
Spectra of an atom broadened by its own pressure in an electromagnetic field 
A. G. Zhidkov 

Institute of General Physics, USSR Academy of Sciences 
(Submitted 28 May 1984; resubmitted 21 August 1984) 
Zh. Eksp. Teor. Fiz. 88,372-382 (February 1985) 

Absorption and scattering of strong resonant radiation in a medium consisting of identical atoms 
is considered, with account taken of the dependence of the collisional relaxation characteristics 
on the frequency w and on the amplitude E, of the electromagnetic field strength. Expressions are 
obtained for the absorbed and scattered incident-radiation power, as well as of the absorbed 
(amplified) weak-signal power. The validity of the balance approach in a basis of "dressed" parti- 
cles is demonstrated; expressions for the collision widths in terms of the scattering matrix are 
obtained. 

1. INTRODUCTION 

This paper deals with the spectra of light scattered or 
absorbed by a medium of identical atoms, with allowance for 
the optical-collisional (OC) nonlinearity. This nonlinearity is 
due to the effect of the magnetic field on the collision dynam- 
ics.'-' The spectra of an atom in a strong field, with account 
taken of OC effects, were considered in greatest detail in 
Refs. 5-1 1 for the case of broadening by the structureless 
particles of a buffer gas. Nonlinear OC effects in collisions of 
identical atoms were investigated in Ref. 2, where the ab- 
sorbed power was determined by a balance approach in a 
"two atoms + field" basis, i.e., in a basis of "dressed" 
states. 

In this paper the weak-signal scattering and absorption 
spectra are calculated for a gas of identical atoms in a strong 
field with allowance for the nonlinear OC effects. In addi- 
tion, in contrast to Ref. 2, the problem of the absorbed 
strong-field power is solved on the basis of the Boltzmann 
kinetic equation for the density matrix. This confirms the 
validity of the balance approach 2 in the case of "well sepa- 
rated  level^"'^^ in a basis ofdressed states, when R)y, where 

Q= [Ao2+4D2EO2/hZ] 
is the Rabi frequency (D is the dipole moment of the atom, 
Am = w - w, is the detuning of the resonant-radiation fre- 
quency) and y is the reciprocal of the atom's phase-relaxa- 
tion time. 

Section 2 deals with the kinetic equation for the atom 
density matrix with a collision integral that takes into ac- 
count the possibility of light absorption directly in the act of 
collision of identical particles, and the influence of the field 
both on the level-population kinetics and on the collision 
dynamics. In Sec. 3 are obtained expressions for the ab- 
sorbed strong-radiation power with allowance for the non- 
linear OC effects in the basis of the eigenstates of the atom. A 
transition is effected from the usual basis to the basis of 
dressed states and the balance relations2 are obtained. A con- 
nection is established (in the new basis) between the colli- 
sional characteristics and the scattering matrix. 

Expressions for the probing-signal power absorption 
(amplification and scattering are given in Sec. 4. It is shown 
that the collisional charactertistics of these spectra do not 
coincide with those of the absorption spectrum. In the 
dressed-state basis in the "shock" regions7 

(R, is the Weisskopf frequency, see, e.g., Ref. 1; 
Ao, = w, - w, where w, is the frequency of scattered pho- 
ton), they are expressed in terms of the scattering matrix. 

2. EQUATION FOR THE ATOM DENSITY MATRIX IN A 
HOMOGENEOUS GAS 

The interaction of a field with a medium is determined 
by the polarization P of the latter or by the absorbed power 
Q. To determine them we must find the density matrix p of 
the absorbing atom. 

The general expression for the density matrix of an indi- 
vidual atom in a field E is 

(dp ld t )  , = - 8 p ~ f + ' / z ( D ~ + p + p ~ D f ) ,  (1) 

where H, is the Hamiltonian of the isolated atom and 
V = D-E is the energy of interaction of the atom with the 
field. The second term is the change ofp because of the spon- 
taneous radiative transitions, and the third is the collision 
integral. 

