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The dynamics of self-focusing of quasioptic beams is analytically investigated within the frame- 
work of the nonlinear Schrodinger equation. It is proved that the manifold of the self-similar 
solutions is asymptotically stable. The manifestation of the stability is that the energy influx into 
the singularity is equal to the critical flux. A procedure is proposed for deriving a set of equations 
that is equivalent to the nonlinear Schrodinger equation and yields explicitly the focusable and 
nonfocusable components of the beam field. The character of the singularity in the case of self- 
focusing is analyzed within the framework of this set of equations. 

91. INTRODUCTION 

A large class of physical phenomena is described, under 
certain assumptions, by a nonlinear Schrodinger equation. 
These include self-focusing of quasioptic light beams (see, 
e.g., the reviews by Askar'yan' and by Prokhorov and Lugo- 
voi," electron-phonon interaction in  solid^,^ self-focusing of 
various waves in a p l a ~ m a , ~  and others. In terms of nondi- 
mensional variables, the equation for all the foregoing prob- 
lems can be reduced to the form 

where u(x,y,t ) is the nondimensionalized field amplitude; x, 
y, and t are the nondimensionalized coordinates. 

The solution of Eqs. (1.1) becomes infinite within a fin- 
ite time to under a large class of initial conditions. Numerical 
calculations (see, e.g., Refs. 5-7) show that the character of 
this singularity is such that the energy flux 

into the singularity is of the order of the critical PC, z 1 1.86. 
An exact interpretation of Po entails certain difficulties. It is 
therefore of interest to solve this problem analytically. It is 
shown in the present paper that the field distribution real- 
ized near the singularity (t -+ to) is asymptotically close to 
the Townes distribution,' in which case Po = PC,. The law 
governing the variation of the beam width a(t ) is derived in 
passim. 

For the reader's convenience, we summarize briefly the 
content of the paper. Its main idea is the following. As shown 
in Ref. 9, Eq. (1.1) has a three-parameter manifold of self- 
similar solutions (2.1). We propose that the solution of our 
problem near the instant of singularity formation is close to a 
distribution of type (2. I), except that unlike in (2.1) the law 
governing the variation of the width a(t ) is determined from 
the requirement that the distribution be stable in the linear 
approximation in the perturbation. In lieu of the initial equa- 
tion (1. l )  we arrive thus at an equivalent system of nonlinear 
equations [(3.12), (3.14) and (3.15)] for the amplitude and 
width of the distribution (2.1) (of the "peak") and for the 
perturbations orthogonal to it (the "background"). This sys- 
tem is derived by using essentially the results of Ref. 9, where 
it is shown that a lens transformation changes the entire 
manifold of the self-similar solutions (2.1) into the homogen- 

eous beam (2.3). With allowance for this fact, the linearized 
problem is analyzed in $2 using the results of Ref. 10, in 
which the unstable modes were found. The requirement that 
the amplitudes of these modes vanish along the entire focus- 
ing path do in fact lead to Eq. (3.14) for the peak width a(t  ) 
and to Eq. (3.1) for its amplitude. 

The solution of the system (3.12), (3.14), and (3.15) is 
further simplified by a property revealed by analysis of the 
spectrum of the linearized problem (§2), viz., the presence of 
a broad band ( -  1/2a2) between the lines of the discrete spec- 
trum and the boundary of the continuous spectrum. This 
permits, first, the self-action of the perturbations to be ne- 
glected in the analysis of the behavior of the solution near the 
instant of singularity formation (following the lens transfor- 
mation (3. I), this instant corresponds to T + m).  This means 
that Eq. (3.15) can be solved in the linear approximation, and 
this is readily achieved with the aid of relations (2.34)-(2.37). 
Second, the slow variation of the background: 

permits Eqs. (3.14) and (3.15) to be averaged over the high 
frequency wo = 1/2a2 of the peak. 

