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The hydrodynamics of a dense plasma containing a magnetic field and compressed by a thin 
cylindrical wall is considered. Self-similar solutions are obtained for the compression of the 
plasma by the wall, and the structure of the plasma boundary layer near the compressing wall is 
obtained. It is shown that formation of a boundary layer and the produced thermal and thermo- 
magnetic fluxes increase substantially the diamagnetism of the plasma. The magnetic-flux loss 
upon compression of a plasma with classical transport coefficients can increase substantially, 
right up to the corresponding values for a turbulent plasma. It is shown that at moderate and 
experimentally attainable rates of plasma compression by a cylinder wall magnetic-flux losses are 
low and effective compression of a magnetic-field frozen in the plasma by a cylinder wall is 
feasible. Numerical calculations of radial compression of a plasma with a magnetic field by a 
cylinder agree well with the self-similar solutions obtained. Numerical simulation of the problem 
shows that in the procedure considered the compression of the magnetic field depends little on the 
equation of state of the cylinder walls and on the cylinder heat capacity, conductivity, and com- 
pressibility. 

INTRODUCTION 

The possibility of using new methods to obtain in the 
laboratory ultrastrong magnetic fields on the order of 100 
MOe and more were estimated in Refs. 1-4. The first indica- 
tions of the possibility of compressing strongly a magnetic 
field via laser ablatation are contained in Refs. 5 and 6." 
Estimates are presented for two possible methods of rapidly 
compressing a plasma with a frozen-in magnetic field, by 
using a thin cylindrical wall, and in a Z pinch with a trapped 
external magnetic field. It is known, however, that the flows 
and inhomogeneities that are produced when a plasma is 
heated lead to an anomalously rapid diffusion of the magnet- 
ic field. We consider here the dynamics of compression of a 
plasma with a frozen-in magnetic field by assuming for the 
plasma classical transport coefficients. We show that al- 
though the diamagnetic flows produced in the plasma de- 
crease effectively the magnetic Reynolds number, they nev- 
ertheless do not hinder the compression of the magnetic field 
in accordance with the estimates of Refs. 1-4. Similar calcu- 
lations with the transport coefficients for a turbulent plasma 
do not lead to a more subsantial diamagnetism. 

We consider the hydrodynamics of compression of a 
plasma with a magnetic field by a thin cylindrical wall whose 
initial kinetic energy was acquired by the action of several- 
kilobar pressure produced by cylindrically-symmetric irra- 
diation of outer wall surface by a laser pulse or by an electron 
or ion beam. For example, examples on acceleration of foils 
by a laser7 show that the observed velocities for foils several 
micron thick can reach (1-2)-10' cm/s. We note that in con- 
trast to the traditional methods of generating strong pulsed 
magnetic-fields by implosive compre~sion,~ in this case the 
thin walls of the cylinder are by themselves inessential for 
the magnetic-field compression proper. The magnetic flux 

diffuses freely through the thin walls of the shell, and the 
shell kinetic energy Eo goes to compression of the plasma 
with the frozen-in magnetic field. The simplest necessary 
condition that the magnetic field be frozen in the plasma is 
formulated as a constraint on the magnetic Reynolds num- 
ber: Rm, = 4 ~ o u R  /c2, where o, u,  and R are respectively 
the characteristic values of the conductivity, velocity, and 
boundary radius of the plasma cylinder. When this con- 
straint is satisfied, it can be easily seen that ifp, = 16rn0T,,/ 
H: (1, the magnetic field is compressed from an initial value 
H, (at R = R,) to a final value Hf = H a ,  where 
S = HgR :L /8Eo is the ratio of the magnetic energy inside 
the shell to the kinetic energy of the shell (L is the length of 
the shell). In subsonic compression of the plasma by the 
shell, the only compression that we shall consider, the total 
pressure inside the plasma cylinder remains approximately 
uniform over the cross section during the entire compression 
process. An important role in the compression of the mag- 
netic flux in a plasma can therefore be played by redistribu- 
tion of the initial uniform density over the radius, i.e., by 
formation, next to the wall, of a boundary layer in which 
p 2 1. The magnetic-flux losses on compression are therefore 
determined not by the value of Rm,, but by some effective 
Reynolds number value that takes into account the profiles 
of the density, temperature, magnetic field, and velocity that 
are produced in the plasma. Since these profiles have large 
gradients at the cylinder wall, a substantial role can be 
played, generally speaking, by the thermal conductivity of 
the plasma and by the thermomagnetic effects. Similar 
anomalies of the magnetic-flux losses arise, e.g., in plasma 
configuration with reversed magnetic field.9 

In the first part of this paper we consider the self-similar 
solutions of the equations of one-fluid hydrodynamic plas- 
ma, which describe cylindrically symmetric compression of 
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a plasma with a magnetic field. The self-similar solution ob- 
tained permit an estimate of the roles of the different pro- 
cesses in the formation of the boundary layer at the wall and 
to calculate the losses of the magnetic flux when plasma is 
compressed. 

