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Taking into account the origin of the band states of the A4B6 semiconductors from the atomic 
orbitals ofp symmetry, we solve analytically the problem of the localized states of a defect with 
deep levels. It  is shown that the ground state of the chalcogen (B) vacancy is a spin-orbit split 
triplet. A symmetry classification of the levels is given. A calculation of the localized electron 
density redistribution is carried out, making it possible to give an intuitive interpretation of the 
various charge states of the A and B vacancies. 

1. INTRODUCTION 

In A4B6 semiconductors the concentration and type of 
charge carriers are almost always governed by point defects, 
principally vacancies.' It is assumed that shallow impurity 
levels in these materials are generally absent, since the small 
effective masses m*-0.1 m, and the large dielectric con- 
stant x,- lo3 result in a negligible binding energy m*e4/ 
fi2 xi - 10W6 eV.' This estimate, however, does not allow for 
spatial dispersion of x,, the result of which is that screening 
is unimportant at small distances. As a result the Coloumb 
potential of a charged defect is short-range, as is the pertur- 
bation V(r) that is introduced into the crystal by a neutral 
defect. In this case the effective mass method is in principal 
inapplicable, and calculation of the bound state requires 
knowledge of the band structure over the entire Brillouin 
zone. 

Even for a rather small V(r), where the radius of the 
localized state is large it is not possible to restrict the consid- 
erations to the vicinity of the band edges. The latter deter- 
mines only the asymptotic form of wave function but not the 
binding energy ." 

This difficulty, which is typical of the problem of deep 
levels in semiconductors, can, as a rule, be overcome only 
through the use of numerical calculations. For the A4B6 
compounds such calculations were undertaken by Parada 
and Pratt,4 who calculated the vacancy levels in PbTe. The 
lead vacancies were found to be doubly ionized acceptors, 
while the tellurium vacancies proved to be doubly charged 
donors. It is evident that this result agrees with experimental 
data.' The energy levels that were obtained lie in the band 
gaps, so that, in agreement with experiment,' the charge car- 
riers are not frozen out even at the lowest temperatures. Ac- 
cording to calculation? almost all the levels are located far 
from the band edges. The exceptions are three states that 
belong to the tellurium vacancy. As reported in Ref. 4, they 
lie 27,55, and 218 meV above the bottom of the conduction 
band. In a number of inve~tigations,'~~ these states were in- 
voked to interpret the experimental data. 

However, it is quite clear that the accuracy attributed to 
the determination of the energy levels in Ref. 4 was exagger- 
ated. Indeed, in order to calculate the positions of the deep 
levels it is necessary to know the energy spectrum of the ideal 
crystal (and Ref. 4 contains a numerical calculation of the 

bands). At the present time the accuracy that can be obtained 
in "first principles" band structure calculations is about 0.5 
eV. Since the band gap E, in the A ~ B ~  semiconductors is 
about E, -0.1 eV, it is usually taken as an adjustable param- 
eter from experiment.' This, however, does not guarantee 
the best accuracy for the subsequent bands, or for the values 
of ~ ( k )  at the other points of the Brillouin zone. The calcula- 
tion scheme used by Parada and Pratt also did not take into 
account entirely the requirements of symmetry. As shown 
below, two of the three levels of the tellurium vacancy are 
degenerate purely from considerations of symmetry. 

Moreover, the A4B6 semiconductors allow the rare pos- 
sibility of an analytic treatment of the deep levels. This is due 
to the simple origin of their bands, which are constructed 
from the atomic p orbitals (the p m ~ d e l ) . ~  The p model is 
based on the idea of a metallic parent phase-a crystal with a 
simple cubic lattice and an electron spectrum composed of 
three quasi-one-dimensional bands gik (the index i refers to 
thep orbitals). These bands are formed by the overlap of the 
orbitals (pi ) oriented along the cubic axes. Since in the A4B6 
compounds there are on the average three valence p elec- 
trons per atom, theg, bands are half filled. After taking into 
account the ionicity potential A (r), which characterizes the 
difference in the A and B atoms, the spectrum of the parent 
phase becomes dielectricized. In this process each of the 
bands 5 ,  is split into two bands f ~ ~ ( k ) ,  separated by an 
energy gap. In order to obtain the true spectrum it is still 
necessary to take into acco%nt mixing of thep bands by the 
crystal field (hybridization W) and by the spin-orbit interac- 
tion 2 .  In this approach the band structures of the various 
+4B6 compounds are characterized by various values of A ,  
wand,& while the parameters of the parent phase spectrum 

are practically univer~al .~ 
The characteristic values of il and Ware considerably 

smaller than A.6 Therefore, in the problem of the deep impu- 
rity, where the perturbation V is much larger than A or W, 
V>A, W, it is reasonable to treat the defect within the model 
of a dielectrized quasi-one-dimensional Earent phase and 
then take into account the effect of il and W directly on the 
localized states. As a result, the problem in the zeroth ap- 
proximation reduces to a quasi-one-dimensional problem. 