In §§4 and 5 is analyzed the behavior of the solution 
near the instant of singularity formation (t  + to, i.e., 
T -t w) .  Two characteristic focusing regimes are observed 
here. First, (§4), if the peak amplitude differs only little from 
unity from the very beginning (the energy flux in the peak is 
close to critical), so that notwithstanding the rapid spreading 
of the background the excess photons manage to be reradiat- 
ed into the background via nonlinear parametric interaction 
directly in the region of the peak, then the law governing the 
singularity (the quantity A in the relation a(t  ) oc (to - t )" ) is 
close to the linear (4.11). If, however, the initial background 
is small, the principal effect is the emission, by tunneling, of 
the peak field into the background through an opacity region 
whose size is proportional to d 'a/dt ($5). The singularity 
exponent A is then close to 4 [Eq. (5.17)], in good agreement 
with the results of Refs. 5-7. 

92. INDIFFERENT STABILITY OF MANIFOLD OF SELF- 
SIMILAR-SOLUTIONS 

Equation (1.1) has an important class of exact solu- 
tions9-the manifold of self-similar solutions 
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where $,, a,  and a = const are parameters of the manifold; 
p,(r) is the localized positive solution of the ordinary differ- 
ential equations 

The manifold (3.1) plays the same role in self-focusing theory 
as the solitons in the one-dimensional problem, which are 
typical of the asymptotic form of the initial problem. 

The most important properties of the solution (2.2) 

are that it is extremal in the following problem. Assume that 
we are interested in the ground state with energy Eo in a two- 
dimensional problem described by the stationary Schro- 
dinger equation: 

[A+u(r) l$=E$ (2.4) 

under the condition that 

1 -1 U2dr=N = const, dr=dz dy. 
2 

For which potential U(r) is the maximum of Eo realized at 
constant N? We multiply (2.4) by $* and integrate with re- 
spect to r. Obvious transformations yield 

Eo = max 
SUlg12dr-51 Vg12dr 

U s *  Sl+l"r N=const 

Assuming that the distribution of interest to us is sym- 
metric (this can be demonstrated), we have 

We note that equality in (2.7) is realized at 

U=const. 1111 '. (2.8) 

On the other hand, it is easy to show that 

Indeed, it is known (see, e.g., Ref. 12) that the functional 
sl$I4dr is bounded from above by an inequality such as (2.9). 
The exact value of the constant can be established by noting 
that $ = u, [Eq. (2.3)] changes (2.9) into an equality and is a 
solution of the corresponding variational problem. 

Substituting (2.7) and (2.8) in (2.6) we have 

Taking (2.8) into account, we easily verify that equality in 
(2.10) is reached at 

U=u,Z, (2.11) 

when 
max Eo=l/az 

Thus, the set (2.11) and (2.12) solves the problem (2.4) and 
(2.5). The equation for the sought fundamental mode re- 
duces,'' of course, to (2.2). 

It follows from this reasoning, in particular, that if (1.1) 
is regarded as a Schrodinger equation with potential 
U = ju(r,t ) l 2  the distribution (2.3) maximizes the natural fre- 
quency of the fundamental modes at a fixed value of 

On this basis we can expect this manifold to be stable, i.e., 
that small perturbations do not grow. 

To verify this, we discuss now the properties of the Ha- 
miltonian H [u] of Eq. (1. l): 

on near-Townes distributions. Let 

We substitute (2.15) in (2.14). Recognizing that 

we have accurate to terms of second order in u 

It is easy to verify that the ground state [the minimum of 
(2.16)] at P, = Slu, I2dr = const is realized if 

~,~=8u,/da, (2.18) 

wherein 

Indeed, substituting 
u,=y+iq 

in (2.16) and (2.18), we get 

On the other hand, substituting (2.15) in (2.9) and recogniz- 
ing that u, makes (2.9) a rigorous equality, we have 

