of the shock-wave intensity is determined by the entire field 
of subsonic flow and the boundary conditions. In particular, 
if an infinite region of constant flow is located behind the 
undisturbed shock-wave front, small deformations of the 
front, which remain stationary when (37) is satisfied, do not 
lead to the attenuation of the shock wave in a finite time. 

1. Segments of shock adiabats that correspond to unsta- 
ble shock waves in linear theory [and satisfy the inequalities 
(14)] are always component parts of long segments of a shock 
adiabat on which a shock discontinuity can be represented 
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by two other stable waves propagating with different veloc- 
ities without overtaking one another. 

2. If the shock discontinuity cannot be resolved into 
such waves, the shock wave is stable against relatively small 
perturbations (the perturbations do not grow with time). 

3. Further studies are necessary to settle the question as 
to whether a shock wave that can be represented in the form 
of the waves specified in item 1 above, but does not satisfy the 
instability criteria (14) of the linear theory, is also absolutely 
unstable (decays instantaneously) or is stable only against 
relatively finite perturbations of the structure of the discon- 
tinuity under the influence of the external source. 

4. A finite perturbation of the shock-wave front does 
not destroy its stability if it does not take the wave to a state 
that can be represented as described in conclusion 1 above. 

5. The following three conclusions may be drawn on the 
assumption that a shock wave that can be represented by the 
two other waves specified in conclusion 1 above will immedi- 
ately decay into such waves (the validity of this assumption 
has not been proved in the general case), at least when crite- 
ria (14) are satisfied: 

A. Shock waves that are unstable in the usual sense, i.e., 
those for which an infinitesimal perturbation gradually 
grows in time, do not e x i ~ t . ~ '  

B. Linearization of the gas-dynamic equations for the 
perturbations in the form in which it is used to investigate 
the stability of shock waves will not, in general, yield the 
correct solution of the problem of the development of a per- 
turbation of a decaying wave even in the initial stage of the 
process, since the unperturbed flow in this approach is a 
stationary and not a decaying wave, and the former does not 
exist in reality. The exponential growth of a small perturba- 
tion that is obtained in this method is only an indirect indica- 
tion of the nonstationary character of the flow, which does 
not reflect the true picture of its development. 

C. In contrast to linear theory, which can be used to 
determine the development of decaying perturbations of a 
stable (nondecaying) shock wave, the theory of decay and 
branching of discontinuities gives a complete solution of the 
problem of the stability of a shock wave against perturba- 
tions of arbitrary amplitude and the evolution of the decay- 
ing shock wave. The theory of decay and branching of dis- 
continuities is distinguished by ease of physical 
interpretation and simplicity: it employs mostly algebraic 
and trigonometric transformations. 

6. Weak deformations of the surface of a plane front of a 
nondecaying shock wave are found to attenuate when in- 
equalities (38) are satisfied, and retain constant intensity 
when the inequalities (37) are satisfied. These attenuation 
and stationarity criteria were obtained by analyzing the 
propagation of three-wave configurations along the surface 
of the initial shock-wave front, and are in complete agree- 
ment with the corresponding results obtained by linearizing 
the gas-dynamic equations for perturbed motion and by 
their "spectral" 

7. The above results also lead to the following addi- 
tional qualitative conclusions: (a) the limits of the region of 
existence of the three-wave configuration with outgoing 

wave 3 (Fig. 6) of finite amplitude Sp depend not only on L 
but also on Sp; (b) if the length of front 2 (Fig. 6) of this 
configuration is bounded, the intensity of shock wave 3 de- 
creases with time in a way similar to the attenuation of any 
plane wave of finite width and amplitude, and (c) all that we 
have said above about configurations with ingoing waves 
remains in force in the case of finite-amplitude waves of this 
kind, and the only change is in the limits of the region in 
which they exist. 

The author is greatly indebted to Ya. B. Zel'dovich and 
E. M. Lifshitz for their interest in this research and for valu- 
able suggestions. 

"The configuration of Fig. la  is obtained only when the shock adiabat has 
the kink which is observed in phase transitions. Continuous bending of 
the adiabat is accompanied by the formation of configurations in which, 
instead of the pressure plateau between the two shock discontinuties, we 
have an isentropic compression wave (see Section 2) which, in the limit of 
long times, becomes a straight line on the ( p, x )  plane. 

"The wave adiabat connecting the initial and final states in a system of 
waves without tangential discontinuities, including the isentropic com- 
pression wave propagating in the same direction, was examined by Gal- 
lin and Sidorenko.I6 

3'Fowles17 has derived (13) as the limits of existence of the and % 
configurations (which, for tke csrect ~soJution of the shock discontin- 
uity, should be of the form WTSS and STS). However, ~ o w l e s ' ~  errone- 
ously assumed that such configurations were stable for L < - 1 and 
L > 1 + 2M, respectively, and did not consider at all the truly stable 
configurations a of Fig. 1, a and b of Fig. 4, and b of Fig. 1. 

