
Radiation stationarity length in inhomogeneous media and analog of the Tamm- 
Mandel'shtam energy-time uncertainty relation 

S. G. Krivoshlykov and I. N. Sisakyan 

Institute of General Physics, Academy of Sciences of the USSR 
(Submitted 27 March 1984) 
Zh. Eksp. Teor. Fiz. 88,342-354 (February 1985) 

An analog of the Tamm-Mandel'shtam energy-time uncertainty relation can be used in the theory 
for the propagation of coherent and partially coherent radiation through slightly inhomogeneous 
media. The physical meaning of this analog is shown. A useful new longitudinal scale dimension is 
introduced: the radiation stationarity length, a measure of the distance over which the changes in 
the average properties of the radiation do not yet exceed their variances. A detailed study is made 
of the stationarity length of an arbitrary nonparaxial Gaussian beam in a longitudinally homogen- 
eous medium with a parabolic refractive index profile. A detailed study is also made of how 
various longitudinal inhomogeneities in a medium with a quadratic profile affect the stationarity 
length for beams. The results can be used to analyze light propagation through waveguides, ultra- 
long-range propagation of sound in underwater oceanic ducts, and the ultra-long-range propaga- 
tion of short radio waves in ionospheric waveguiding ducts. 

1. INTRODUCTION 

Many problems involving the propagation of waves of 
various types in inhomogeneous media reduce under some 
approximation or other to the solution of the scalar Helm- 
holtz wave equation. Examples are the propagation of light 
through multimode graded-index waveguides'-3; the ultra- 
long-range propagation of sound waves in an underwater 
oceanic acoustic duct which arises from variations of the 
density, temperature, and salinity over depth4x5; and the 
round-the-world propagation of radio waves in ionospheric 
ducts.6 Among the many approximate methods for solving 
the Helmholtz wave equation, a special place is occupied by 
the Leontovich-Fock parabolic-equation method7 (the par- 
axial approximation), in which the Helmholtz equation is 
reduced to a paraxial Schrodinger equation. One advantage 
of this approach is that the sophisticated formalism of quan- 
tum mechanics can be used to solve the parabolic wave equa- 
tion, and either exact solutions of the equation or useful ap- 
proximations can be derived. In any case, the derived 
analytic solutions of the problem are exceedingly useful for 
qualitative and quantitative descriptions of the phenomena 
under study, and they serve as a convenient zeroth approxi- 
mation for the derivation of a perturbation 

A central feature of this approach is the introduction of 
coordinate and momentum operators 2 and j, respectively, 
whose eigenvalues in the Hamiltonian formalism give the 
position and inclination of a ray with respect to the axis of 
the medium.' (For brevity we will assume that the medium is 
two-dimensional.) These operators satisfy the ordinary com- 
mutation relation [?, $1 = i/k, where k = 2r/A is the wave 
number, and A is the wavelength of the radiation. A conse- 
quence of this commutation relation is the Heisenberg un- 
certainty relation 

whose role in the geometric-optics quantum-mechanical 

theory1 is equally as important as that played by the Heisen- 
berg uncertainty relation in quantum mechanics. For exam- 
ple, relation (1) is a quantitative expression of the wave na- 
ture of the radiation; the use of this relation makes it a simple 
matter to evaluate the wave corrections to the geometric- 
optics solutions in any problem in which wave effects turn 
out to be important, i.e., in studies of interference and dif- 
fraction phenomena and in the calculations of fields near 
caustics. The estimates found in this way frequently agree 
within a coefficient with the exact solutions. In any case, 
relation (1) yields estimates with an accuracy quite sufficient 
for practical purposes without resorting to an exact or ap- 
proximate solution of the wave problem. It is difficult to 
overestimate the importance of this relation in wave propa- 
gation problems. 

