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The bremsstrahlung emitted during the collision of a relativistic charged particle with a complex 
atom is analyzed. The target atom is treated as a dynamic system having internal degrees of 
freedom. The basic characteristics of the emission are derived for photon frequencies on the order 
of the ionization potential of the atom. These characteristics are the spectrum of the emitted 
photons, the angular distributions of the electromagnetic radiation and of the scattered particles, 
and the polarization of the radiation. The bremsstrahlung cross section that is differential with 
respect to the photon energy increases logarithmically with the energy of the incident particle. 

1. INTRODUCTION 

Until recently, the electromagnetic radiation resulting 
from the collision of a particle with an atom has been de- 
scribed without consideration of the dynamic structure of 
the target atom. It has been assumed that the radiation oc- 
curs at a static atomic potential. The role played by the dy- 
namics of the atom in bremsstrahlung was first studied in the 
case of the hydrogen atom.' It was later shown that the dy- 
namic structure of the target atom is also important in more 
complex atoms.2 A study3 of the frequency region w)I (I is 
the ionization potential of the atom) showed that in this case 
the bremsstrahlung occurs essentially at the bare nucleus. 
Extremely simple expressions have been d e r i ~ e d ~ - ~  for the 
total cross section for the bremsstrahlung emitted in the col- 
lision of a particle with an atom, with the structure of the 
atom taken into account through the introduction of the dy- 
namic polarizability of the atom. 

These results, however, apply only at nonrelativistic en- 
ergies of the incident particle. In the present paper we de- 
scribe the bremsstrahlung emitted in collisions of a charged 
particle with an atom at arbitrary relativistic energies . 

We find that in this case, too, it is possible to derive 
some rather simple expressions for the bremsstrahlung cross 
section at photon frequencies w k I. The frequency region 
w)Iis studied separately for the ultrarelativistic case, where 
the situation differs substantially from the nonrelativistic 
case, because the composite system consisting of the incident 
electron and the atom cannot be treated in the dipole approx- 
imation. We find that the bremsstrahlung cross section in- 
creases logarithmically with the energy of the incident parti- 
cle, which may be an electron, a positron, or a heavy charged 
particle. This effect is due entirely to allowance for the inter- 
nal degrees of freedom of the target atom. 

condition holds for the incident and scattered electrons: 
Ze2/v< 1, where Z is the atomic number of the atom. In this 
case we can restrict the analysis to first-order perturbation 
theory in the interaction of the incident electron with the 
atom and in the interaction of the atomic and incident elec- 
trons with the electromagnetic field. The bremsstrahlung 
amplitude contains two terms: the "electron" bremsstrah- 
lung and the "atomic" brernsstrahlung.' The former de- 
scribes the radiation emitted by the incident electron as it 
moves through the static field of the atom, while the latter 
results from the emission of a photon by the atom itself when 
excited by the incident electron. 

We describe the electron before and after the collision 
by Dirac plane waves, while the motion of the atomic elec- 
trons is described by the nonrelativistic wave functions 
!P,, (r,;. . .; r,), which are the solutions of the Schrodinger 
equation for the atom. 

The amplitude of the electron bremsstrahlung is well 
known (Ref. 7, for example) and is given by 
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HereF(q,) is the form factor of the atom; 2 = y e, where e is 
the polarization vector of the photon; Us (p) is the bispinor 
amplitude; i k a ,  (p = 0,1,2,3); q, = p - pi - k, k is the 
photon wave vector; and e is the electron charge. 

To derive the amplitude for the atomic bremsstrahlung 
we assume that the frequency of the photon emitted by the 
atom is such that the dipole approximation is valid; i.e., we 
assume k ri -OR,, (1, where Rat is the size of the atom. 
Choosing the Green's function of the photon in the Coulomb - 

2. BREMSSTRAHLUNG AMPLITUDE FOR A RELAT~V~ST~C gauge, and assuming that the atom is nonrelativistic, we 
ELECTRON write the amplitude of the atomic bremsstrahlung in second- 

We consider the collision of an electron with an energy order perturbation theory as the sum of three terms: 

E = (p2 + m2)'I2 (we set ti = c = 1) with an atom in its s (at) = s ( I ) + s ( z ) + s ( ~ I .  

ground state. The interaction leaves the electron with an en- (2) 

ergy E ,  = (p: + m2)'I2 and results in the emission of a pho- Here 

ton of frequency w; the atom remains in its ground state. We 
assume that the energies of the electron and the photon sa- g ~ ) = -  p 

tisfy the inequalities E, ~ , ) w .  We also assume that the Born c2n)'*e x 
( E E ~ O ) " ~  m--anO 
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In (2a)-(2c), q = p - p, is the momentum transfer to the 
atom, the operator fici, = - id/dr,,, represents the momen- 
tum of the jth electron, lf is the 4-vector lf = us, @- 
,)y+' Us b), a repeated index means summation, s and s, are 
the spins of the electron before and after the collision, and 
the summation over n also means integration over states of 
the continuum. 