4'It can be shown that L > 0 [in particular, the second inequality in (14)] 
only if (ap/az-), > 0. 

"Adiabats containing an inflection point (Fig. 2a) were not considered in 
the linear theory. Nevertheless, since, in the linear analysis, the only 
important properties are the local properties of the shock adiabats, and 
the conditions c, < D < c, + u, are satisfied, the results of this analysis 
are valid for the adiabats shown in Fig. 2a everywhere except for the 
segment L , L : . 

6'It can be shown that, whatever the dependence of the specific internal 
energy E on p and v, we have 

Hence, it is clear that the parameters L and M may be regarded as 
independent (when varying the thermodynamic properties of the medi- 
um, the initial conditions ahead of the wave, and its intensity) only for 
M#1. 

7'have in mind here an arbitrary range within which front 3 can be looked 
upon as rectilinear with sufficient precision. 

"here is a great variety of shock discontinuities in magnetohydrodyna- 
mics; see the so-called evolutionary and nonevolutionary discontinui- 
ties.25 

'S. P. D'yakov, Zh. Eksp. Teor. Fiz. 27, 288 119541. 
'S. V. lordanskii, Prikl. Mat. Mekh. 21,465 (1957i. 
3V. M. Kontorovich, Zh. Eksp. Teor. Fiz. 33, 1525 (1958) [Sov. Phys. 
JETP 6, 1179 (1958)l. 
4D. Bancroft, E. peterson, and S. Minshall, J. Appl. Phys. 27,291 (1956). 
5Ya. B. Zel'dovich and Yu. P. Ralzer, Fizika udarnykh voln i vysokotem- 
peraturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and 
High-Temperature Hydrodynamic Flows), Fizmatgiz, Moscow, 1963. 

6J. J. Erpenbeck, Phys. Fluids 6, 1368 (1963). 
7C. S. Gardner, Phys. Fluids 6, 1366 (1963). 
'L. D. Landau and E. M. Lifshitz, Mekhanika sploshnykh sred (Contin- 
uum Mechanics), Gostekhizdat, Moscow, 1953. 

9R. Courant and K. 0. Friedrichs, Supersonic Flow and Shock Waves 
[Russian translation, IIL, Moscow, 19501, Wiley, 1974. 

1°Ya. B. Zel'dovich and K. I. Shchelkin, Zh. Eksp. Teor. Fiz. 10, 569 
(19401. 

"N. M: Kuznetsov, Dokl. Akad. Nuak SSSR 155, 156 (1964). 
IZL. V. Al'tshuler, Zh. Prikl. Mekh. Tekh. Fiz. No. 4, 93 (1978). 
I3G. E. Duvall and R. A. Graham, Rev. Mod. Phys. 49,523 (1977). 

283 Sov. Phys. JETP 61 (2), February 1985 N. M. Kuznetsov 283 



I4Ya. B. Zel'dovich, Teoriya udarnykh voln i vvedenie v gazodinamiku 
(Theory of Shock Waves and Introduction to Gas Dynamics), Academy 
of Sciences of the USSR, Moscow, 1946. 

I5N. M. Kuznetsov, Zh. Prikl. Mekh. Tekh. Tiz. No. 1, 69 (1975). 
I6G. Ya. Galin, Dokl. Akad. Nauk SSSR 120,730 (1959) [Sov. Phys. Dokl. 

3, 503 (1959)l. 
"G. R. Fowles, Phys. Fluids 19, 227 (1976). 
18K. I. Babenko (ed.), Issledovanie gidrodinamicheskoi ustoichivosti s po- 

moshch'yu EVM (Studies of the Hydrodynamic Stability Using Com- 
puters). Collection, Institute of Applied Mathematics, USSR Academy 
of Sciences, 198 1. 

19G. R. Fowles and G. W. Swan, Phys. Rev. Lett. 30, 1023 (1973). 
'ON. M. Kuznetsov, Dokl. Akad. Nauk SSSR 227, 65 (1984) [Sov. Phys. 

284 Sov. Phys. JETP 61 (2), February 1985 

Dokl. 29, 532 (1984)l. 
"G. R. Fowles, Phys. Fluids 24, 220 (1981). 
"V. M. Kontorovich, Zh. Eksp. Teor. Fiz. 33, 1527 (1958) [Sov. Phys. 

JETP 6, 1180 (1958)l. 
23R. W. Griffiths, R. J. Sandeman, and J. G. Hornung, J. Phys. D. Appl. 

Phys. 8, 1681 (1975). 
24T. I. Mishin, A. P. Vedin, et a]., Zh. Tekh. Fiz. 51, 2315 (1981) [Sov. 

Phys. Tech. Phys. 26, 1363 (1981)l. 
"L. D. Landau and E. M. Lifshitz, Elektrodinamika sploshnykh sred 

(Electrodynamics of Continuous Media), Nuaka, Moscow, 1982. 

Translated by S. Chomet 

N. M. Kuznetsov 284 