The expression for (dp/dt ), , which is valid also for a 
degenerate system, can be rewritten in the form 12 

dpldt=-i [Ho+V, p ]+(dp ld t ) ,+  ( d p l d t )  ..,, , (2) 

where 

with 
( B B + )  ii= ( B + D )  ,=A,,, 

and A. is the probability of the spontaneous j + i radiative 
transition. 

The entire gist of the broadening by its own pressure is 
contained in the collision integral. Since the nonlinear OC 
effects manifest themselves in the quasistatic region R > R, 
(Refs. 1,2) the collision integral should take into account the 
evolution of both atoms in the field directly in the collision 
act. Without discussing the detailed derivation, which is 
similar to that of Refs. 8 and 9, we present an expression for 
the collision integral in the binary approximation. It is ob- 
tained under the assumption that the colliding atoms move 
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classically in a straight line, and generalizes Ref. 10 to the 
case of resonant excitation transfer: 

m t 

The multiplication sign X denotes here the direct product; 
the angle brackets denote averaging over the velocities and 
the impact parameters of the broadening particle; T is the 
instantaneous collision time; p and p' are density matrices 
that satisfy one and the same equation (1), but describe gen- 
erally speaking the states of atoms with differing velocities; 
as a result, (3)  has a quadratic dependence onp; the symbol 
Sp' stands for the trace over the states of the "primed" atom; 
S + and S are the evolution operators of both atoms, and are 
determined by the equations 

where V and U are the operators for the interaction of the 
atoms with the fields and with one another. 

The interaction energy of like atoms takes in the dipole 
approximation the form 

1 
D = -[DDf-3 (Dn) (D'n) 1, 

R3 
( 5 )  

where n is a unit vector in the direction of the axis joining the 
nuclei, and R is the distance between the atoms. 

S +, S, and U are two-particle operators; to label their 
matrix elernents it is convenient to introduce the states 

= I l f >  12>=12>11'>, 

The elements UD and U Z  that determine the resonant ex- 
citation transfer differ from zero in this representation. 

The collision integral (3) contains both kinetic (t ) and 
dynamic (T) times. This means that the broadening collisions 
are not equivalent in an arbitrary field at times t and t ' for 
which It - t 'l%R,'. If, however,the radiation-pulse dura- 
tion is long compared with a,', there is nothing to distin- 
guish between the broadening collisions, and the depen- 
dence on the kinetic time in (3) should be contained only in 
the density matrix that determines the "initial" state of the 
system prior to the collision. 

To prove this we introduce the kinetic time T of closest 
approach of the atoms at a fixed collision, and define it by the 
relations t = T + rand  t ' = T + T'. Since the atom interac- 
tion energy changes substantially over times - ,I, we have 
U (t ) = U (t - T) = U (7). We obtain next from (4) 

S+ ( t ,  t') ijk'=S+ (T, z') ijk' exp [ioijT+iokLT] , 
S(t,  t') iF-S (z, .cf)  iP' exp [ioijT+ioklT], 

~ ~ ~ = ~ ~ / f i + o - - e ~ / f i ,  ei<zj, oii=O. 

The indices i and j pertain here to the unprimed atom, and k 
and 1 to the primed; thus, e.g., 

U,,"=~l,2'~U~2,1f>=U:~. 

In the resonance approximation, the solution of (1) is 

pii(t) =Pij exp (ioi,t), 

where pv is a slowly (over times a,') varying function, 
which can be regarded as constant in (3). 

Substitution of the presented relations in (3), with 
allowance for the fact that the nonzero UF are those for 
which wv + wkl = 0, yields 

In the calcul~ion of the matrix element of (6a), the action of 
the operator F is the following: 

It is easily seen that the matrix elements (6a) reduce to the 
form 

(ap/at)c~l,=(( (r,j)il,;)bp,m(t, v') )vtpirjr  (t, V) (64 

(with summation over the dummy indices). The quantities r 
do not depend explicitly on the time,and it is natural to refer 
to them as relaxation constants. 