Calculations of the bremsstrahlung cross section with 
the help of amplitude (2) lead to exact but complicated re- 
sults. We can simplify S'"') by expressing it in terms of the 
dynamic polarizability of the atom. For this purpose we need 
to determine the range of the momentum transfer q. In the 
amplitude for the atomic bremsstrahlung q appears in the 
matrix elements between the wave functions of the atoms, 
(Oleiq"jln). For values of q such that q rj -qRat ) 1, these 
matrix elements contain a rapidly oscillating function and 
are therefore very small. The minimum value of q is related 
to the change in the energy of the incident electron, i.e., to 
the photon frequency w, by 

For values of w satisfying the condition o -oat (where 
mat is a typical atomic frequency), the inequality qmin Rat 1 
holds, since mat -vat /Rat and qmin Rat -vat /v=: vat /c( 1. 

There thus exists a region of q 2 q,, in which we can 
legitimately use the expansion 

eiqr,= l+iqr,. 

We will show below that, with logarithmic accuracy, this 
region dominates the cross section for the atomic brems- 
strahlung so that large distances between the incident elec- 

tron and the atom turn out to be important. Expanding the 
exponential function, we can put amplitude (2) in the form 

where a, (w) is the dynamic polarizability of the atom. The 
total bremsstrahlung amplitude is the sum of expressions (1) 
and (4). 

3. CHARACTERISTICS OF THE ATOMIC BREMSSTRAHLUNG 

Taking into account the atomic term in the amplitude, 
we can write the bremsstrahlung cross section as the sum of 
three terms: 

the electron part of the cross section, do("'), has been studied 
thoroughly, so we will focus on the atomic and interference 
parts of the cross section. 

a) Bremsstrahlung spectrum 

To derive an expression for the distribution of photons 
in frequency w, we first note that the interference term, 
ddint),  is negligibly small in comparison with the two other 
terms. The physical reason for this small value is that the 
atomic bremsstrahlung is dominated by the region of large 
distances between the incident electron and the atom 
(R)Rat ), while the electron bremsstrahlung is instead domi- 
nated by the short distances. The interference term can 
therefore be ignored in the total cross section. 

According to Ref. 7, the part of the cross section due to 
the atomic bremsstrahlung is 

where df2, is the solid angle into which the photon is emit- 
ted, and p,, is the azimuthal angle of p,. 

We substitute expression (4) into ( 5 ) ,  sum over the polar- 
izations of the photon and over the spins of the electron in 
the initial and final states, integrate over angles and over the 
momentum transfer between q = qmi, and some q,,, - 1/ 
Rat.  Because of the uncertainty in the upper limit on q, we 
write the result with logarithmic accuracy: 

We have discarded terms on the order of w /~ (1  from 
(6). It is the integration over the region q-q,, which is 
responsible for the logarithm of the large quantity V E /  

mwRat ~1 which appears here. For frequencies m ) I  and in 
the Thomas-Fermi approximation for Rat, expression (6) be- 
comes expression (2a) of Ref. 8. 

Expression (6) is an important result of this study. It 
generalizes a result of the nonrelativistic theory: If we set 
E = m in (6), we find the expression derived in Refs. 4-6. 
Cross section (6) increases logarithmically with increasing 
energy of the incident particle. At high velocities of the inci- 
dent particle, v 5 1, the electron part of the bremsstrahlung is 
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essentially independent of E. The total cross section, d d b ) /  
do, will therefore increase logarithmically with E. 

We derived cross section (6) in the logarithmic approxi- 
mation. For this derivation it is sufficient to retain the terms 
which are linear in q in the expansion of the exponential 
function eiq"l. The corrections to the cross section ddat)/dw 
which come from terms containing higher powers of the ex- 
pansion can be calculated for specific atoms, so that the arbi- 
trariness resulting from the introduction of Rat can be eli- 
minated. Here it is necessary to numerically calculate the 
matrix elements in (2) between wave functions of the atom. 