In the second part of the paper we present the results of 
a numerical integration of the complete one-dimensional hy- 
drodynamic-equation system that describes the compression 
of the plasma by the shell. The result of the numerical simu- 
lation of the plasma compression, with allowance for the 
energy lost to radiation, agree well with the self-similar solu- 
tions described in the first part. In particular, the numerical 
calculations demonstrate the high efficiency with which the 
plasma with the magnetic field are compressed by the shell, 
and the weak dependence of the results on the equation of 
state of the shell and on its conductivity, thermal conductiv- 
ity, heat capacity, and compressibility. The end-face losses 
due to plasma spreading in the axial dimension are likewise 
insignificant as a rule. 

2. INITIAL EQUATIONS 

Consider cylindrically symmetric compression of a 
plasma with a frozen-in magnetic field directed along the 
cylinder axis, taken to be the z axis. We assume the problem 
to be one-dimensional, so that all the quantities are homgen- 
eous in z, and their gradients are directed along the radius. 
Slow (subsonic) flow of a dense plasma is described by the 
single-temperature (T, = Ti = T )  single-fluid hydrodynam- 
ic equations of the plasma, for the transport coefficients of 
which we assume the known classical values." We write 
down these equations, neglecting small viscous terms: 

dnldtfdiv (nu)  =0, (2.1) 

Here n is the electron and ion density in the quasineutral 
plasma (n, = ni -n); p = min is the mass density; j is the 
electric-current density; u is the plasma-flow velocity trans- 
verse to the magnetic field (in our formulation of the plasma 
only the radial plasma velocity differs from zero); P = 2nTis 
the kinetic pressure of the plasma, a is the plasma conductiv- 
ity; q, and q, are the electron and ion heat fluxes, respective- 
ly; R is the total friction force due to momentum transfer in 
electron and ion collisions; R, is the friction-force compo- 
nent due to the temperature gradient (thermoforce); Q, are 
the volume energy losses corresponding to radiation of the 
plama. The expressions for the fluxes and for the corre- 
sponding kinetic coefficients are well known," but are too 
long to present here. 

Equations (2.1)-(2.5) constitute the complete system of 
equations that describes the plasma compression hydrodyn- 
amics. In the case of an infinitely thin nonconducting 
shel1,the boundary condition on the shell surface is r = R (t ) 
for the magnetic field 

H (r=R ( t )  ) =Hat ( t )  , (2.6) 
where H,,,(t) is the external magnetic field. The second 
boundary condition for H follows naturally from the fact 
that H is regular at r = 0: 

(8Hldr) ,=,=O. (2.7) 

The boundry condition for the radial component of the ve- 
locity u z u ,  is 

u (r=R ( t )  ) =R(t )  , u (r=O) =O. (2.8) 

The boundary conditions for the temperature depend on the 
equations of state of the shell material. Two extreme cases 
are zero heat conductivity at the boundary, i.e., a zero plas- 
ma-temperature gradient at the plasma-shell boundary, and 
a constant temperature, meaning infinite heat capacity, of 
the shell. In addition, a natural condition is that the func- 
tions n and T be regular at r = 0. 

We introduce the magnetic viscosity vm = c2/4n-Q and 
determine the dimensionless parameter that characterizes 
the freezing-in of the magnetic field into the plasma when the 
latter is compressed-the magnetic Reynolds number 

Rm=vL/vm, (2.9) 

the u, L, and urn are the characteris'tic values of the velocity, 
of the transverse dimension, and of the magnetic viscosity, 
respectively. The highest value Rm = Rm, corresponds to 
the largest value of the velocity u = I R (t ) /  and of the radius 
L = R (t ), and the lowest value of the magnetic viscosity. For 
the sake of argument we put also v, = v, (r = R ( t  )), which 
corresponds in general to a thermally insulating shell with 
low heat capacity. We define thus 

Rmn=R ( 1 )  IR(t)  l/vm(R ( 1 )  ) . (2.10) 

We introduce also the effective magnetic Reynolds number 
defined as the ratio of the characteristic variation times of 
the magnetic flux @ and of the plasma compression: 

The quantity (2.1 1) characterizes the magnetic-flux 
losses. Assuming Rm,,(t ) = const (or, equivalently, choos- 
ing appropriately the time-averaged value of Rm,,, we ob- 
tain 

@/Do= (RIR,) ''Rmeff. (2.12) 

Accordingly, we have for the compression of the magnetic 
field the estimate 

HIHo= ((K/R)2-'/Rme~f. (2.13) 

In particular, if the thermoforce in (2.2) can be neglected, 
expression (2.11) is equivalent to 
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The simplest estimate in accord with Eq. (2.14) [the integral 
of the numerator is estimated at HR '(t ) and the derivative in 
the denominator at H /R (t )] leads to expression (2.10) for 
Rm,. In the general case, however, Rm,,, and hence also the 
magnetic-field compression, depends substantially on the 
temperature and magnetic-field profiles produced in the 
course of the compression, and can be determined only by 
solving the hydrodynamic problem. 