On the other hand, in quantum mechanics we have a 
well-known uncertainty relations of another type, namely, 
the energy-time uncertainty relations. A distinction should 
be made here between two types of such relations. According 
to the classification based on Fock's work,'0." the Heisen- 
berg-Bohr relation pertaining to a measurement processes 
belongs to the first type. The relations of the second type 
break down further into two subtypes: the Tamm-Man- 
del'shtam relations12 between the displacement time of a 
wave packet to the dispersion of the energy in the state under 
consideration (and generalizations of these 
and the relation between the half-life of a quasistationary 
state and the level ~ id th . 'O , '~-~ '  

The validity of the Heisenberg-Bohr uncertainty rela- 
tion is problematical and the subject of constant debate, 
since this relation is actually postulated, rather than proved, 
in quantum mechanics. This debate and the pertinent refer- 
ences are reviewed by Dodonov et UZ.,'~ for example. In con- 
trast, there is no doubt regarding the validity of uncertainty 
relations of the Tamm-Mandel'shtam type, since they are 
rigorous consequences of the mathematical formalism of 
quantum mechanics. 
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In this paper we call attention to the existence in wave- 
guide problems of-in addition to the widely used Heisen- 
berg coordinate-momentum uncertainty relation-an ana- 
log to the Tamm-Mandel'shtam energy-time uncertainty 
relation. We determine the physical meaning of this relation 
in problems involving the propagation of waves through in- 
homogeneous media; we introduce a new longitudinal scale 
dimension, the "radiation stationarity length," and describe 
several examples which illustrate the practical usefulness of 
this new scale length. 

2. THE DENSITY MATRIX AND AN ANALOG OF THE TAMM- 
MANDEL'SHTAM UNCERTAINTY RELATION FOR A 
PARAXIAL BEAM IN A SLIGHTLY INHOMOGENEOUS 
MEDIUM 

For simplicity we consider the two-dimensional scalar 
Helmholtz equation for a monochromatic component of the 
wave field E (x, z) in the Cartesian coordinate system x, z: 

dZE/dzZ+d2Eldx2S.k2nZ (x, z) E=O, (2) 

where k = 2r/A is the wave number, A is the wavelength of 
the radiation in free space, and n(x, z) is the refractive index 
of the medium. If the wave is propagating at a small angle to 
the longitudinal (z) axis, Eq. (2) can be written as a Schro- 
dinger equation in the Leontovich-Fock paraxial approxi- 
mation': 

for the characteristic field 

'4 (x, g)=En,'" exp I s  -ik no dz 1 , 
where no = n(0, z) is the refractive index of the medium on 
the z axis (Ref. 23, for example). 

If the radiati%n field at z = 0, !P (x ,  0), is known, we can 
use Hamiltonian H and Eq. (3) to calculate the longitudinal 
evolution of the radiation, i.e., to find the value of the field 
!P (x, z) in any cross section z = const. 

If we do not have complete information about the initial 
field at z = 0, because of, for example, random fluctuations 
of the parameters of the radiation source or of the param- 
eters of the medium in the region z < 0, then we know the 
initial field at z = 0 only with a certain probability (the sys- 
tem is in a mixed state). As we have pointed out elsewhere,' 
the radiation can be described in this case by a density matrix 
/j (Refs. 24-26, for example). A density matrix can be used to 
calculate expectation values of all the characteristics of the 
radiation beam in the general case in which we do not have 
complete information about the radiation field. In Ref. 27, 
for example, the density-matrix formalism was used to study 
the intermode pulse dispersion in a longitudinally inhomo- 
geneous medium with a parabolic refractive-index profile, 
and it was used in Ref. 28 to calculate the coupling of modes 
in statistically irregular optical fibers. It should be noted that 
partially coherent radiation beams can also be described 

conveniently in density-matrix terms. The correlation func- 
tion of the field and its degree of coherence in this case are 
specified by corresponding matrix elements of the operator 
j3, and uncertainty relation (1) for a beam described by a 
density matrix in this case has the meaning of a generalized 
Heisenberg uncertainty relation for partially coherent radi- 
ation, as was studied in Refs. 29, for example. 

Denoting by b(0) the initial value of the density matrix 
operator, we can describe its longitudinal evolution in the 
paraxial approximation completely by means of the Liou- 
ville equation 

where the dot means differentiation with respect to the lon- 
gitudinal variable <, and the Hamiltonian is given by (3). 

Mandel'shtam and Tamm12 introduced a class of uncer- 
tainty times for cases in which it is possible to associate with 
any operator representing a physical quantity a correspond- 
ing uncertainty time which is a direct consequence of the 
corresponding Heisenberg equation of motion for the opera- 
tor. Eberly and Singh13 used this idea to introduce a station- 
arity time for a stationary quantum system whose density 
matrix satisfies a Liouville equation. That stationarity time 
can serve as the time in the energy-time uncertainty relation. 
In Refs. 14 and 15 this parameter was generalized to the case 
of nonstationary quantum systems. By virtue of the analogy 
between Eq. (4) and the quantum Liouville equation, param- 
eters of this sort can also be introduced in a description of the 
propagation of radiation. 