The use of the Coulomb gauge makes it possible to ex- 
plicitly determine the contributions to cross section (6) from 
the scalar (Coulomb) interaction between the incident elec- 
tron and the atom and from the vector interaction. The loga- 
rithm in (6) would accordingly be written in the form 

In (ve/moRat) =ln (elm) +In (~IaRat).  

The first term is the contribution of the transverse (vector) 
part of the electromagnetic interaction of the atomic elec- 
trons and the fast incident electron, while the second term is 
the contribution of the longitudinal (Coulomb) part of this 
interaction. With increasing energy, the first term becomes 
much larger than the second. 

b) Angular distribution of the electromagnetic radiation 

Integrating over the angular variables of the scattered 
electron in (S), we find 

doat e2m3 VE -- -- I ad (o )  I (l+cos2 0) ln - . 
do dQr nu2 moRat (7) 

Here 8 is the angle between the initial electron momentum 
and the photon emission direction. In deriving (7) we dis- 
carded terms of order w / ~ .  

The 8 dependence in (7) is the same as the angular distri- 
bution of the radiation from a rotating dipole. This distribu- 
tion differs substantially from that in the case in which the 
incident electron radiates; this radiation is primarily into a 
cone whose axis is along p and whose vertex angle decreases 
rapidly with increasing electron velocity. In the limit u+l, 
all the electron bremsstrahlung occurs in an angular interval 
m/&. The atomic bremsstrahlung in contrast, which is deter- 
mined by the dynamic polarization of the target atom, is 
distributed in a generally isotropic way over all directions, 
and its shape (1 + cos28 ) is independent of the electron ve- 
locity, with logarithmic accuracy. Incorporating the nonlo- 
garithmic terms in (7) makes the coefficients of cos28 and 1 
functions of the energy E. The complete angular distribution 
of the radiation can thus be characterized by a smooth angu- 
lar dependence at 8 > m / ~  and a sharp anisotropy at 8 5 m/ 
E. A similar photon angular distribution was first found by 
Hubbard and Ros9 for the case of the bremsstrahlung of an 
electron colliding with an atomic nucleus having a dynamic 
polarization. 

c) Angular distribution of the scattered electrons 

As the velocity of the incident electron increases, a 
structural feature appears in the angular distribution of scat- 

tered electrons. We begin by writing the differential cross 
section for the atomic bremsstrahlung as a function of the 
momentum transfer q = I ql : 

The denominator (q2 - w2) here leads to a definite shape of 
the angular distribution of the scattered electrons. As we 
have already noted, the minimum value of q is w/v, so that at 
v 5 1 the electrons will be scattered through extremely small 
angles. The contribution of the small-angle region to the to- 
tal cross section increases with increasing E. It is in this re- 
gion that d~(" ' )  is especially large in comparison with dde') . 
An increase in the role of atomic bremsstrahlung at relativis- 
tic velocities of the incident electron was noted by A m ~ s ' y a . ~  

A limit is imposed on the growth of the bremsstrahlung 
cross section in (8) at extremely small scattering angles by the 
inequality u < 1 (which always holds) and thus the inequality 

d) Polarization of the atomic bremsstrahlung 

To find the angular distribution of the polarized pho- 
tons in the scattering of unpolarized electrons by an atomic 
system, we choose the vectors e"' = [p, X k]/l [ px  k] 1 and 
e'2) = [k/w, e"'] as polarization unit vectors. We then find 

where 2, is the Stokes parameter averaged over the electron 
emission angle. The quantity 2, is a measure of the degree of 
linear polarization of the photon along the vectors e"' and 
e"): The polarization probability along e'" is (1/2)(1 + E,), 
while that along e"' is (1/2)(1 - 2,). Consequently, the radi- 
ation which is independent of the polarization of the incident 
electron turns out to be linearly polarized. The electron 
bremsstrahlung has the same property (see Ref. 7, for exam- 
ple). 

4. TOTAL BREMSSTRAHLUNG CROSS SECTION 

Let us examine the complete spectrum of bremsstrah- 
lung photons: 

Since the expression drF1)/dw for arbitrary electron ve- 
locities is quite complicated, we consider only the ultrarela- 
tivistic limit. We show that in this limit the cross section 
ddb)/dw is fundamentally different from that in the nonrela- 
tivistic case. 

