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We consider the evolution of small two-dimensional perturbations of a plane soliton. We solve the 
Cauchy problem of the linearized Kadomtsev-Petviashvili equation. The obtained asymptotic 
values of the Green function as t -t + CO, which give the damping rate of the soliton oscillations 
in media with a negative dispersion law. 

INTRODUCTION 

Kadomtsev and Petviashvilil were the first to derive an 
equation which describes quasi-two-dimensional weakly 
nonlinear waves in media with a weak dispersion. The equa- 
tion was applied1 to the study of soliton stability to small 
two-dimensional perturbations that are long-wave in the 
transverse direction. In media with a positive dispersion law 
the soliton turned out to be unstable, but it turned out to be 
stable in media with a negative dispersion law. The assump- 
tion was made1 that if one took the finite transverse scale of 
the oscillations of the soliton in the stable case into account 
this would lead to a weak damping of the oscillations. Zak- 
harov, using the inverse scattering method, obtained2 an ex- 
act expression for the dispersion law of the soliton oscilla- 
tions for arbitrary transverse scales and determined thus the 
damping rate for oscillations in media with a negative dis- 
persion law. Pesenson and Shrira3 considered the problem of 
the evolution of transverse perturbations on the front of a 
soliton and of shock waves, using the multiple-scale asymp- 
totic method. In particular, in the case of the Kadomtsev- 
Petviashvili (KP) equation they found the same dispersion 
law for the soliton oscillations (apart from terms of higher 
order of smallness) as in Ref. 2. However, the fact that the 
soliton oscillations in Refs. 2 and 3 for media with a negative 
dispersion law have a weakly growing tail in the longitudinal 
direction going to infinity in one direction caused criticism 
and doubts about the validity of the results obtained about 
the damping of the oscillations with increasing time. It is 
necessary to note that the spatial growth of the pertubation 
mode in this case is a natural consequence of the Hamilton- 
ian nature of the linearized KP equation (see § 1). The weak 
damping of the mode with time, in conjunction with a weak 
growth in the spatial variable towards infinity in one direc- 
tion, is typical of any Hamiltonian system and follows from 
the energy conservation law for the system. This property of 
Hamiltonian systems manifests itself in various fields of 
physics. One of the examples is the Gamow theory of a- 
decay of nuclei," in which the a-particle wave function $(r,t ) 
which satisfies the Hamiltonian of the Schrodinger equation 
has exponential damping in time in conjunction with a weak 
increase as r -t cc . In the present paper the Cauchy problem 
for the linearized KP equation is solved and we show that 
two-dimensional perturbations of the soliton are weakly 
damped in time in media with a negative dispersion law. 

$1. INTEGRABILITY OF THE KP EQUATION USING THE 
INVERSE SCATTERING METHOD. EXACT SOLUTION OF THE 
LINEARIZED KP EQUATION 

We consider the KP equation 

wherep = + 1. Equation (1) is the quasi-two-dimensional 
analog of the Korteweg-de Vries (KdV) equation and de- 
scribes the balance of two effects, nonlinearity and disper- 
sion, under conditions where the transverse scale (along the 
y-axis) is much larger than the longitudinal scale (along the 
x-axis). The KP equation has the same degree of physical 
universality as the KdV equation. Equation (1) arises in hy- 
drodynamics when one describes long-wavelength waves on 
shallow water, when one considers ion-acoustic waves in a 
plasma, and so on. The casep = 1 corresponds to a medium 
with a negative dispersion law (d 2w/dk < 0) and the case 
p = - 1 to a medium with a positive dispersion law (d 2w/ 
dk > 0). It was shown in Ref. 5 that the inverse scattering 
method is applicable to Eq. (1): if we take a function F (x,z,y,t ) 
satisfying the two equations 

and solve the integral equation 
a 

F(x, z, Y, t )  +K(x, z, Y, t )  + SK(X, s, Y, t)F(s, z, Y, t )  ds=O. (41 

for all x,y,z, and t, the quantity u(x,y,t ) = 2dK (x,x,y,t )/dx 
satisfies the equation 