Following Malkin and Man'ko,15 we introduce the pa- 
rameters Z,, (i) (n = 1,2,3, . . . ), which depend on the longi- 
tudinal variablef, for a radiation beam in an inhomogeneous 
medium, which can be described in the general casz by a 
density matrixb and a time-dependent Hamiltonian H: 

Here we have used the equality sp@";) = 0, whose validity is 
verified by the Liouville equation (4) and by the known iden- 
tity 

Using identity (6) and Liouville equation (4) in a procedure 
similar to that of Ref. 15, one can show (see the Appendix) 
that for stationarity lengths 2, (f ) introduced in this manner 
and for the quantity 

an uncertainty relation of the nature of the Tamm-Man- 
del'shtam energy-time relation holds under the assumption 
Sp/jb2f 0: 

From the inequality 
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which holds for any positive semi-definite operator A,  it fol- 
lows that the stationarity lengths Z, g) form an increasing 
sequence Z1(6 )<Z2(6)<Z,(6 ), ... . From the physical stand- 
point, the stationarity length of greatest interest is undoubt- 
edly the minimum stationarity length: 

Using Liouville equation (4), we can also show without 
difficulty that if we do have complete information about the 
radiation, and if the density matrix corresponds to a pure 
state (/j2 =@, Sp@* =S 'p  = I), inequality (8) becomes an 
equality, and all the stationarity lengths become equal: 
Zl(6 ) = Z2(6 1 = .-Zn (6). 

We point out that one could, following Ref. 15, intro- 
duce an even smaller stationarity length 

for which an uncertainty relation 

holds. However, it is advisable to use this length Z,. The 
reason is that the product on the left side of (12) reaches its 
minimum for pure states, in which, as is easily shown, the 
following relation holds: 

For this reason, inequality (12) should be written in the fol- 
lowing form in a more rigorous approach incorporating (8): 

=< ( A s )  9min'lz (Z12) min='12kz; (13) 

i.e., the number on the right side of (12) is simply too small. 
In other words, instead of inequality (12) for Zo we should 
use (13), which is essentially the same as relation (8). 

3. PHYSICAL MEANING OF THE ANALOG OF THE TAMM- 
MANDEL'SHTAM UNCERTAINTY RELATION AND EXAMPLES 
OF ITS USE 

To explain the physical meaning of uncertainty relation 
(8) we begin with the case in which the refractive index of the 
medium remains constant in the longitudinal direction. A 
medium of this type is of further interest because for it uncer- 
tainty relation (8) can generalized to the case of a nonparax- 
ial radiation beam. 

When the refractive index does not vary in the longitu- 
dinal direction, Helmholtz equation (2) reduces to an equiva- 
lent stationary Schrodinger equation for the field P(x)  (Refs. 
1-3): 

B Y  (x) = E Y  (x) .  (14) 

Here E and P (x) are the eigenvalue and eigenfunction of Ha- 
miltonian (3), which in this case does not depend on z. The 
longitudinal evolution of the wave field component E (x, z) is 
specified in this case by the propagation constant P,: 

E (x, z) =exp (iP,z) Y (x)  , P.=kno ( 1 - 2 ~ / n ~ ~ ) ' " .  (1 5) 

It is not difficult to show that the evolution of the den- 
sity matrix of a nonparaxial radiation beam is described by 

which generalizes Liouville equation (4) to the nonparaxial 
case for a medium which is homogeneous in the longitudinal 
direction. Here the dot means differentiation with respect to 
the longitudinal coordinate z, and the eigenvalues of the 
propagation-constant operator 

give the propagation constants in (15). In the paraxial ap- 
proximation we should retain o n l ~  the first term in an expan- 
sion of this operator % a se~ies in H /ni ; %is approach corre- 
sponds to replacing P by Po = kn,(l - H /ni). It should be 
noted that the dot in Eq. (16) means a differentiation with 
respect to z, not with respect to 6, as in (4). 