The condition E~/E,.-~~I, needed to introduce these 
constants (E, is the field amplitude) has a more profound 
meaning. We indicate without proof that for an atom in an 
arbitrary bichromatic (and all the more, polychromatic) field 
with /w, - w,l 2 a, one cannot introduce the relaxation 
constants r in the basis of its eigenstates." They can be in- 
troduced only in an "atom + bichromatic field" basis that 
has an infinite number of states, and I' can differ substantial- 
ly for the different states. This is reflected, in particular, in 
the fact that the probing-signal absorption and scattering 
spectra differ from l? in (6), see Sec. 4. The analogy with the 
condition for the applicability of (6) can be easily perceived 
by recalling that at E,/E, ? a, the radiation constitutes a 
set of monochromatic waves with a wave spread that exceeds 
the Weisskopf frequency. 

3. ABSORBED POWER. BALANCE RELATIONS 

Equation (I), jointly with (2) and (6), determines com- 
pletely the evolution of an atom broadened by its own pres- 
sure in a field having an arbitrary frequency detuning and 
amplitude (the latter varies quite slowly over a time a,'), 
with allowance for the OC nonlinearities. 

We consider below the limit E,JE,.-~~~, , where y, is 
the characteristic time of inelastic relaxation of the atom. In 
this case we can put p, = 0 in (2). Solution of (1) is made 
difficult by the nonlinear terms even in this case. We confine 
ourselves to two cases: a) weak field; b) the absorption-line 
wing (Are, Am,, where AmD is the Doppler width). 

a) In a weak field all the p matrix elements but p,, - 1 
are small. Therefore, when finding the off-diagonal element 
p,,, which determines the power absorbed per unit volume of 
the medium 
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it suffices to retain in the integral of (6) the terms proportion- 
al top,$, ,, after which, by solving the simple integral equa- 
tion, we get 

with 
yoc+iAoc= (I?,*)  1 2 i 1 +  (Y12) 1 1 1 2 ,  (8) 

where U0- D :, /2R 3. In the impact region 

yOc (Ao<Qw) =ysh=1 .5 f i eZ fN/m~o  
(f is the transition oscillator strength), which coincides with 
well-known  result^.'^,'^ 

We note that the frequency dependence of Q differs no- 
ticeably from that of Voigt. In the absence of Doppler broad- 
ening, the absorption spectrum has a Lorentz profile of 
width yo,. 

b) In the far wing of the line we can neglect the nontri- 
vial dependence of thep matrix elements on the velocity and 
setp andp' equal. It can then be easily verified that T,, = 0. 
This result is natural, for in the absence of thermal motion 
excitation exchange is in the kinetic sense an elastic process. 

Recognizing that the power absorbed per unit volume 
of a medium consisting of closed two-level systems coincides 
with the total scattered power Q a Ap,,, we obtain 

Here 

Expression (9) goes over into the known Karplus- 
Schwinger equation's6 in the absence of saturation (a)A 
+ 2yo, - y,,,), and also in the impact region R(R,, with 

Yint + 0. 
In the general case, the more complicated form of Q, 

due to the nonlinear terms in the collision integral, is a reflec- 
tion of the evolution of the "broadening" atom in the field. 
Since atoms having like states do not interact, at Aw > R, 
the interaction is "turned on and off' Aw/R, times in one 
collision. For this effect to manifest itself, we need rather 
strong fields p,, -p,,, i.e., nearly saturating fields. 

In the quasistatic region Aw > R, and in an intense 
field' we have 

Eo>Eo ., =A'/eu'hAoS~jD41s 

(see also Ref. 2) the collision widths decrease with increasing 
E,: 

yzfi'"Nu" (FLAW) 2/D2E,3. 

The nonlinear OC effect leads to a decrease of the power 
absorbed per unit volume. 

Calculation of r in (6) calls for determination of the 
evolution operator S (t ), followed by a complicated integra- 
tion. It is much simpler to calculate r in the basis of dressed 
states, i.e., "atom + field" states. 