PI  =-HZ[u,]- -< 0. 
a2 -- 

Putting 

and taking (2.19) into account, we have 

It follows hence, in particular, that the homogeneous beam 
(2.3) is stable (in the linearized approximation) to exponen- 
tially growing small perturbations (this results was obtained 
numerically in Ref. 13). 
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To conclude this section, we discuss the spectral prop- 
erties of the linearized problem. Substituting in (1.1) 

u= (u,+u,) exp ( i t /2a2)  

and separating the terms linear in u , ,  we have 

At the initial instant of time we have 

2 Ed.q.eimt+q06 ( t )  =O, 

Taking the scalar product of (2.35) and the vector (q,, 7,) 
and integrating with respect to r, we get with allowance for 
(2.32) 

Here j, ensures orthogonality of uT and u , .  The explicit 
form ofj, is obtained after multiplying (2.24) by uT and inte- 
grating with respect to r. Separating the real and imaginary 
parts in (2.24) 

u=q+iq, (2.25) 

Recognizing now that q, and 7, are pure real, we obtain 
from (2.36) and (2.34) ultimately 

q ( r , t ) = x  C.q. cos a t ,  q ( r ,  1 )  =x C.q. sin ot. (2.37) we have 

§3. DERIVATION OF ABBREVIATED EQUATIONS 

We now obtain, for the width of the peak and for the 
background, abbreviated equations based on the require- 
ment that the manifold of solutions of type (2.1) be stable. We 
note first that in the case of the manifold (2.  I ) ,  when a-0 the 
lens transformation with arbitrary variation of a( t  ) 

i 

Since the solution of (2.26) is exponentially stable, it is expe- 
dient to seek the eigenvector of this problem in the form 

In this case we have for q, and 7, the system of equations 

Llq,=2wq.+j,[q.], Loq.=20q.. (2.28) which leads to the equation 
(3.1) 

Taking (2.23) into account, we have therefore 

transforms the manifold and all the focused beams into a 
homogeneous beam8: 

V 0 ( L  . t )=(po(E)exp( i~ /2) .  (3.3) 

Within the framework of (3.2), the stability condition 
means that if the solution is sought in the form 

V=Co(po+V, exp ( i z / 2 ) ,  (3.4) 

It can be seen from (2.29) that the eigenvalue w are pure real. 
In addition, inasmuch as according to (2.28) 

q-u=qu, q-o=-qwl (2.30) 

it suffices to discuss the linear-problem spectrum properties 
at w > 0. 

The spectrum point o = 0 is the ground state and corre- 
sponds to the eigenvector (2.18) the "lens" in (3.2), specified by the coefficient 12/<5, should 

be chosen such that the initially small perturbations V, (6 ,O)  
and ICOl2 - 1 not grow any more. 

Moreover, if we stipulate that a pure Townes mode be 
separated as t + to (the instant at which the singularity cor- 
responding to r + m ), we must have I COl2 -+ 1 and V, + 0. 
This means that 6; + 0 as r + m ,  with 6; decreasing 
quite rapidly. Indeed, if 

a ( t )  ="(to-t)",  (3.5) 

)/2 du, 
q. = -- , i.=o, a:, -J r2qOzda. (2.31) 

Eeff 

Note that for Eqs. (2.26) this solution corresponds to a mode 
that increases with time: 

It is easy to deduce from (2.27) the completeness rela- 
tion for the eigenfunction system 

5 q a * q w ~  d d - c . ~ .  -6 (a-a') . (2.32) 

Taking (2.32) into account, we can find the solution of 
the initial linearized problem (2.26). If 

u,(rr 0 )  =qo ( r )  f i q o  ( r ) ,  (2.33) 

we seek the solution of (2.26) in the form 
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It can be seen from (3.6) that we are dealing with a defo- 
cusing lens at 0 <A< 1 and with a focusing one at A > 1. 
Since P > PC, for focusing, dispersal of the background calls 
for a defocusing lens, so that as t -+ to we should have 

' / z < p < l .  (3.9) 

Nor is the strict equality A = I possible, since at a distant 
0 < T < t4, at a constant lens strength, the tunneling through 
the barrier (2/65 causes the "peak" also to disperse. Under 
the conditions (3.8), however, the tunneling effect is expon- 
entially small. In principle, therefore, the law obtained in 
Refs. 5 and 7 is not prohibited by this effect. We shall show 
later that as t -+ to, depending on the initial conditions, A 
tends either to 1 or to 4. 