From Eq. (1 6 )  we find the Tamm-Mandel'shtam uncer- 
tainty relation for a nonparaxial radiation beam in a longitu- 
dinally homogeneous medium: 

where 

The physical meaning of uncertzinty relation (18) is thus as 
follows: It relates the spread ((A0 )') of the propagation con- 
stants of a radiation beam described by the density matrix@ 
(e.g., the spread of the propagation constants for a beam of 
partially coherent radiation) to the stationarity length Z,, 
which gives the maximum longitudinal-axis distance over 
which the parameters of this radiation do not change sub- 
stantially. Using expression (17), we can easily derive the 
following expansion for the dispersion of the propagation 
constant-an expansion useful in the construction of a per- 
turbation theory: 

The first term in the curly brackets corresponds to the dis- 
persion of the propagation constant in the paraxial approxi- 
mation, while the second is the first correction for the devi- 
ation from a paraxial situation. 

We wish to call attention to the fact that in the deriva- 
tion of (8) and (18) we have used the condition sp@j2 #o; i.e., 
the stationarity length Z ,  has been assumed to be bounded. 
We now consider conditions under which Z, becomes infi- 
nite. It follows from (16) that for nonparaxial propagation of 
light through a longitudinally homogeneous medium the 
stationarity length Z, is determined exclusively from the ini- 
tial density matrix @(O), i.e., depends only on the excitation 
conditions at z = 0: 
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It is not difficult to see from this expression that the station- 
arity length becomes infinite if the initial density matrixP(0) 
describes either a mode of the medium [a stationary state 
that is an eigenfunction of Hamiltonian (3)] or a mixture of 
motes [for such a mixture we would generally have 
((do)') > 01. It is also obvious from (20) that the stationarity 
length 2, becomes infinite when the initial density matrix is 
specified as an arbitrary analytic function of the propaga- 
tion-constant operator 0 :  

Let us examine some specific examples. 

Example 1. Stationarity length of a nonparaxial Gaussian 
beam in a longitudinally homogeneous medium with a 
parabolic refractive-index profile 

We assume that the medium is homogeneous in the lon- 
gitudinal direction, while in the transverse direction its re- 
fractive index varies in accordance with the parabolic law 

n2 ( x )  =nZ (0) -02x2,  (21) 

where the gradient parameter w specifies the refractive index 
profile, and where we are assuming that the medium de- 
scribed by (21) is excited at z = 0 by a coherent Gaussian 
beam corresponding to a pure state. We wish to find the 
stationarity length and the spread in propagation constants 
for a Gaussian beam in the medium described by (21). It was 
shown in Ref. 30 that an arbitrary Gaussian beam having a 
spherical wavefront with a radius of curvature rand a width 
u: = ( ( ~ i ) ~ ) ' " ,  whose center is at the coordinate x, = (2 )  
and which has a momentump, = ( b)  that sets the inclina- 
tion (6 ) to thez axis ( p = nsin6 ), can be described by a corre- 
lated coherent state 

k cos 'A 
la)= (--) 

(22) 
where 

and the complex parameter of the correlated coherent state, 

a= (k /2p  cos x)'"((2>+ipei*(p>). (24) 

is specified by the coordinate of the center and by the slope of 
the Gaussian beam. We assume that the correlated coherent 
state (22) is an eigenstate of the non-Hermitian annihilation 
operator 2 (p ,  x ): 

where 

r i ( h  X )  = ( k /2p  cos X )  '"(2+ipeixp), [ri ,  & + ] = I .  (26) 

The correlated coherent state in (22) is convenient for de- 
scribing Gaussian beams because it makes it possible to cal- 

culate by simple algebra all the expectation values which 
characterize the beam. Hamiltonian (3) for the medium de- 
scribed by (21) can be expressed in terms of the operators 2 
and 2+ in (26) in the following way: 

where 

and the density matrix operator for the Gaussian beam cor- 
responding to the pure correlated coherent state (22) is 
P = la)(al .  

Accordingly, knowing the effect of the operator2 on the 
state la) [described by (25)], and using (19), we can easily 
calculate the spread in propagation constants: 

The first term in square brackets in (29) corresponds to the 
spread of the propagation constants in the paraxial approxi- 
mation, while the second gives the first correction for the 
deviation from the paraxial situation. 

Since the Gaussian beam of coherent radiation which 
we are considering here is described by a pure state, uncer- 
tainty relation (18) becomes an equality in this case, and the 
stationarity length of such a beam is 
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Expression (29) thus actually specifies the stationarity length 
of an arbitrary Gaussian beam in the paraxial approximation 
and the first correction for a deviation from a paraxial situa- 
tion. 