The connection between density matrices in different 
bases is given by the unitary transformation ,!? = Yp Y +, 
where Y is the quasistationary solution for the atom evolu- 
tion operator in the field',6,'0: 

iP=-Y (H,+V). (11) 

The equation for,!? follows directly from (1): 

The transformation (3) is carried out with allowance for the 
commutativity of Y and Y ': 

x [ U ( t ' ) ,  pXp'( tr)  l S ( t ,  t ' ) d t f  1) . 
(1 3) 

where 
O = ( Y X Y J )  U(Y+XE'+') ,  

and the evolution operators are defined by the equations 

iS+=OS+, i s=-SC.  ( 14) 

The "dressing"' procedure (13), (14) corresponds to a transi- 
tion to a separate new basis for each atom. In the two-level 
approximation for each atom we have 

where 

a3=VAo/Q12,  k=exp ( iQ t ) .  

The introduction of T in (13) is carried out, just as in the 
usual basis, with allowance for the fact that Uo = U0(7), but 
the right-hand side of (15) is an explicit function of the kinet- 
ic time. 

The density-matrix elements are of the form 
- 

P,,=p,, p k l = &  exp [ i  (-1)'QtI. 

We separate in the product ,!?X,!?' the slowly varying 
(over times R,') components M x M '. The simple transfor- 
mation (13) with the aid of (14) shows that T for the compo- 
nents M can be calculated from the impact collision integral 
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where 3, = 3 ( ~ )  is the scattering matrix. In the impact 
limit2' expression (16) is valid for the complete product 
F x ~ ' .  For (T,-):, it can be used also at a >  a,. The latter 
indicates already a possible equivalence of the approach de- 
scribed here and the balance approach. 

A relation that follows from (16) is 

- 
where A = aW a,,,, , a,, are projection operators: 

and e ( ~ )  is determined by (15) with the substitution t + T .  

In the dressed-states basis the absorbed power is given 

by 
Q m o o V  Im F,,,,. 

To determine it we must resort to (12):3' 

The off-diagonal matrix elements in ( 1  8)  are 

where y ,  and y, are some combinations of the relaxation 
constants. Clearly, in the case R%y, ,  y ,  the contribution of 
the off-diagonal elements is small ( -  y / R ) .  Neglecting them, 
we obtain in the quasistationary approximation the simple 
balance relations 

All the r in (19) are expressed in terms of the scattering 
matrix (16). 

The equation for the populations reduces, by symme- 
trizing the states 12) and 13) and by using the properties of 
the scattering matrix, to the form 

A (1+AolQ)ZRz /4-A  ( 1 - A a / Q )  2 f l i /4 -1 / z  (mi-1%2) {m2W% 
f ~ , T . V G +  2NW,)=O, 

which is the result of Ref. 2 with the velocities W,, and W,, 
interchanges. Here 

WG=( Ism (v, b ) ~ 1 ~ > , , b ,  

]T>=li>, 12>=(12>+[3>)/li, 12>=14>. 
The disparity with Ref. 2 is due to an error in the choice of 
the necessary OC transition rates, and not to the principle 
underlying the balance equations. 

It follows from the connection between R2 and the den- 
sity matrix in the usual basis that 

Relations (20) can be proved directly with the aid of (17). 
The balance relations for the absorbed power are not 

expressed explicitly in terms of the OC transition rates W .  
The determination of Q in terms of the rates W requires the 
use of (17) and of cumbersome calculations, after which the 
results reduce to Eq. (5.18) of Ref. 2. This proves the validity 
of the balance approach and its full equivalance to that de- 
scribed here in the limit aby, ,  + A  /2.  

4. WEAK SIGNAL SCATTERING AND ABSORPTION 
(AMPLIFICATION) SPECTRA 

Rayleigh scattering, resonant fluorescence, and weak- 
signal absorption are limiting cases of interaction of an atom 
with a bichromatic field. Nonetheless, since the interaction 
with the second field is weak, it is possible to introduce relax- 
ation constants that are generally speaking different from r 
in (6) .  

To calculate the spectra it is convenient to use the prob- 
ing-field method, which is the first order of perturbation the- 
ory. The corrections to the density matrixp, for the interac- 
tion with the weak field or for spontaneous emission are 
defined by the equation 

where V, is the operator of interaction with the strong field, 
the second and third terms are given by Eqs. (2 )  and ( 3 )  with 
p = pp , and the operator A is of the form 

for interaction with the weak field Ep @w, the atom density 
matrix, is the solution of Eq. ( 1 )  with Ep GO) and 

A h 

for spontaneous radiative transitions [D + and D are de- 
fined in (2)] .  