Having made these remarks, we continue the derivation 
of the abbreviated equations. Substituting (3.3) and (3.4) in 
(3.2) we obtain 

[2idCo/d~+r,-2E2Co+ 2 (ICo )'--I) cp2C0 
+2I V,I 'Co]  Vo+V,2CO*T70*+2idVL/d~ 

+ (A+21Co12rp02-1) V l +  (CoZVo2+ I v,l2) VL=-E~VL/E?. 
(3.10) 

The equations of interest to us for the amplitude C, of 
the peak, its width a, and the background field V, are ob- 
tained from (3.10) when account is taken of the properties, 
known to us from 52, of the linearized-problem solutions. 
Since V, is orthogonal to p, by assumption: 

j v,qo ar-o, (3.11) 

after multiplying (3.10) by p,({) and integrating with respect 
to 6 we arrive at an equation for C,: 

( 2 i d / d r + ~  e: /g:) copcr+ j ( ~ U + E . - ~ E ~ V L )  T O  dg-0, 
(3.12) 

su= ( ~ C o ~ , + V , I Z - 9 : )  (CO(pO+V~). 

The equation for the width of the peak is obtained from the 
condition that the amplitude of the unstable mode (2.31) be 
identically zero. To satisfy this condition we must, accord- 
ing to (2.31) and (2.36), multiply (3.10) by 

integrate with respect to 6, and take the real part of the re- 
sult. We get then 

The multiplication by C,* in (3.13) takes into account the fact 
that the phases of the eigenmodes of the linearized problem 
in $2 were reckoned from the phase of the field at the peak. 

Finally, a third equation is obtained from (3.10) for the 
background V, by taking the orthogonality condition (3.11) 
into account: 

The currentj, is determined here by the condition (3.11) that 
the kackground and the peak field be orthogonal. The opera- 
tor Lo = A + (pi - 1) is the same as in the linearized prob- 
lem (2.21). 

The system (3.12), (3.14), and (3.15) is fully equivalent to 
Eq. (1.1). The initial conditions for V(~ ,T )  must be chosen 
here in a strictly prescribed manner, so that C,(O), a(0) and 
a(0) are defined. For simplicity we present the required rela- 
tions only for the particular case of initially axisymmetric 
beams with plane phase fronts: 

The first equation in (3.16) is in fact the equation for a,. It 
follows formally from the condition that the unstable mode 
(2.3 1) of the linearized problem not be contained in V, at the 
initial instant. 

In contrast to (1.1), the system (3.12), (3.14-3.16) lends 
itself readily to analysis because of the explicit resolution of 
the total field into focusing and dispersing components. In 
particular, in the case of weak supercriticality, 
( (C,(' - 1 ( ( 1 the dynamics of the entire focusing process 
can be tracked from the beginning up to the instant when the 
singularity is formed. In this important case2' the system 
(3.12), (3.14), (3.15) can be greatly simplified since back- 
ground self-action effects (the term I V, I2V, in (3.11)) can be 
neglected. The point is that if the background self-action is 
small at the initial instant t = 0, it can subsequently only 
weaken because of the rapid "dispersal" of the background 
out the region of interaction with the peaks.3' In the analysis 
of the background-field dynamics near the instant of singu- 
larity formation we can therefore confine ourselves to the 
approximation linear in the background. On the other hand, 
this enables us to simplify also Eq. (3.14) for the width of the 
peak. When account is taken of the background dispersal, 
this equation takes the form 

We have averaged here over the period T of the fast peak- 
field oscillations, during which the background changes lit- 
tle. It can be seen that the peak focusing is due both to the 
degree of its supercriticality ( I  COl2 - 1 #0) and to the back- 
ground lens.4' 

Before we proceed with the analysis, notice must be tak- 
en of the possibility of emission of peak-field photons. This is 
due, on the one hand, to the direct parametric interaction of 
the background with the peak (to the term in (3.10) which is 
quadratic in the background), and on the other hand to the 
possibility of tunnel emission through the potential barrier 
12/6f at T - c~ (t - to), i.e., to asymptotic stability of the 
manifold of self-similar solutions (2.1). However, depending 
on which of these channels is decisive in the dynamics of the 
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emission, two different regimes of variation of a(t ) near the 
instant of singularity formation are possible. 