It can be seen from (29) that as the parameter a in- 
creases, i.e., as the displacement of the beam center from the 
axis and the beam angle with the axis increase, the spread in 
propagation constants increases, while the stationarity 
length decreases. The stationarity length of a Gaussian beam 
propagating along the axis is 

Using (23) and (28), we easily see that the expressions (29) and 
(31) specify the stationarity lengths of arbitrary and axial 
Gaussian beams, respectively, as functions of the beam 
width a;'' and of the radius of the wavefront r. 

Ordinary coherent states specifying the paths and 
widths of rays in a medium with a quadratic refractive-index 
profile correspond to Gaussian beams with a plane phase 
front and with a width equal to the width of the fundamental 
mode.' For such coherent states, we should set luI2 = 1 and 
lv12 = 0 in the case of a medium described by (21). In this 
case we immediately obtain from (29) an expression for the 
stationarity length of the rays: 

The stationarity length of an axial ray with a parameter 
a = 0 becomes infinite (both in the paraxial approximation 
and when the deviation from a paraxial situation is taken 
into account). The reason is that an axial ray coincides with 
the fundamental mode, which is a stationary state. As the 
parameter a increases, i.e., as the deviation of the ray from 
the axis increases, the stationarity length decreases. Since a 
ray in the medium described by (21) is a Gaussian packet 
whose angular and spatial widths remain constant in the 
course of the propagation (the packet width is matched with 
the gradient parameter of the medium, a), and whose center 
oscillates about the axis,' the stationarity length (32) of the 
ray is a measure of the maximum distance along the axis over 
which the displacement of the center of the packet does not 
yet exceed its width. To verify this, we consider a paraxial 
ray, described by a coherent state, in the complex plane of 
the parameter a which takes the following form when we 
take into account thez dependence of the expectation values 
( 2 )  and @) in (24): 

where x, andp, are the initial coordinate (i.e., that at z = 0) 
of the center of the ray and its initial inclination. The coordi- 
natesx, andp, determine the initial position of the ray in the 
phase plane, while the region in which the ray is localized in 
the phase plane is specified by the variances 

FIG. 1 .  Path traced out by a paraxial ray in the phase plane of the complex 
parameter a for a longitudinally homogeneous medium with a parabolic 
refractive-index profile. 

For rays, the Heisenberg uncertainty relation (1) becomes an 
equality. It is easy to see that in the complex plane of the 
parameter a ,  (33), the center of the ray moves along a circle 
of radius la I, and the localization region of the ray field cor- 
responds to a circle of radius A Ima = A Rea = 1/2 (Fig. 1). 

If, by analogy with the Rayleigh resolution criterion in 
spectroscopy, we assume that two packets are distinguish- 
able only if the distance between their centers exceeds their 
width, then we easily find from Fig. 1 that a ray can be as- 
sumed to have undergone a substantial displacement only if 
Ida/ = la(z) - a(O)I > 1. Assuming la1 > 1, we can also deter- 
mine that longitudinal distance ( Z , ) ,  over which the center 
of the ray is displaced a distance equal to its width in the 
complex a plane: 

It is not difficult to see that this distance is in fact the same as 
the stationarity length (32) in the paraxial approximation. 

Since the oscillation period of paraxial rays in the medi- 
um described by (21) is T = 2n-n,/w, the paraxial stationar- 
ity length of a ray, (34), can conveniently be written 

The stationarity length of an axial ray with a = 0 is thus 
infinite; the stationarity length of a ray with (a ( = 1 is on the 
order of one-sixth of its oscillation period. As the deviation 
of the ray from the axis increases, the paraxial stationarity 
length of the ray falls off in inverse proportion to la / .  

Example 2. Stationarity length of an arbitrary paraxial beam in 
a longitudinally inhomogeneous medium 

In many cases of practical importance it is necessary to 
study how longitudinal irregularities of a medium affect 
such characteristics of a radiation beam as its width, the path 
of its center, its mode composition, and the intermode pulse 
dispersion. It is important here to have a simple way to esti- 
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mate which longitudinal inhomogeneities can be ignored. n2 (x, 8 )  =n2 (0, E )  -a2 (E)x2+2f  ( k ) ~ ,  (40) 
To resolve this question we consider an arbitrary beam 

in a medium which is longitudinally homogeneous at {to where the gradient parameter w(f 1, which specifies the trans- 

but longitudinally inhomogeneous at f > O. For such a medi- verse distribution of the refractive index, and the function 

um, Hamiltonian (3)  can be written as f (f ), which describes the curvature of the axis, vary in an 
arbitrary way in the longitudinal direction, taking on con- 

A=8, ( x )  +An2 ( x ,  z )  , (36) stant values at infinity: w( f c o )  = w + , f ( f c o )  = 0. [If we 
h 

where Ho is the Hamiltonian corresponding to the initial, 
longitudinally homogeneous, part of the medium at f<O, 
and An(x, f )  is an arbitrary perturbation of the refractive 
index. We have An(x, f ) = 0 at f <O and limAn(x, f ) = const 
as &--+a,. 