The absorbed or scattered power is given for a two-level 
system by the expression 

Q p - o o N  Re[i(3ntic" --"ohD,, exp ( - i A o p t )  plZP] , 

where Am, = wp - w, and wp is the frequency of the weak 
field or of the reradiated photon. 

The form of the collision integral follows from the ex- 
pansion in (3): 

a 

+ J s+ (t. t f )  [ u, p . x p . ~ + p , ~ p . ~ i ~ ( t ,  t l )  a t ' ] )  . 
- m 

The equation for the correctionsp, is thus linear, but the r 
depend on the matrix elements p, . 

In the quasistationary (E,/E,( y) approximation the so- 
lution of (21) is of the 
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where Aw, = wp - w. In the presence of thermal motion, 

where np and n are the propagati~n diregtions of the wp and 
w photons. The time variation of R and K coincides with the 
time %ariation ofp,. In the calculations it suffices to deter- 
mine R, in which case 

A h  r is introduced only for R (or K, but not forp, ),just as 
in the case of a strong field: 

rn 

The action of the operator Fp (T, 7') takes in the calculation of 
the matrix element of (26) the form 

(F," (7,  a') p , ~ ~ ' ) , f l T  

The relaxation constants that follow from (26) depend on the 
frequency up ,  it is therefore more accurate to define them as 
relaxation rates. In the absence of thermal motion (dR / 
dt ),, = 0, and since the matrices R andp, are not equivalent 
the matrix elements (dR /dt ), contain terms proportional to 
PI, R,, 

Turning to Eq. (2 l), however, it can be easily seen that in 
the case O>y we have 

i V . R l l ~ r p , , R l l .  
Neglect of the terms proportional to R,, reduces (26) to the 
integral (6) in the region I Aw,l <Ow. 

The weak-signal scattering and absorption spectra of a 
two-level system in the case of own-pressure broadening 
constitute triples with frequences wp = w and o, = w + It, 
just as in the case of broadening by buffer-gas atoms,12 since 
the number of components is determined only by the exter- 
nal field and by the character of the system degeneracy. 

In the absence of thermal motion, with allowance for 
the equivalence of the relaxation constants in (26) and (6) in 
the region 1 Aw,l (Ow, we obtain for the power of coherent 
Rayleigh scattering by a closed two-level system 

A o "  
QeRmn~ I Vp I2(I-0)  6 (mp--a) vo2 

( ~ & ~ + 4 ~ " 2 ~ ) 2 '  
(284 

and for incoherent scattering and absorption 

Here O = 0 for scattering, O = 1 for absorption, and 
(28b) 

q =  (1+2yoC+2ytntpzz")/2A, 
where yo, and y,,, are defined by Eqs. (2% 

and Q, is given in (9). We note that W,, > 0 for all Aw and 
v, . 

The width of the spectral distribution of incoherent 
Rayleigh scattering Q,, is of the form 

r 0 = A  [Am2+ 4VUZq] /Q2. (29) 

In the impact region O(OW expressions (28) and (29) go 
over into the known results of Ref. 12, with 

q= (1+2yS,)/2A. 

In the region O >  Ow and of insufficiently strong fields, 77 
decreases with increasing intensity in proportion to E ,  3. 

the spectrum (28) can in this case narrow down to the colli- 
sionless width. Since usually the coefficient 7% 1, its decrease 
leads to an increase of the fraction of the coherent Rayleigh 
scattering Q,, . 

In the case of absorption QCR = 0. Nonlinear effects are 
manifest only in a narrowing of the spectral distribution 
QOR. 