To find the expression for du'"')/dw in the ultrarelati- 
vistic limit, we set v = 1 in (6): 

The corresponding expression for the electron component 
has been found previously (see Ref. 7, for example): 
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The logarithm ln(mRat ) appears here because we are taking 
the screening of the nucleus by the atomic electrons into 
account; re is the classical radius of the electron. Terms of 
order W/E have been discarded from (10) and (1 1). 

We now consider frequencies w which are large in com- 
parison with atomic frequencies. The dynamic polarizability 
of an atom of arbitrary atomic number Z is a, (w)= - Z / 
mu2 in this case. Substituing a, (w) into (lo), and combining 
(10) and (1 1 ), we find the following expression for the total 
bremsstrahlung spectrum at w)w,, : 

This expression differs only by a factor of Z from the 
cross section for the bremsstrahlung of a recoil electron in 
the scattering of an ultrarelativistic electron by a slow free 
electron (see Ref. 7, for example). This agreement is not by 
chance. At w)w,, the atomic electrons can be regarded as 
free. Their velocities are negligibly small in comparison with 
that of the incident electron. In this case the amplitude of the 
bremsstrahlung which arises in the collision of an ultrarela- 
tivistic electron with an atom consists of three components: 

S (bJ =zsi+zsz+s3, 
where S, is the emission of a photon by the incident electron 
as it interacts with the atomic electron, S2 is the emission by 
the atomic electron as it interacts with the incident electron, 
and S, is the emission by the incident electron as it interacts 
with the nucleus. 

In the ultrarelativistic case the amplitude of the brems- 
strahlung of a fast electron colliding with a free particle at 
rest does not depend on the mass of this particle; it is deter- 
mined exclusively by its charge. Accordingly, of the three 
terms above the sum ZS, + S, gives us zero and S(b) reduces 
toZS2. This result means that the total bremsstrahlung cross 
section in the ultrarelativistic case is due exclusively to the 
emission by atomic electrons. 

For an ultrarelativistic electron, therefore, the result is 
in a sense the opposite of the result of the nonrelativistic case, 
where the bremsstrahlung spectrum at wsw,, is described 
by 

r,2 2mv2 do Ib' 16 Z2e2 -- -, = -  
d o  3 muz o 

(13) 

i.e., is the same as the cross section for the bremsstrahlung 
emitted in a collision with a Coulomb center Ze (Ref. 3). 

Some qualitative arguments show the reason for this 
difference. In the nonrelativistic limit, distances between the 
incident electron and the atom on the order ofR - l/q,, are 

important for the atomic bremsstrahlung. In turn, we have 
q,, ZW/V. The effective distances for the atomic brems- 
strahlung are therefore much smaller than the wavelength of 
the emitted photon: R -u/w -u/A4A. For the composite 
system consisting of the incident electron and the atom, we 
can therefore use the dipole approximation. However, two 
free electrons cannot emit a dipole photon. Accordingly, at 
wsw,, we are left with only the emission from the nucleus. 
In the ultrarelativistic case the effective distances are R - 1/ 
qminl, where q,,, -w/vy is the component of the vector q 
which is transverse with respect to p, and y = (1 - v ~ ) - ' / ~ .  
Distances R -yu/a are much greater than the photon wave- 
length (R)A - l/w), so that we cannot restrict the analysis to 
the dipole radiation of an electron colliding with an electron. 
It is this circumstance which causes (12) to differ from its 
nonrelativistic analog, (1 3). 

Returning to expressions (10) and (1 I), we note that the 
atomic bremsstrahlung is determined entirely by a dynamic 
characteristic of the atom, a, (a),  and does not depend on the 
mass of the incident particle. In contrast, do@') is inversely 
proportional to the square of the mass M. For particles of 
large mass we can therefore completely ignore the brems- 
strahlung in the static atomic potential, and we can observe 
the atomic bremsstrahlung in its pure form. By selecting 
atoms with a large dynamic polarizability we can therefore 
increase ddatJ  substantially. 

To find the amplitude of the bremsstrahlung emitted in 
the collision of a relativistic positron with an atom, we re- 
verse the sign of expression (4) (since the charge of the posi- 
tron is opposite that of the electron) and add the result to 
expression (1). Expressions (6)-(10) and (12) for the cross sec- 
tions for the atomic bremsstrahlung thus also apply to the 
case of a relativistic positron. 
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