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The dependence of the Doppler spectrum of secondary waves on the number of the harmonic 
is investigated. The Doppler formula for a harmonic of arbitrary order is presented. One 
corollary is that in the presence of dispersion in the medium the Doppler spectrum of the 
harmonics ceases to be equidistant. It is shown that for higher order harmonics (p)  1) due to 
the movement of the boundary, amplitude effects may also be considerable in those cases 
when the velocity is small compared with that of the secondary waves (ID1 (1). For the 
amplitude of Doppler harmonics of moderate multiplicity (1Plp( 1) the parameter ( p  + 1)/2 
plays the same role as the effective slowing-down coefficient in the linear case. 

1. INTRODUCTION 

The transformation of electromagnetic waves at a mov- 
ing boundary separating two linear media has been exten- 
sively described in the literature (see, for example, the re- 
view'). Here the key points are: the question of the frequency 
of the secondary waves originating at the boundary, the laws 
of frequency conversion (the double Doppler effect), and the 
secondary-wave intensity variation that results from the rel- 
ativistic transformation of the fields. For relativistic bound- 
ary velocities (and in the presence of a "background" medi- 
um having a large effective refractive index also in the 
nonrelativistic case), considerable restructuring of the 
waves' energy spectrum may occur. 

Another well-known possibility of the drastic conver- 
sion of frequencies is due to the nonlinearity of the medium 
(i.e., the finiteness of the incident wave's amplitude), includ- 
ing also in the presence of dielectric boundaries2-" or in an 
inhomogeneous p l a ~ m a . ~ - ~  The problem considered below, 
of electromagnetic wave transformation at the boundary of a 
moving nonlinear dielectric, is the first attempt at a simulta- 
neous analysis of the indicated possibilities of spectrum con- 
version.' To clarify the general laws of frequency-spectrum 
and wave-energy transformation associated with the 
Doppler effect, the simplest model of a non inertial local 
nonlinearity was chosen. This model admits of generation of 
high-order (psi) harmonics of the incident wave at an 
abrupt boundary. The harmonics of order m - 10' recorded 
in a laser plasmas and due to formation of abrupt discontin- 
uities of the electron d e n ~ i t y ~ - ' ~  provide also a practical basis 
for such a formulation of the problem. 

The transformation of waves at a moving boundary in a 
nonlinear medium has a number of peculiarities which are 
not present in the corresponding problem, nor for an immo- 
bile nonlinear-medium boundary. As well be shown below, 
the Doppler effect for high order harmonics preserves equi- 
distance of the frequency spectrum of the secondary waves 
only if dispersion is absent. If dispersion occurs, the frequen- 
cy spectrum of the harmonics (reflected or transmitted) will 
cease to be equidistant. The conditions for strong conversion 
(in comparison with the case of a stationary boundary) of the 

wave amplitude and energy at a moving boundary of a non- 
linear medium must also be refined. Whereas to observe a 
noticeable Doppler effect in a linear medium, it is necessary 
that the boundary velocity V be approximately that of the 
phase velocity v, of the reflected wave,' this effect becomes 
prominient at substantially lower velocities V- v,/m for 
high order (m, 1) harmonics at the boundary of a moving 
nonlinear medium. In other words, the relative effectiveness 
of generation of high-order harmonics increases as the 
boundary velocity and harmonic frequency increase. 

Up to the present time, the Doppler frequency shift of 
harmonics has been observed only at nonrelativistic bound- 
ary velocities V<3.107 cm/s[ll] for m<3,7."3'2 where the 
effect remains small. However, for velocities on the order of 
m - lo2 we may expect a pronounced amplification of the 
harmonics, in which case dispersive or other cutoff of the 
spectrum from above may lead to a noticeable transfer of 
energy to several high-order harmonics. 

2. THE DOPPLER SPECTRUM OF HARMONICS 

Consider the case where linear as well as nonlinear wave 
transformation occurs at a boundary separating two media 
and traveling at a velocity V. The nonlinear transformation 
is accompanied by the generation of harmonicspw' up to an 
order m in the reference frame K ' moving with the. The fol- 
lowing relation between the frequencies and the wave 
vectors kj@) follows them from the relativistic invariance of 
the phase in the laboratory reference frame K: 

oj(p)-k:P'~=y- lpo' ,  p = l , .  . . , m, j= (0, i ) ,  i=l, . . . , S. 

Here the index j = 0 corresponds to the incident wave and s 
is the number of secondary waves produced at the boundary. 
Obviously, the well-known Doppler formular for linear 
waves at a moving boundary is obtained from (1) at p = 1. 
Generalizing the formula to include the casesp = 2, . . . , m 
allows us to analyze the Doppler spectrum for a harmonic of 
any order. It follows in particular, from (1) that in the pres- 
ence of dispersion in the medium, the Doppler spectrum wy) 
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is not equidistant-in contrast to the case of an immobile 
boundary. 

The condition of equidistance of the secondary-wave 
spectrum in any spectral interval pw!?' = qw?) presumes the 
absence of dispersion in this interval in the laboratory frame 
K, where the boundary moves with velocity V, i.e. 

( 9 )  n,(o:'') = n ( w  ). 