It is convenient to calculate the resonant fluorescence 
and absorption spectra of a weak signal wp -w + O in a 
dressed-state basis. The collision integral in this basis is simi- 
lar to (26), with Fp -+ Fp, and 

( P ~ ' ~ R ' ) ~ ~  =exp[-iaijPr+i(aipjr+*,,) ~ ' ] p i , ~ ~ R l ~ ,  

Assuming O)y and neglecting the thermal motion of 
the atoms, calculations (see Ref. 11) of the intensities Q+ of 
the resonant fluorescence and Q- of the three-photon pro- 
cess, as well as of the absorbed power ( 0 =  1) at 
I Amo f <Ow, lead to the expressions 

It is easily seen that at 8 = 0 (scattering) expressions (3  1) 
are strictly positive. At O = 1 (absorption) we have Q+ <O 
for all Aw and V,, but Q _  < 0 for V, < Aw/d and Q- > 0 
(corresponding to amplification) when this inequality does 
not hold. 

The widths of the spectral distributions of Q+ and Q- 
are equal (I?+ = r - )  are are given by 

Since the off-diagonal elements Fu - y/R, it is necessary to 
retain in (32) the collisional terms proportional to the diag- 
onal elements. The quantities 

( r I 2 )  ( r12)  

are determined by the integral (26) in the basis of dressed 
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states withFp as defined in (30). Substituting the values ofGV 
in (30) we readily verify that relation (17) holds in the regions 
I Aw, f 0 I <a ,, and consequently the collisonal relaxation 
constants are expressed in terms of the scattering matrix 
(16): 

2 

In the shock region a<fl, we have 

In the quasistatic region > a, at E, > E,,, the collision 
constants decrease with increasing Eo. Owing to the specific 
dependence of the widths of the spectra (3 1 )  on the field, the 
narrowing can manifest itself more strongly than in (28). In 
the general case the widths of the scattering and absorption 
spectra depend on the populationp,,. To determine the lat- 
ter we must use Eq. ( 1  9 ) .  

5. CONCLUSION 

The atom spectra (9),  (28), and (3 1 )  broadened in a mag- 
netic field by the atom's own pressure differ from the analo- 
gous spectra broadened by a buffer gas only in the collision 
widths, which are connected by the simple relation (16) with 
the scattering matrix in the dressed-state basis. The effects of 
the OC nonlinearity, which manifest themselves by a de- 
crease of the collisional widths in an intense field, are auto- 
matically taken into account here. 

The experimentally observed scattering spectra can be 
considerably distorted by thermal motion and dragging of 
the radiation by the medium. The influence of thermal mo- 
tion in weak-signal absorption spectra can be significantly 
decreased by aligning the propagation directions of the 
strong and weak fields (n = n, ). Since it is easy to allow for 
the drag in this case, the absorption spectrum is the most 
convenient for the observation of OC nonlinearity effects. 

A stringent condition that limits the applicability of the 
results of this paper is the requirement that the collisions be 
binary: 

N(u/QW) 3=N(1,5e2f/m,~oou)' K1. (34) 

Assuming w, z 2.1015 s- ', jz 1 ,  and v z 10' cm/s we have 
N<10" cm-! The Doppler broadening does not exceed the 
collisional one at N k 3.1016 cmP3. 

The situation is somewhat better for the absorption-line 
wing Aw 2 R,, since the Doppler broadening is insignifi- 
cant and the binarity condition is noticeably relaxed. The 

last statement is valid only for the absorption of the most 
intense radiation, but not for the scattering and absorption 
spectra of the probing signal. The binarity condition for 
these coincides with (34). 

We note an important factor that influences the possi- 
bility of observing the effects of OC nonlinearity in a homo- 
geneous gas. This is multiphoton ionization followed by 
breakdown in the gas. For alkali-metal atoms this is a two- 
photon process whose cross sections are not small. The use 
of more complicated atoms such as yttrium, which has a 
three-photon threshold, may possibly improve the situation. 
Otherwise the observation of the OC nonlinearity in metal 
vapors will be possible only if short radiation pulses are used. 

The author thanks S. I. Yakovlenko for a number of 
useful hints and critical remarks, and E. G. Pestov for nu- 
merous discussions. 

"Assuming u z  lo5 cm/s, D = 5 a.u., and Am- 1012 s-', we get E, 2 104 
W/cm. 

"At f lg l l ,  it is easy to calculateS_ by putting1 = exp(ifl~) = l j n  (15). 
3'It is convenient to calculate the radiative relaxation constants 3- in (2) 

with the aid of the projection operators o,, (Ref. 11). 
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