94. PEAK FOCUSING IN THE BACKGROUND FIELD 

We proceed now to an analysis of (3.17). We consider 
first the case I COl2 = 1. Returning to 8 from (3.17), we have 

According to (2.34) we have for V,, = q + i~ in the linear 
approximation 

where q, and 7, are eigenfunctions of the linearized prob- 
lem (see $2 for details). 

Since the main contribution to V,, ( 6 , ~ )  as T + cc is 
made by the low-frequency modes of the continuous spec- 
trum (k 5 l/r), we shall examine the structure of these 
modes in greater detail. The asymptotic form of these modes 
at 6 ) 1 is obvious: 

qkzJo (kE) ak+No ( k t )  P A ,  (4.3) 

where Jo and No are Bessel functions. The condition for nor- 
malization of the eigenfunctions of the continuous spectrum 
yields one constraint on a, and P, : 

lak l z+ l~klz=l .  (4.4) 

To assess the structure of the eigenmodes at k ( 1 we can 
reason as follows. Assume that we have found at k = 0 a 
solution of qo of the system (2.3) with initial conditions 
qO(0) = 1 and q'(0) = 0. Clearly, at 6) 1 we have 

q0 ( E )  =yo+60 In E .  (4.5) 

On the other hand, if k ( 1 we have 

yk=yO+0 ( k Z )  , 6 ~ = 6 ~ + 0  ( k Z )  . (4.6) 

This means that at k ( 1 the functions q, (4.3) are close to go 
at 6 2 1. The normalized functions take therefore in this re- 
gion the form 

qk=Ck(y0+60 In E), E - 4 .  (4.7) 

With account taken of (4.4) we have then 

Ifwe now asume that So# 0, i.e., that the mode does not 
belong to the discrete spectrum, we get at k ( 1 

C,"-[soz ln"(rkl2) I-'. (4.9) 

Estimating now (4.1) under the assumption, say, that 

Ck (0) = (P,lnbZ) exp ( -k2bz /4) ,  

where b is the characteristic initial width of the background, 
it is easy to verify that Q a /1r21n2r and 

Thus, if the fundamental mode is not overexcited at the ini- 
tial instant of time (/COl2 = I), the singularity exponent 
A + l a s r - + ~ .  

95. SELF-FOCUSING IN THE TUNNELING EMISSION OF THE 
PEAK 

We proceed now to analyze the case 

~ C o ~ z - l ~ o .  (5.11 

The analysis of the preceding section did not touch 
upon at all on questions connected with photon spillover 
from the modes of the discrete spectrum into the continuum 
(nonadiabatic effects). This is formally possible if the total 
number of photons (the sum of the occupation numbers) of 
the discrete modes is exactly equal to PC,. 

Indeed, the problem involves two discrete-spectrum 
modes, the Townes mode and the fundamental mode of the 
linearized problem. The frequencies of these modes are sepa- 
rated in the spectrum from the continuum frequencies (in 
terms of which V,, is expanded) by the large quantity Am 2 1. 
The photons can spill over into the continuum in two ways. 
First, via the parametric effect [the terms a V :  in (3.10)]. 
This effect is relatively weak. Simple quantum-mechanical 
estimates show that this effect changes little the number of 
photons in the discrete modes: 

It can be seen from (5.1) that at Po - PC, and / V,, 1 < E~/T ,  
where E is a small parameter, 

APmos-o (e4Pcr). (5.3) 

This means that, in the scope of this effect, a larger number 
of photons than PC, remains in the discrete spectrum if 
AP, > AP,,, . For the estimates of $4 to be valid it is thus 
necessary, accurate to (5.3), to have Po = PC,. 