Equation (5) is the KP equation written in a system of coordi- 
nates fixed in the moving soliton. The soliton 

uo (5) =2v2/ch2vx (6) 

is a stationary solution of (5). For it 

F=Fo (x, z) =2~e-~(*+'), 

K=Ko (x, z) = - 2 ~ e - ~ ( ~ + ~ ) / ( I + e - ~ " ~ ) .  
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The problem of the stability of the soliton (6) is very 
interesting. It was partially solved in Ref. 1 where it was 
shown that if we take 

u=uo+ul, u ~ ~ R ~ - ~ ~ ~ + ~ P Y  7 UIKUO, 

we get for values p g  1 

ayp) =p2p2y2+ . . . . (7) 
The soliton is thus stable against small perturbations which 
are long-wave in the transverse direction i f 0  = 1, and un- 
stable i f 0  = - 1. The inverse scattering method allows us 
to determine exactly the dispersion of the soliton oscillations 
for any value of the parameterp. We follow Ref. 2 to consider 
the simplest way to solve this problem. Let 

u=u,+u,, F=Fo+Fl, K=Ko+KI. 

The function F,(x,z,y,t ) then satisfies Eqs. (2) and (3), and the 
function K,(x,z,y,t ) the linearized Eq. (4): 

- 
+ 1 K, ( x ,  s, y, t )Fo (s ,  2 )  (8) 
I 

herethequantity u ,(x,y,t ) = 2dK (x,x,y,t )/dxsatisfiesthelin- 
earized KP equation: 

Let 

F, ( x ,  z, y,  t )  =exp [-iQt+ipy-nx-kz] . 
It then follows respectively from (2) and (3) that 

-iQ=n3+k3-v2 (n+k) , ( 10) 

iPpf n2-k2=0. (11) 

We determine the function K, from (8): 

We consider first the case = - 1. From the condi- 
tion that the function u,(x,y,t ) decrease as x + - co we get 

k=v, (13) 

Re (12-v) ( 0 ,  (14) 

and frorn the condition that u, decrease as x + + w we 
have 

Re (n+ v) >O. (15) 

Let ipp = Ipl; we then easily get n satisfying both conditions 
(14) and (15): 

Let now 0 = 1. It is clear from an analysis of Eq. (12) 
that it is impossible to achieve simultaneously the decrease 
of the function u, as x + + co . Indeed, let 

n=a+ib. (17) 

We then easily get 
a=2-1h [ ( v 4 + p 2 )  'l*+y?-] 1 / * ,  (I8) 

b=-p/2a. (19) 

Ifp(v2 the function u,  weakly increases as x --+ - co : 
ui ( x ,  y, t )  rnexp [- (p2/8v3) XI . 

Further, we get from (lo), (1 I), and (13) the dispersion of the 
soliton oscillations: 

-iQ=-ippn, (20) 

where the quantity n is given by Eq. (16) in the unstable case, 
and by Eqs. (17) to (19) in the stable case. We rewrite the 
dispersion in closed form: 

Q y p )  =pZp2 (v2-ipp). (21) 

Expression (21) describes the instability growth rate of the 
soliton for0 = - 1 and the spectrum ofthe damped soliton 
oscillations for = 1. Considering (17) to (20), we get the 
damping rate: 

If Ipl + 0, the Kadomtsev-Petviashvili result (7) fol- 
lows from (21). The weak growth of the function u ,  as 
x --+ - co in the stable case is a natural consequence of the 
Hamiltonian nature of the linearized KP  Eq. (9). We rewrite 
(9) in the usual Hamiltonian form: 

where 

According to the mechanism proposed in Ref. 2 the soliton 
oscillations are damped due to the emission of small oscilla- 
tions of the medium. In a medium with a negative dispersion 
law the soliton is supersonic and the small oscillations will 
therefore lag behind the soliton and go off to x = - W .  

Moreover, the obtained exact solution of Eq. (9) 

where the function K, is given by Eq. (12), is not a solution of 
any Cauchy problem and we canlet t tend to - co in (12) and 
obtain in the stable case an infinite perturbation on the front 
of the soliton at t = - co . As the Hamiltonian of the system 
is conserved during the emission process, the energy of the 
infinite perturbation on the front of the soliton at t = - 03 

changes at a time t = + to the energy of a tail that in- 
creases weakly as x + - co . 
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52. THE GREEN FUNCTION OF THE LINEARIZED KP 
EQUATION AND ITS ASYMPTOTIC BEHAVIOR AS t + + a, 

In this section we solve the Cauchy problem for the 
linearized KP Eq. (9). One easily checks directly that Eq. (9) 
has the following elementary solution: 

2v 1 
X [ l - - - I }  

v-in l+ezvx , (22) 

where 

-iQ ( k ,  p) =i [n3+k3+vZ ( n f k ) ]  , 
ipp-n2+k2=0. 