We consider the soluticns of Eq. (2.1)-(2.5) for two 
limiting cases corresponding to compression of a nonmagne- 
tized plasma &re (1 and a fully magnetized plasma 
(1 <fli  r i  ( f i e  re ; here and are respectively the cyclo- 
tron frequencies and the collision times for the electrons and 
ions). In Secs. 3 and 4 below we do not take into account the 
energy lost to radiation and neglect the heat capacity of the 
shell. 

3. SELF-SIMILAR SOLUTIONS FOR A NONMAGNETIZED 
PLASMA 

In the case of a nonmagnetized plasma, the contribution 
of the thermoforce to the friction force is negligible, i.e., we 
can substitute in (2.2) 

Those terms in the right-hand side of (2.5), which represent 
the heat fluxes and the heat-release associated with the ther- 
moforce, are also small compared with the Joule heating. As 
a result, eliminating the current density with the aid of (2.4) 
and transforming to a cylindrical coordinate frame, we ob- 
tain the following system of equations: 

dn 1 d 
- + - - (rnu) =0, 
d t  r dr 

Equation (3.5) follows from (2.3) and means that the total 
pressure in subsonic flow is uniform. 

We introduce in Eqs. (3.2)-(3.5) a new independent vari- 
able 

E=rlR ( 4 ,  (3.6) 

where R (t ) corresponds to the boundary of the compressed 
plasma cylinder. We seek the self-similar solutions of the 
system (3.2)-(3.5), for which all the variables are functions of 
6 and t of the form 

{a. ' I 
H (r ,  t )  =Hob ( t )  B ( E )  , T (r,  t )  =To0 ( t )  O ( E )  . 

Here Ro = R (t = 0) is the initial radius of the plasma cylin- 
der, while no, H,, and To are as-yet arbitrary constants with 
dimensions of the particle-number density, magnetic field, 
and temperature, respectively. 

The time dependence of the magnetic field in (3.7) is 

compatible with the boundary condition (2.6) at a constant 
field outside the cylinder only if He,, = 0 .  We have then 
from (2.6), (2.7), and (2.8) 

B ( t = 1 )  =0, (dB/&) ,=,=O, (3.8) 

U ( E = f )  =1. (3.9) 

The initial conditions are 

a(t=O) =h(t=O) =O(t=O) = I ,  (3.10) 

where a(t ) = R (t )/R,. 
Transforming in (3.5) to the variable (3.7) we find, tak- 

ing (3.10) into account 
0 ( t )  =a2 ( t )  h2 ( t )  , (3.11) 

(16nnoTo/H,Z) NO+BZ=const. (3.12) 

aZ ( t )  h2 ( t )  (163t-'n0-2TOZIH0z) NO+€) ( t )  'Ba 

= (dBZ/d2E2) E , O = ~ ~ n ~ t .  

For N (6) and 0(6) we assume the boundary conditions 

N(E=l )  =8 (E=l) =1 (3.13) 

and eliminate the leeway in the choice of the normalization 
constant, putting 

16nnoT,/H,2=1. (3.14) 

When account is taken of (3.8) and (3.13), Eq. (3.12) takes 
then a particularly simple form 

NO+B2=1. (3.15) 

From (3.2), taking (3.9) into account, we have 

U(E) =i. (3.16) 

Substituting (3.7) in (3.3) and using (3.16), we obtain after 
separating the variables 6 and t 

where il, = const is the separation constant, and 
YE' = Y,  (t = 0, Y = Ro)/R $. 

Substituting (3.7) in (3.4) and using (3.15) and (3.16), we 
obtain after separating the variables 

@-ah (dB/dE) 2=h2 (1-B2) , (3.19) 

where i12 is the separation constant. 
Putting 

%=h2/p2,  (3.21) 

we get from (3.1 I), (3.18), and (3.20) 

h ( t )  = ( I +  2h2v,'O't) '"+ 5'/2E,  (3.23) 

We obtain thus a one-parameter family of solutions that 
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depend on the parameter f .  The values of Rm, and Rm,,, 
which are defined in (2.10) and (2.1 I), are in this case 

It can be seen that for each self-similar solution the 
magnetic Reynolds numbers, both Rm, and Rm,,, are con- 
stants independent of time. Consequently A ' > 0 and 
f i = - 3/2  for solutions described by Rm, > 0 and 
Rm,, > 0, respectively. 