If, however, the supercriticality of the mode is low but 
finite, for example if 

another photon spillover mechanism becomes substantial. 
The point is that in this case it is necessary to take into ac- 
count in (3.10) and thereafter a perturbation of the form 

This introduces in (3.25) an additional term 

In the r, t representation this term takes the form 

It is precisely this part of the "potential energy" that deter- 
mines the focusing process in this case. According to (5.8), if 
weneglect initially the change of I COl2, it is easy to verify that 
as t - to we have a(t ) a (to - t )h . As already noted above 
($3), however, this law leads automatically to tuneling emis- 
sion of the fundamental mode. Indeed, when the lens is taken 
into account in (3.2), the effective dielectric constant for the 
fundamental mode is 
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E ,.ff -(po2+Er-2E2-1. ( 5 . 9 )  

In our case of a defocusing lens we have <: > 0 ,  and conse- 
quently at f: = const there exist no strictly trapped modes. 
We have seen that f, $ 1 and therefore the tunneling is ex- 
ponentially weak. The "translucence point" f r  is obtained 
from the resonance condition 

E ,ff.=O1 E=Er.  (5 .10 )  

It is now easy to estimate the change of the number of pho- 
tons produced in the fundamental modes by the tunnel ef- 
fect: 

Here 6, @(<,) is an inessential factor that precedes the expo- 
nential and is determined by the swelling effect and by the 
group velocity. 

The field at the point 6 = f, can be obtained from the 
asymptotic form of the fundamental mode at f, > 1 :  

cpoZ(E,)=A exp(--nEr/2), A-I .  (5 .12 )  

To make the problem self-contained, we express ff of (3 .10 )  
in terms of (5 .8 ) :  

Er"E;r /( I ~ O I ~ - ~ ) P ~ ~ .  (5 .13 )  

Substituting ( 5 . 1 3 )  in (5 .11 )  we get 

This shows that as r -+ w we have with logarithmic accura- 
CY 

( C , 1 2 - l ~ ~ l / l n 2  7. (5 .15 )  

Recognizing that T cc ln ( t ,  - t  ) - I ,  we obtain ultimately 
from ( 5 . 8 )  

56. CONCLUSION 

The power influx into the singularity in the case of self 
focusing is exactly equal to PC,. The exponent A of the singu- 
larity in the relation a ( t  ) cc ( to  - t  can be close both to 1 
and to 4. We have found that the relation A =:h is more ap- 

proximate from the viewpoint of the permissible initial con- 
ditions. The qualitative reason is that we were unable to find 
for the parametric spillover of the photons from the peak 
into the background in the immediate vicinity of the peak a 
mechanism more effective than that described at the start of 
$5 .  The feasibility of such a mechanism is still moot. It is 
desirable at any rate to analyze the perturbation of the spec- 
tral characteristics of the linearized problem with account 
taken of weak supercriticality of the peak. Do lines corre- 
sponding to growing perturbations appear at C i  - l # O  
near the boundary of the continuous spectrum? 
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"Similar properties appear also in the one- and three- dimensional prob- 
lems. 

"AS follows from the numerical experiments, / COl2 - 1 1 near the instant 
of singularity formation even for beams with P > PC,. 

"The presence of a defocusing lens in Eq. (3.19) only accelerates the disper- 
sal of the background. 

4)We note that in the problem of focusing of a beam in an inhomogeneous 
medium 2i(du/dt ) + Au + 1 u I2u + @(r,t )u = 0 similar operations lead 
to (3.17) in which U is supplemented by the term [J(-/dl)& id{ ]/ 
2<f,. In the particular case @ = a(t)? this leads to an exact class of self- 
similar solutions (2.1) with width a(t  ) satisfying the equation a = aa .  
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