The quantities k andp are free parameters. Using the eigen- 
functions $(k,x) of the continuous spectrum of the soliton 
potential (6): 

we can rewrite (22) in the compact form: 

We consider next only media with a negative dispersion law: 
= 1. We introduce a parametrization of the quantities n 

and k using the real variable z: 

k=k ( z ,  p)  =z-ip/4z, n=n ( z ,  p) =z+ ip/4z. (27) 

The parametrization (27) automatically satisfies Eq. (24). If 
we substitute (27) into (22) and (23) we obtain small oscilla- 
tions of the medium which decrease as 1x1 + CC. We shall 
now look for a solution of the Cauchy problem of Eq. (9) in 
the form of a superposition of parametrized elementary solu- 
tions: 

where 
-iQ ( z ,  p )  =2i ( ~ ~ + ~ ~ ~ - 3 p ~ / 1 6 z )  

We get the integration contour To from the contour r, 
shown in Fig. 1 by lettingp + 0. The point z = 0 is an essen- 
tial singularity for the integrand in (28). When t > 0 we must 
go around it from above. 

We proceed to the determination of the unknown func- 
tion r(z,p) using the initial condition u ,(x,y,t )I,, , 
= u,(x,y,O). Putting t = 0 in (28) and Fourier transforming 

with respect toy we get 

where 
m 

We impose the condition 

on the function u,(x,y,O). For the sake of convenience we 
introduce the notation 

1 d 
(D ( z ,  p, x )  =-- 

2in dx  
[$(k(ztP>,x)$(n(ztP),xI .  (31) 

The following orthogonality relation 
m 

J Y ( z ,  p, Z )  b (-zl,  P ,  x )  dx=-z16 (z -z I )  (32) 

exists between the functions !? and @ for real z and 2,. (We 
shall prove Eq. (32) in the Appendix.) If we now scalarly 
multiply (29) by the function !? ( - z,p,x) and use (32) we get 

We stipulate that all integrals over the variable z must 
be taken in the sense of principal value. Moreover, looking 
for solutions of the Cauchy problem in the form (28) imposes 
well defined limitations on the initial value u ,(x,p,O). 

the solution of the Cauchy problem of Eq. (9) is thus 
m 

where the Green function is 

dz 
G (x i ,  p, x ,  t )  = j e - i w q P ) t  Y (-z, p, x i )  m ( z ,  p, x )  - . (33) 

r0 
z 

We rewrite Eq. (33) in the form 

G (11, P ,  X, t )  

= 1 5  e - i Q < z , ~ ) t  

2in 
4 ( k ( - z ,  P ) ,  x1)4(n( -z ,  P ) ,  2 1 )  

4- ,-- 
v-ik (2 ,  p) 

FIG. 1 
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FIG. 2 

As the first term in the braces in (34) is some free oscillation 
of the medium and the second term is localized in the soliton, 
we shall in what follows drop the first term. "Sitting" on the 
soliton (x = 0) and putting x ,  = 0 we get 

v 2  
=- - J e - i o ( z , p )  t 

k ( z ,  P )  n  ( 2 ,  P )  dz. (35) 
n  

Fa 
[v"k2(6 P )  I [v"+nYz7 P) 1 

We now evaluate the asymptotic behavior of the Green 
function (35) as t + + CO.  To simplify the calculations we 
shall use the approximation p/v24 1. We can easily genera- 
lize the results obtained below to the case of an arbitrary 
ratio of the parametersp and v2. We consider first of all the 
problems connected with the closing of the contour To on a 
contour in the upper half-plane, with the poles of the inte- 
grand in (35): n = + iv, k = f iv, and the saddle points of 
the function - if2 (zg). Let z = x + iy; then 

Re ( - iQ)  = 2 y  [ - 3 ~ ~ + y ~ - ~ ~ - ~ / ~ ~ p ~ /  ( x Z + y Z )  1 .  

The region Re( - if2 ) < 0 in the complex z-plane is shown 
hatched in Fig. 2. 