3. AMPLITUDE RELATIONS 

To clarify the wave-amplitude and wave-energy con- 
version laws associated with the motion, we consider the 
simple scalar case of normal incidence of a plane electromag- 
netic wave from a vacuum on a half-space of a moving non- 
linear medium described in the comoving frame K ' by the 
material equation 

E' (PO', E') =nf2 ( p o ' )  +Gp' (E')  p-'. (2) 

Confining ourselves to the case of weak nonlinearity 

6,' (E') p-'/n'2 ( p o ' )  1 (2-4) 

in the absence of synchronism: n1(w') #nf( pw'), we use a par- 
ametric approximation in which the field of frequencypw' in 
the nonlinear medium satisfies the wave equationZ 

where P'@) is the effective nonlinear polarization at the fre- 
quency pw' and is determined by the field E' at the funda- 
mental frequency: 

Because of the inhomogeneity of equation (3),  the field of 
frequencypw' in the nonlinear medium can be represented as 
the sum of two waves having waves numbers 

By its nature, the second wave is nonlinearly polarized and 
its amplitude E ;@I is determined in the parametric approxi- 
mation by the field E'  at the fundamental frequency: 

6,' ( E ' )  E;(&)= -- - 
n J 2  ( P O ' )  - n f 2 ( o f )  ' 

From Eq. (6), the relation between the harmonic amplitudes 
B ,!@I and the amplitude E in the comoving reference frame 
K ' will be a power-law function: 

The "structural" coefficients r'@' and E ;'$I do not depend in 
our case at all2 on the velocity V. They pertain to the refer- 
ence frame K ' comoving with the nonlinear medium and are 
expressed in terms of the Fresnel transmission coefficient t ' 
of the fundamental-frequency wave: 

n' ( a 1 )  - n l ( p o ' )  ,.'(PI = -. 6,' ( t ' )  
n' ( p o ' )  +'I n" ( ~ o ' )  -nT2 ( o f )  

r r p ,  n 1 ( 0 ' ) + 1  6,' (t' ) p  

t,"'= - = .  

nl* ( p o ' )  -n" (o')  ' 

It is easy to show that by virtue of Eq. (7) the dependence of 
the amplitudes E of the harmonics on the amplitude E, of 
the incident wave in the laboratory frame K will also obey a 
power law, and the coefficients rb) and t 'f': of transforma- 
tion of the incident wave into a harmonic wave, determined 
in analogy with Eq. (7) 

r ( ~ ) , r ' ( ~ )  ( P )  '(P) ( P )  
f : P ) ,  t l , ~  =t1,2 f 1 L 2  (9) 

are connected with r'@) and t ;'$I by the Doppler factors 

4. DISCUSSION OF RESULTS 

From a general physics viewpoint, the most interesting 
circumstance is that the Doppler factors (10) for harmonics 
p # 1 depend somewhat differently on the velocity V than do 
the corresponding factors for waves at the fundamental fre- 
quency p = 1. Clearly, this difference will be more pro- 
nounced for a high-order harmonic ( p> I) in a nonlinear me- 
dium moving at relativistic velocities (or in the presence of a 
retarding system, when the phase velocity of the reflected 
wave is close to V). When this occurs the relative effective- 
ness of higher-harmonics generation may, because of the 
Doppler effect, increase by several orders and the harmonics 
energy may become comparable to the energy of the reflect- 
ed wave of fundamental frequency. Naturally, in the latter 
case a more accurate, self-consistent description of the prob- 
lem, beyond the scope of the parametric approximation, is 
necessary. 

It is important, however, to emphasize that when the 
boundary velocity V is much less than the phase velocity of 
the reflected wave and the fundamental-frequency waves are 
not subject to any noticeable effects, the intensity of high 
order harmonics may be increased by the Doppler effect to 
several times more than in an immobile medium. Actually, 
assume thatp) 1, so that Ip> 1. Then discarding in Eq. (10) 
the inessential terms of orderpandB we obtain for opposite 
incidence (p < 0) obtain 

Thus, at definitely nonrelativistic velocities the intensity of 
this harmonic increases by roughly an order of magnitude 
because of the Doppler effect. If, however, the multiplicity of 
the generated harmonics is relatively small (ID (p( I )  we find 
from (10) that f !PI-- 1 + ( p + l p .  In other words, for con- 
version of the amplitudes of the harmonics the factor 
( p + 1)/2 plays the same role as the effective refractive index 
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in a retarding system for linear transformation on a moving 
boundary. 

Needless to say, within the scope of the parametric ap- 
proximation examined above, the coefficients rfP and t ;$' (8) 
remain small. It is clear, however, that a qualitative conclu- 
sion that the higher-harmonic amplitudes depend more 
strongly on the velocity of the medium is more general. In- 
vestigations of this question for the self-consistent problem 
would shed light on the optimal conditions for generating 
high-order harmonics at a moving boundary. 

"Introduction of a Doppler shift into the formulas for the second-har- 
monic generation in a laser plasma, as was done in Ref. 7, yields an 
adequate approximation only for the special case of nonrelativistic veloc- 
ities for harmonics of low order rn - 1. 

"If the nonlinear medium and the boundary move at different velocities 
(for example, a moving discontinuity of a parameter in an immobile me- 
dium), such a dependence is preserved also in the coefficients r'@! and 
t '(PI 
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