We assume that in the initial part of the medium, f g 0 ,  
the beam is described by the density matrix Po, and the ex- 
pectation value of its propagation constants and their stan- 
dard deviation in the paraxial approximation are Po and 
( (4B0)')  ' I 2 ,  respectively. The stationarity length in the ini- 
tial part of the medium thus satisfies uncertainty relation 
(18). For any 6 > 0 the beam is described by the density ma- 
trix& ) which is found from Liouville equation (4)  with Ha- 
miltonian (36). We assume that the expectation value of the 
propagation const_ants and their standard deviation at f > 0 
are ,B (6 ) and ( ( A p  (f ))') ' I 2 ,  respectively. Uncertainty rela- 
tion (8)  can then be written in the form 

where the stationarity length Z, (f ) at any distance { > 0 is 
given by (5)  and has the meaning of the stationarity length 
which the packet would have if it had begun to propagate 
through a longitudinally homogeneous medium at the time 
6. It is natural to assume that the longitudinal inhomogene- 
ities substantially affect the beam characteristics if they lead 
to a change in the expectation value of the propagation con- 
stants,SO (f ) = P (f ) - ~o,byanamountexceedingtheirtotal 
variance, i.e., if 

Alternatively, using (37), we can write 

Inequality (39) thus implicitly specifies the length (z ) of 
that part of the longitudinally inhomogeneous part of the 
medium over which the change in the expectation value of 
the propagation constants does not yet exceed the variances 
of these constants. If the length of the inhomogeneous part of 
the medium exceeds g, this part of the medium will have a 
substantial effect on the characteristics of the radiation, but 
if the length of the inhomogeneous part is instead smaller 
than z we can ignore the effect of the inhomogeneities. The 
longitudinal scale length and the stationarity length Z,(f ) 
are thus useful parameters in a variety of calculations of 
practical importance. 

Example 3. Stationarity length of a paraxial ray in a 
longitudinally inhomogeneous medium with a quadratic 
refractive-index profile 

Our final example is a two-dimensional medium with a 
parabolic refractive index profile, 

- 

consider the medium at f>0,  we have w( - co ) = w(0) = w - 
and f ( - W )  = f (0)  = 0.1 

We assume that at f < O  a ray l a )  = !Pa (0)  propagates in 
the medium described by (40). As was shown in Ref. 8, all the 
characteristics of the beam at an arbitrary f > 0 can then be 
found by means of the invariant annihilation operator (an 
integral of motion) 

In particular, in the course of the evolution in the medium 
described by (40) the ray ly, (0)  is described by the coherent 
state !Pa (f ) which is constructed as a eigenstate of this opera- 
tor: 

Here ~ ( f )  is a solution, selected in a definite way, for the 
equation of a classical oscillator with a variable "frequency" 
4 6  1, 

and the complex quantity d (f ) is given by 
E 

It is not difficult to show that the state !Pa (f ) into which the 
initial ray Pa (0)  transforms in the course of the evolution is a 
correlated coherent state (22) of the type la + d (6 )) . The pa- 
rameters p and x of this correlated coherent state are given 
by (28), in which u and v are replaced by 

and w is replaced by w + . We also note that the displacement 
of the center of a Gaussian beam in the complex plane of the 
parameter a is specified by the function d (f ). 

Since a ray transforms into a correlated coherent state 
in the medium described by (40), its stationarity length is 
described over any distance f by expression (30), where the 
standard deviation of the propagation constants is specified 
by the paraxial part of expression (29), in which in turn we 
replace u and u by 6 and b from (45), a by a + d (f ), and w by 
w ( f  1. 