At f > 0 the self-similar solutions correspond to infinite 
compression of the magnetic field, as t + cc , in accordance 
with the power law that follows from (3.22). The slowest 
compression pertains to the highest Rm values correspond- 
ing to f + m, in which case a ( t )  a l / t  (we note that as 
H + cc we have @ + 0) .  The value f = 0 corresponds to 
compression in accordance with a power law 

a ( t )  =exp ( - 3p02v~ '  t )  , (3.27) 

0 ( t )  =exp ( 4 p o Z v ~ '  t )  , (3.29) 

where A = A  '(6 = 0) .  Negative values off  correspond to 
solutions with small Rm,, < 3, which describe compression 
of the magnetic field to infinity within finite time intervals. 

The permissible range of f is determined by the condi- 
tion for the existence of the self-similar profiles B (l), a({), 
and N (l), which satisfy the boundry conditions. Eliminating 
O from (3.17) and (3.19), we obtain 

The solution (3.30) with boundary condition (3.8) solves the 
problem completely: a(() and N (g) are expressed then with 
the aid of (3.19) and (3.15), and for A we have 

h2= ( d ~ / d ~ )  :='. (3.31) 

Nontrivial solutions of Eq. (3.30) exist at B (0 )  = 1 .  The 
point l = 0 is then a singular point of Eq. (3.30). Near this 
point we have 
- ) , ( t )  m ~ 4 ( 2 ~ - 1 ) / 3  , N ( E )  mE4(c+')'J, (3.32) 

From the condition that O ( l )  be regular at 6 = 0 ,  it follows 
that 

p 1 / 2 .  (3.33) 

Transforming in (3.30) to a new independent variable 7 = 6' 
we obtain immediately its soution with the boundary condi- 
tion (3.31) 

When (33)  is satisfied, the second boundary condition of 
(3.8) is satisfied automatically, while the first condition 
[B ( 1 )  = 0 ]  makes it possible to determine the value A(<): 

In particular, for the minimum value 6 = 1/2  the solution 
(3.34) takes the rather simple form 

B ( E )  =I+. (3.36) 

In this caseA2 = 4 ,  A = 8, and the corresponding minimum 
values of the magnetic Reynolds numbers, at which com- 
pression of the magnetic field is possible, are Rm, = 32 and 
Rm,, = 4. It can be seen from (3.34) and (3.35) that self- 
similar solutions that satisfy the boundary conditions (3.8) 
exist in the entire range (3.33). The magnetic Reynolds 
numbers Rm, and Rm,, increase with increasing f [see 
(3.25), (3.26), and (3.35)], i.e., their ranges are 

32<Rm,<-, 4<Rmeff<w. (3.37) 

At f ) 1  we obtain from (3.35) the estimate 

h=21;+2 In 2+ 0 (1/5) ,  (3.38) 

which establishes the asymptotic connection between Rm, 
and Rm,, for large magnetic Reynolds numbers: 

Rmeff- (Rmo/2) ". (3.39) 

An exact calculation by Eq. (3.35) shows that the asymptotic 
equation is indeed a good approximation in the entire range 
of f (see Fig. 4 below). 

With the aid of the solution (3.34), which determines the 
profiles of B (l), it is easy to obtain expressions for O ( l )  and 
N (6): 

o ( g )  = E ~ S  r1-p ( E )  1 ""-t),  (3.40) 

N ( t )  =E-' /a [I-BZ ( E )  ] % ( ' + Z E ) .  (3.41) 

As can be seen from Eqs. (3.34), (3.40), and (3.41), the quanti- 
ties B ( l ) ,  N (l) and @(() are practically uniform over the en- 
tire plasma volume, except for the wall boundary layer the 
wall of width 1/ f  at f )  1. In this layer B (l), N ( f ) ,  and @ ( l )  
vary from the values on the axis to the boundary values, and 
it is this which causes the appreciable difference between 
Rm,, and Rm,. Thus, formation of a boundary layer near 
the wall that compresses the plasma indeed increases the 
magnetic-flux losses, owing to the large gradient of the mag- 
netic field in the boundary layer, and this manifests itself in 
the substantially slower growth of Rm,, compared with 
Rm,. 

Obviously, at all values of the magnetic Reynolds num- 
ber in the range (3.37) the condition O,r ,  ( 1 ,  which is valid 
at t = 0 ,  ceases to hold starting with some instant of time, in 
accordance with (3.22)-(3.24). The solution obtained above 
is then no longer valid, for in the case of a magnetized plasma 
the kinetic coefficients are changed, and the terms of (2.1)- 
(2.5) that could be neglected in Eqs. (2.1)-(2.5) at O ,  r, (1 
now become significant. The solutions described here can in 
this case be regarded only as model-dependent and take only 
qualitatively into account the influence of the finite plasma 
conductivity on the hydrodynamics of the compression. 