It follows from Fig. 2 that we can close the contour To 
by any straight line y = Y (0 < Y < yo,y, = v[l + o(p/v2)]) 
provided it is situated in the upper half-plane. The equation 
df2 /dz = 0 for the saddle points of the function - if2 (z,p) 
has two roots in the upper half-plane: 

Since the function - if2 (z = x + iy, ,p) has at the point 
z = z, a minimum with respect to x, and at the point z = z, it 
has a maximum which is the only one on the line y = y, , the 
steepest-descent contour y is the line y = y, . From the eight 
poles determined from the quadratic (in the variable z) equa- 
tions 

only four lie in the upper half-plane and two of those lie 
above the steepest-descent contour y and two below. There- 
fore, we close the contour To by the steepest descent contour 
y as shown in Fig. 3. The point 

z , = ~ / ,  [ - iv+[  ( i ~ ) ~ + i p ] " * ]  = ( p / 4 v )  ( l + i p / 4 v )  [ I +  o ( p / v 2 )  1 
is the root of the equation k(z,p) = - iv and the point 

z, = - z: is the root of the equation n(z,p) = - iv. Let now 

F ( z ,  P ,  t )  
v2 =-- e-iQLz,P)tk (2, p) n  ( z ,  p ) / [ v 2 +  k2 ( z ,  p) I [vz+  n2 ( z ,  p) I .  
n 

In that case 

The asymptotic behavior on the contour y as t + + co is 
found by using the steepest-descent method: 

We now determine the pole contribution to the asymp- 
totic behavior of the Green function. We find first the value 
of - the dispersion in the simple poles of the function 
F(z,p,t ):z = z, and z = z,. Substituting k (zg) = - iv in (23) 
and using (24) for P = 1 we get after simple calculations the 
expression 

-iQ ( z , ,  P )  = - - P ~ ( z I ,  P ) ,  (35') 
where 

n ( z , ,  p)  =2z,+iv. (36') 

Equation (35') is the same as Eq. (20) apart from the notation. 
Equations (35') and (36') determine the damping in time of 
the pole contribution. Indeed, 

Re (-iQ (z,, p) ) =-2px,=-2-"p2 [ (v4+p2)  '"+v2] -"<0, 

xn=Re z,.  (37) 

Writing the value of the dispersion - if2 (z,,p) in closed form 
we get an expression which is the same as Eq. (21) (0  = 1): 

Q2 ( p )  =p2 (v2-ip) . 

As z, = - z:, we have - if2 (z,,p) = [ - if2 (z,,p)]*. 
Thus, by using the results we can write the pole contri- 

bution to the asymptotic behavior of the Green function as 
t +  + CO: 

Zni 1 res F + F 1 -- v 2  - z1 e x ~ [  -iQ ( z , ,  p) t1 
z=z1 z=zz p  
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The two terms in (38) describe waves which have the same 
damping rate and move along the transverse y-axis in oppo- 
site directions. By virtue of (36) to (38) the asymptotic behav- 
ior as t -+ + co of the Green function of the linearized KP 
equation is determined exclusively by the pole terms describ- 
ing the weakly damped soliton oscillations. 

We also note that for a cnoidal wave which is periodic in 
x thereis no damping effect. This is explained by the fact that 
perturbations emitted by a single soliton are superimposed 
on the solitons positioned behind. The dispersion law of the 
second-sound propagating along the periodic cnoidal wave 
was evaluated in Ref. 6. 

In conclusion the author thanks V. E. Zakharov for su- 
pervison of this work. 

APPENDIX 

The orthogonality relation 

Using the stationary Schrodinger equation one easily 
finds the following relation for the wave functions: 

where W is the Wronskian and the variables n,k and n,,k, 
satisfy Eq. (24). Let now the wave function $(k,x) be an eigen- 
function of the continuous spectrum of the soliton potential 
(26). Introducing the parametrization (27) for the quantities 
n,k and n,,k, by means of the real variables z and z,, respec- 
tively, considering the functions !P(z,p,x) and @ (z,p;c) from 
(30) and (3 I ) ,  and integrating (39) over x, we get 

By virtue of the Riemann-Lebesque lemma, we can neglect 
the second term in (40). Using now the following relation 
from the theory of generalized functions: 

"ikx 

lim ~:=*6(k ) ,  .+,, ikn  

where the symbol P indicates the principal part, we get the 
required relation: 
1 - lim - lim 

4in x++m x--m 
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