To see how longitudinal inhomogeneities influence the 
stationarity length of a ray over a finite longitudinally homo- 
geneous part of a medium, we should examine the behavior 
of the solution of Eq. (43) in the limit 5--t f W .  Here it is 
convenient to use some parameters introduced in Ref. 8. 
These are the numerical parameters 0gR < 1 and Ogv < co 

and the phases S,, S,, and P, and describe completely the 
behavior of a radiation beam in the medium (40) in the limit 
{-+a. The parameter R is formally the same as the quan- 
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tum-mechanical coefficient for above-barrier reflection 
from abarrier whose shape is described by the function w2(l ), 
while 6 ,  and S2 are the same as the phases of the transmitted 
and reflected waves. The complex quantity 

d= lim d ( E )  =vIheip 
E + -  

specifies the beam-center displacement, caused by a longitu- 
dinal inhomogeneity, in the phase plane. Consequently, by 
simply varying the numerical values of these parameters we 
can describe the entire class of regular longitudinal inhomo- 
geneities of the medium (40). 

For brevity we write the explicit expression for the par- 
axial stationarity length in a finite longitudinally homogen- 
eous part of the medium. Noting that in the limit 6-+W we 
haveS 

u"=  
1 

exp (i6,+io+E), 
( I - R )  '" 

R '" 
5- (-1 I-R exp  ( i s , - i o , ~ ) ,  

we find from (29) 

It can be seen from (47) that longitudinal inhomogeneities 
generally decrease the stationarity length, because of the 
packet spreading, studied in detail in Ref. 8. In the case of 
matched longitudinal inhomogeneities,' with R = 0, the sta- 
tionarity length is determined exclusively by the curvature 
of the axis and is 

If, furthermore, there is no curvature of the axis, we have 
d = 0, and over a finite region the stationarity length is 
equal, apart from replacement ofw, by w -, to a stationarity 
length (34) of the ray in the initial part of the medium, at l(O. 

Finally, in the case of mismatched inhomogeneities, for 
which we have R-1 or v-W, and in which case the radi- 
ation escapes from the medium,' stationarity length (47) 
vanishes. 

4. CONCLUSION 

In summary, by using the density matrix formalism and 
an analog of the Tamm-Mandel'shtam energy-time uncer- 
tainty relation, we have been able to introduce a new longitu- 
dinal scale dimension-the radiation stationarity length-in 
a theoretical study of the propagation of arbitrary beams of 
coherent or partially coherent radiation in inhomogeneous 
media. The stationarity length is a measure of the distance 
over which the changes in the expectation values of the char- 
acteristics of the radiation do not yet exceed their variances. 
We find that the longitudinal inhomogeneities of a medium 
with a quadratic refractive index profile generally lead to a 
decrease in the stationarity length. We have studied in detail 

the stationarity lengths of rays in such media, and we have 
shown that the maximum stationarity length of an off-axis 
ray is on the order of T/27~, where Tis the oscillation period 
of the paraxial rays. 

It should be noted that the typical oscillation periods of 
rays in thick graded-index rods of the "Selfoc" type used in 
optics are on the order of a few centimeters. In the multi- 
mode graded-index fibers used in fiber-optics communica- 
tions, these typical periods are on the order of a few millime- 
ters; for propagation of sound in an underwater acoustic 
duct in the ocean the typical periods range from 6 to 60 km; 
and for ultra-long-range propagation of short radio waves in 
ionospheric ducts the periods range from 200 to several 
thousand kilometers. 

The stationarity length thus proves to be extremely im- 
portant in these problems, and it is a useful longitudinal scale 
dimension, which makes it possible, in particular, to esti- 
mate the length of those longitudinal inhomogeneities of a 
medium which cause only insignificant changes in the char- 
acteristics of radiation and which can therefore be ignored. 

We wish to thank V. I. Man'ko and E. V. Kurmyshev 
for useful discussions. 

APPENDIX 

To prove uncertainty relation (8), we make use of the 
well-known fact that the followin3 unczrtainty relation 
holds for i w c H e r ~ i t i a n  operators A and B and their com- 
mutator [A,  B ]  = ic:  

where 

( ( A A ) ~ )  =sp &+sp2 ^pa, ( (AB) 2 )  =sp;0~2-sp2^p~, 

<e>-Sp be. 
h  A h  h h h  

Assuming A = H, B = $ / k ,  we have C = [H, b, H I ]  by vir- 
tue of (4), and relation (Al )  becomes 

Furthermore, usingb2<lj, Liouville equation (4), and identi- 
ty (6), we find 

Consequently, from re!ation (Al)  we find the following ine- 
quality, assuming Spbb2 #0  and using inequality (9): 

This is the same as uncertainty relation (8). 
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