4. SELF-SIMILAR SOLUTIONS FOR A MAGNETIZED PLASMA 

We find now the self-similar solutions of Eqs. (2.1-2.5), 
satisfying the same boundary conditions as the solutions 
considered in Sec. 3, for the opposite limiting case of a fully 
mangetized plasma, when O e r e  )O,ri $1. It must be noted 
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here that the first of the boundary conditions (3.8) is obvious- 
ly formally incompatible with the condition that the plasma 
is fully magnetized. If, however, the temperature and the 
magnetic field are high enough, the point at which f l i ~ i  = 1 
is arbitrarily close to the boundary r = R, at the initial in- 
stant, and comes closer to it in the course of the compression. 
Thus, solutions corresponding to the considered limiting 
case, together with the solutions investigated in the preced- 
ing section, determine the upper and lower bounds of the 
range of Rm,,, as is indeed confirmed by numerical calcula- 
tions (see Sec. 5 below). 

We rewrite Eqs. (2.1)-(2.5) for a magnetized plasma, 
using the corresponding expression of Ref. 10 for the kinetic 
coefficient, the friction force, and the heat fluxes. Obviously, 
Eqs. (2.1) and (2.4) remain unchanged. The terms that de- 
scribe the thermal conductivity of the plasma (determined in 
this case by the ion rather than by the electron conductivity), 
the heat flux due to the relative motion of the electrons and 
ions, and the thermoforce turn out to be here of the same 
order as the Joule friction as the heating. As a result, Eqs. 
(2.2) and (2.5), written in cylindrical coordinates, take apart 
from terms small in the parameters l ( f l i r i )  and (m,/mi)"2, 
the form 

Equations (4.1) and (4.2) are solved simultaneously with Eqs. 
(3.2) and ( 3 4 ,  which, of course retain the same form. Trans- 
forming in these equations to the self-similar variables (3.6) 
and (3.7), we obtain equations that are similar in many re- 
spects to those given in Sec. 3. In particular, the velocity 
profile has the form (3.16) as before, the time dependences of 
thefunctionsa(t ), h (t ), andB(t)aregivenby Eqs. (3.22)-(3.24), 
while expressions (3.25) and (3.26) remain valid for the Reyn- 
olds numbers. In this case, however, the permissible range of 
J and the values of constants A and A', determined for a 
given value of J from the conditions that there exist profiles 
B (f), @(f) and N (f) that satisfy the boundary conditions, 
must be obtained with the aid of the following equations: 

We have introduced here the notation 

Equations (4.3) and (4.4) are solved with the same 
boundary conditions (3.8) and (3.13) (and under the same 
supplementary assumption B (0) = 1) as Eqs. (3.17) and 
(3.19). The points f = 0 and ( = 1 are singular points of this 
system of equations. It is easy to show that near f = 0 we 
have 

1-B (E) mE", Y(E) mEz-B, (4.6) 

where s = (6A + 16<)/(3A - 2). 
From the condition that @(c) be regular at f = 0 it fol- 

lows that s>2, and we thus obtain 

p--'/&. (4.7) 

It can be shown that the solutions of Eqs. (4.3) and (4.4), 
which satisfy the necessary boundary conditions exist for all 
< under condition (4.7). Figure 1 shows the profiles of B (c), 
a({), and N (f) for a number of values <. The value of Rm,, at 
(4.7) is 2.5, and the numerically determined corresponding 
value of Rm, is 14.2. This means that for the considered 
family of solutions we have 

1422<Rmo<m, 2:5<Rrnett<m. (4.8) 

At the singular point f = 1 we have B = 0 and dY/ 
df = 0. It can be shown that the heat flux at the boundary (at 
f = I), which is proportional to the expression in the curly 
brackets in the last term of the left hand side of (4.4), is finite 
and positive. This circumstance can be interpreted as the 

FIG. 1. Self-similar profiles of the magnetic field, temperature, and den- 
sity for a magnetized plasma. Curves 2 to 4 are plotted for <equal to 1/4,2, 
8, and 32, respectively. 
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action ofheat extraction, which increases with time in accor- 
dance with (3.24), from the surface of a shell whose heat 
capacity is stipulated to be low. 

It can be seen from Fig. 1 that near the boundary ({ = 1) 
the temperature profile is flat, owing to the heat-conduction 
spreading at not too large Reynolds numbers. Taking this 
into account we obtain approximate analytic solutions that 
are quite accurate. Indeed, at Y - 1 Eq. (4.3) becomes a Bes- 
sel function, and its solution that satisfies the boundary con- 
ditions is 

wherej,,, = 2.405 is the first positive root of the Bessel func- 
tion J,(x). The corresponding eigenvalue is 

whence we get for the effective magnetic Reynolds number 
the estimate 

For low values of Rm, the approximate solution (4.9) 
and the estimate (4.11) are quite accurate; thus, at Rm,< 100 
the error of (4.1 1) does not exceed 2% (see Fig. 1, and Fig. 4 
below). At very large Reynolds numbers (Rm, 2 1000) the 
solutions of Eqs. (4.3) and (4.4), just as in Sec. 3, describe the 
formation of a narrow boundary layer near the wall, and the 
relation (4.11) between Rm,, and Rm, assumes an asympto- 
tic form similar to (3.40). 

Comparing the foregoing with the results of the preced- 
ing section, we see that in this case the thermal conductivity 
and the thermopower make no diamagnetic contribution, 
and even decrease the compression-induced loss of the mag- 
netic flux. The reason is that the thermal conductivity 
smears out the temperature profile, increasing the tempera- 
ture and the conductivity of the plasma near the axis, where 
the Joule heat released is low. In addition, in the most impor- 
tant plasma region near the axis, where the major part of the 
current flows (except for a very narrow region near or inside 
the shell under real conditions), the magnetic-field and tem- 
perature gradients are oppositely directed, so that the ther- 
moforce, as can be seen from Eq. (4. I), leads to an effective 
decrease of the magnetic viscosity Y,  . 

5. NUMERICAL SIMULATION OF PLASMA COMPRESSION BY 
A SHELL 

To study the dynamics of plasma compression by a shell 
under real conditions, when the flow as a whole is not self- 
similar, the system (2.1)-(2.5) was solved with a computer. 
We used in the numerical calculations the general (and not 
the asymptotic as in Secs. 3 and 4) expressions for the trans- 
port coefficient of a classical plasma.1° To clarify the influ- 
ence of the shell on the compression of a magnetic field, 
several models of the shell were used. We considered an in- 
compressible and nonconducting shell with specified mass 
per unit length along thez axis and with two limiting plasma- 
compression thermal regimes: 1) The heat capacity of the 
shell was assumed to be zero and a zero temperature gradient 
was postulated on its boundary (this corresponds exactly to 
the boundary conditions for the self-similar solutions of Sec. 
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3 and 4). 2) The shell heat capacity Csh was assumed to be 
infinite, and the thermal contact of the plasma with the shell 
ideal, i.e., the plasma temperature at the boundary was 
maintained at a specified constant level during the entire 
compression process. The second limiting case considered 
for the purpose of assessing the role of the compressibility 
and conductivity of the shell was an idealized model of an 
initially cold (TSh(0) = 0.3 eV) plasma shell with an ideal- 
plasma equation of state 

P= (Z,+I) E, 8= (Zsh+l) PRT 
Ash (~-1)Ash 

(5.1) 

(R is the gas constant, Ash and Zsh are respectively the atom- 
ic weight of the shell material and the average ion charge in 
the shell) and with plasma transport coefficients. 

Equations (2.1)-(2.5) were integrated with initial condi- 
tions corresponding to a plasma cylinder that is uniform and 
immobile at t = 0: 

u=O, H=Ho, T=To, Q'Po. (5.2) 

The boundary conditions in the plasma at r = 0 are: 

u=O, aH/ar=O, dT/Br=O. (5.3) 

For a plasma shell, no additional conditions are necessary at 
the plasma-shell interface r = R - (t ). It suffices that the 
mass, momentum, and energy fluxes as well as the tangential 
components of the electric and magnetic field components 
be continuous. In this case the second boundary condition is 
imposed on the outer boundary of the shell, at r = R +(t ): 

aT/dr=O, H=H,. (5.4) 

The shell is set in motion by a pressure pulse acting on 
its outer surface 

P, sin ( n t l ~ )  , O<~<T 
T<t ' 

where P,,, is the maximum pressure and r is the pressure- 
pulse duration. For a shell accelerated by a laser beam with 
flux density J ,  the pressure was estimated from the for- 
mula'." 

Equations (2.1)-(2.5) cannot be solved for the case of an 
incompressible shell, and it assumed that inside the shell 
H (r) = H, = const. In this case the boundary conditions 
were set only for the plasma on the inner shell boundary 
r = R - ( t ) ,  in the form 

H=Ho, (5.7) 

where m is the mass per unit length of the shell, and P,, is the 
plasma pressure on the boundary with the shell. 

The plasma and the shell were assumed transparent to 
the radiation of the plasma proper. The radiative losses in 
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(2.5) were assumed to be of the form 

Q,=Q*+Q.; (5.10) 

the expressions used for the energy carried away by the 
bremsstrahlung (Q,) and by the synchrotron radiation (Q, ) 
were 

The integration was in terms of Lagrangian coordi- 
nates, which are the most convenient for numerical solution 
of one-dimensional magnetohydrodynamics problems. The 
system (2.1)-(2.5) was approximated by a fully conservative 
difference scheme accurate to second order in time and 
space, and constituting a modification of the scheme of Ref. 
13 with account taken of the thermogalvanomagnetic effects 
and of the thermal conductivity of the plasma. The obtained 
system of difference equations was solved by simple iter- 
ation. Neumann viscosity was used to smooth out the dis- 
continuities in the scheme. 

The calculation program was verified against the self- 
similar solutions. By way of example, the difference between 
the numerical and the self-similar solutions did not exceed 
1% right up to a twofold radial compression of the plasma. 

The results of the numerical integration are shown in 
Figs. 2-6. Figure 2 shows the time dependence of the varia- 
bles that characterize the plasma and magnetic-field com- 
pression (the values of H, n, and Tin this figure are referred 
to the cylinder axis r = 0) for a variant with a plasma shell 
whose initial kinetic energy per centimeter of length was 
E, = 3.0 kJ/cm. The shell mass in this variant was m = 0.35 
mg/cm, the initial radius R, = 0.95 mm, and the initial den- 
sity and temperature of the plasma were respectively 1019 
cmP3 and 20 eV. It can be seen from Fig. 2 that the magnetic 
pulse duration at a level on the order of 100 MOe is about 1 
ns. The asymmetry of the compression and of the expansion 
(the rate of expansion was lower than that of the compres- 
sion) was due to magnetic-flux losses that lowered the elasti- 
city of the plasma with the magnetic field during the course 
of compression. The magnetic field frozen in the expanding 
plasma becomes lower during the expansion than the mag- 
netic field H, = 0.2 MOe outside the shell. 

The calculations have shown that the equation of state 

roo 

8 10 
E 
Z 

7 

FIG. 2. Time variation of the plasma magnetic field, temperature, and 
density, of the plasma-boundary radius R and velocity v, and of the rela- 
tive increase of the density in the boundary layer as the plasma with the 
magnetic field are compressed by a plasma shell with energy E,, = 1.8 kJ/ 
cm. 

of the shell has little effect on the compression of the magnet- 
ic field. In particular, the conductivity of the shell itself in- 
fluences little the confinement of the magnetic flux. Thus, 
for example, calculations with a plasma shell whose Cou- 
lomb conductivity was artificially lowered by two orders of 
magnitude, yielded a less than 10% increase of the magnetic- 
flux loss. The result of a substantial change of the average 
charge Z,, of the ions in the shell is similar. The thermal 
regime of the shell also affects the field-compression hydro- 
dynamics little. Calculations for both variants with incom- 
pressible shell, mentioned above, yield a compression pic- 

FIG. 3. Evolution of density profile in compression of a 
8,61 plasma by a shell under conditions of Fig. 2: a-initial 

compression stage, formation of boundary layer; b--near 
the maximum compression. 
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FIG. 4. Plot of Rm,, vs Rm, for self-similar solutions corresponding to 
nonmagnetized and fully magnetized plasma (solid curves I and 2): the 
dashed curves represent the estimates (3.40) and (4.11). The points corre- 
spond to the results of the numerical calculations at various instants of 
time during the compression stage; Cincompressible shell with zero 
heat capacity; O--incompressible shell with infinite heat capacity. The 
remaining parameters are the same as in Fig. 3. 

ture that differ from Fig. 2 by not more than several percent. 
Thus, the principal parameter that determines the compres- 
sion of the magnetic field by the shell is the ratio S of the 
initial magnetic energy inside the shell to the initial kinetic 
energy of the shell, thus supporting the estimates given in 
Refs. 1 and 4. We note that if the shell length L k 1 cm, the 
plasma escape through the end faces of the shell can be ne- 
glected. For example, an estimate for the integral relative 
fraction of the mass ejected in the compression variant corre- 
sponding to Fig. 2 by the instant t = 15 ns of shell expansion 
does not exceed 10% (here L = 1 cm). 

The most important factor for confinement of the mag- 
netic flux and compression of the magnetic field is the forma- 
tion of a narrow boundary layer in the plasma near the shell. 

The plasma density in this layer is several times higher than 
the almost homogeneous density in the internal region (as 
seen from Fig. 2, the ratio n(R )/n(O) during the entire com- 
pression process is in the interval 4-25). The formation of the 
boundary layer is illustrated in Fig. 3. It is formed already 
during the initial stages of the compression, and once the 
boundary layer in which the plasma pressure balances the 
magnetic pressure on the axis is formed, the flow becomes 
similar to that of the self-similar solutions discussed in Secs. 
3 and 4 above. This is shown in Fig. 4, which shows for 
comparison plots of Rm,, vs Rm, corresponding to the self- 
similar solutions for a nonmagnetized and fully magnetized 
plasma. It can be seen from Fig. 4 that the magnetic Reyn- 
olds numbers obtained by numerical calculations at various 
instants of plasma compression by an incompressible shell in 
both variants of its thermal regime agree well with the self- 
similar solutions. Better agreement is observed for solution 
1, which corresponds to the same boundary conditions as in 
the self-similar solutions. In regime 2 (C,, = G O )  the magnet- 
ic-field and temperatures in the immediate vicinity of the 
shell have the same direction and this, as is clear from Eq. 
(4. I), leads to an effective increase of the magnetic viscosity 
and to a corresponding decrease of Rm,,. 

Figure 5 shows the magnetic field profiles in the course 
of plasma compression by a shell. The nonuniformities of 
these profiles are due to the passage of sound waves through 
the plasma and to the associated oscillations of the magnetic 
field frozen into the plasma. On the whole, these profiles, 
just as the temperature profiles shown in Fig. 6, are qualita- 
tively similar to the self-similar solutions considered in Secs. 
3 and 4. 

6. CONCLUSION 

The analytic and numerical calculation show that a 
magnetic field frozen in a plasma can be effectively com- 
pressed by a collapsing shell. An essential fact is that, in 
contrast to implosive magnetic-field generators, the purpose 
of the shell here is to transfer its kinetic energy to the com- 
pressed plasma with the magnetic field. The contribution of 
the shell to the confinement of the magnetic flux is not signif- 

FIG. 5. Evolution of magnetic-field profile in plasma 
compression by a shell under the same conditions as in 
Fig. 3. 

r, mm~ 
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icant here. Thus, many restrictions, such as the bursting of 
the skin layer in a metallic shell and others, applicable to 
implosive magnetic-field genrators, do not arise here. 

It is readily seen from the parmeters shown in Fig. 3 
that at least the fundamental mode of the Rayleigh-Taylor 
instability cannot develop in the time available to stop the 
shell when the field is compressed. 

It can be seen from the calculation results that although 
formation of a boundary layer near the shell does lead to an 
anomalously rapid loss of magnetic flux, nonetheless at rea- 
sonable values of the plasma and shell parameters the rela- 
tive magnetic-field losses incurred in plasma compression 
are low. This confirms the energy estimates given in Refs. 1- 
4 and is an argument in favor of the technical feasibility of 
generating magnetic-field pulses of amplitude on the order 
of 100 MOe by the method discussed here. In particular, to 
obtain a magnetic-field pulse with H,,, = 25 MOe of 3 ns 
duration at the 20 MOe level, a shell with inside diameter 2 
mm must receive an initial kinetic energy 200 J/cm at an 
initial field H,  = 0.1 MOe inside the plasma. It can also be 
shown that the turbulization of a hot plasma upon compres- 

FIG. 6. Evolution of temperature profile in plasma com- 
pression by a shell under the same conditions as in Fig. 3. 

with the numerical calculation. We are also grateful to S. 
I.Anisimov, Ya. B. Zel'dovich, S. P. Kapitsa, and M. I. Tri- 
bel'skii for numerous helpful discussions. 

" ~ a ~ c o r  Co., San Diego, Cal., USA. 
 he authors thank G. A. Askar'yan for calling their attention to Refs. 5 
and 6. 

'M. A. Liberman and A. L. Velikovich, J. Plasma Phys. 31, 381 (1984). 
'G. D. Bogomolov, A. L. Velikovich, and M. A. Liberman, Pis'ma Zh. 
Tekh. Fiz. 9, 748 (1983) [Sov. J. Tech. Phys. Lett. 9, 322 (198311. 

'F. S. Felber, Western Research Corp. Report WRC-676-V, September 
1983. 

4F. S. Felber, M. A. Liberman, and A. L. Velikovich, Appl. Phys. Lett. - -  ~ 

(1985) (to b; published). 
'G. A. Askar'van. V. A. Namiot, and M. S. Rabinovich, Pis'ma Zh. Eksp. 
Teor. Fiz. I< 597 (1973) [JETP Lett. 17,424 (1973)l. 

6G. A. Askar'yan, ibid. 28, 322 (1977) [28, 296 (197711. 
'G. H. McCall, Plasma Phys. 25, 237 (1983). 
'H. Knoepfel, Pulsed High-Energy Fields, North Holland, 1970). 
9G. E. Vekshtein, Dokl Akad. Nauk SSSR 271, 98 (1983) [Sov. Phys. 
Doklady 28, 569 (1983)l. 

1°S. I.Braginskii, Voprosy teorii plazmy (Problems of Plasma Theory), 
Vol. 1, Atomizdat, 1963, p. 183. 

I'D. Saltzman. S. Eliezer. A. D. Mrumbein, and L. Gitter, Phys. Rev. 
sion has a negligible effect on the situation and increases the A28, 1738 (1983). 

rnagnetic-flux loss little compared with the reported calcula- I2A. A. Samarskii and Yu. P. Popov, Raznostnye skhemy gazovoi dim- 
miki (Difference Schemes in Gasdynamics), Nauka, 1975. 

tions with classical plasma-transport coefficients. 
The authors thank A. B. Konstantinov for great help Translated by J. G. Adashko 

269 Sov. Phys. JETP 61 (2), February 1985 Velikovich eta/. 269 