Within the framework of thep model the location of the 
defect in the lattice is characterized via the ionicity potential. 
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Actually, for a substitutional defect, the potential A (r) ap- 
pears to be even as viewed from the center point of the defect. 
Here, according to the definition ofA (r) (Ref. 6), it is of oppo- 
site sign on the different sites (on the chalcogen (B) A < 0 and 
on the metal (A) A > 0). For an interstitial impurity the func- 
tion A (r) is odd. 

Modeling of the vacancy with the use of a localized per- 
turbation V (r) in general lacks self-consistency. This means 
that in the potential V (r) one must take into account the per- 
turbation of the electron density near the defect. At the least 
it is necessary to make sure that the disturbance is strongly 
localized and corresponds to the removal of two (for A-type 
vacancies) or four (for B-type vacancies)~ electrons. 

In this paper we calculate, within the framework of the 
p model, the energy spectrum of point defects (vacancies) in 
the A4B6 semiconductors. We determine the distribution of 
the valence electron density around the defect and find the 
radius of the bound state. In contrast to numerical calcula- 
tions, the analytic theory permits a qualitative understand- 
ing of the nature of the difference in the charge states of the 
A-and B-type vacancies, it allows one to give a rigorous sym- 
metry classification of the levels and to predict how they 
move as functions of composition in solid solutions of the 
type Pb, -, Sn, Te. Furthermore, experience in using thep 
model in band structure calculations6 allows us to anticipate 
better accuracy in numerical estimates of the energy spac- 
ings between localized levels than in calculations from first 
principles.4 

2. LOCALIZED STATES IN THE QUASI-ONE-DIMENSIONAL 
MODEL 

In the one-electron approximation all the information 
about a system is contained in the single-particle Green's 
function (the resolvent operator) 5, which satisfies the equa- 
tion 

G = G + G ~ ~ ,  (1) 

where 5 is the Green's function of the defect-free crystal. 
The solution of (1) has the form 

The energy spectrum of the bound states is determined by 
the equation 

and the wave function by the relation 

Within the framework of thep model the representation 
In, i, u) of the localized p orbitals is used for the Green's 
functions (the vector n runs over the sites of the simple cubic 
lattice and - u isAthe spinjndex). In this representation the 
operators G,,. , G,,. , and V,, are matrices in the indices i and 
u. 

To begin with we shall confine the discussion to the 
zeroth approximation of the p model, where the three p 
bands are considered noninteracting (the effects of mixing of 
thep bands are examined in section 4). The zeroth approxi- 
mation corresponds to the Green's function 

h 

where 1 is the unjt matrix in spin space. In this approxima- 
tion the matrix Vnn also has no off-diagonal elements in i. 
Therefore the relations (3) and (4) decompose into three inde- 
pendent equations for each of thep bands. 

For the simplest single-sit%defect model, proposed by 
Koster and Slater7, the matrix V,, has the form 

- 
~ ~ ~ ~ ~ = 6 i , i ~ 6 6 , 0 ~ 6 n , 0 6 n ~ , 0 V ~ .  (6) 

Taking into account (5) and (6), we obtain from formulas (3) 
and (4) 

where c l  = (n, i, ul t+h) is the wave function in then represen- 
tation. 

Koster and Slater considered the case where the impuri- 
ty state is formed from the Bloch functions of only one band. 
In subsequent numerical calculations of course, the multi- 
band character of the problem has been taken into a c ~ o u n t , ~  
but it is not clear what qualitatively new consequences this 
has led to. 

In thep model the spectrum of a semiconductor origin- 
ates in the doubling of the period of the present phase as a 
result of the ionicity. Therefore the Green's function G l,, 
characterizes both branches f E~ (k) of the dielectric spec- 
trum and it is automatically a two-band Green's function. 
This circumstance is much more important than is 
allowan~e for a large number of sites in the perturbation 
matrix V,,. . The one-site approximation (6) is quite suffi- 
cient to understand the reason for the radical difference in 
the energy spectra and charge states of the A and B vacan- 
cies. 

The Hamiltonian of the ith quasi-one-dimensional band 
has the form 

The matrix element of the ionicity A is real if we consider 
lattice site defects for which the potential A (r) is even. The 
parent phase spectrum f , ,  of, for example, the z band is 
given, according to Ref. 6, by the formula 

g,, k = g o  [COS k r f  EL (cos k x f  c o s  k,)] . (10) 
The spectrum (10) satisfies the condition fi,, +, = - fi, ,, 
where q = ~(111) ;  (the lattice constant a of the cubic parent 
phase is taken to be unity). From (9) it follows that 

The zeros of the denominator on the right hand side of (1 1) 
determines the allowed bands of the quasi-one-dimensional 
model after dielectrization of the parent phase: 

i?i (k) =f (E:kf I A 1 ') Ih. (12) 
The actual values off, and A /lo are of the order 0.2 to 0.3 
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(Ref. 6). Therefore in the calculation of (1 1) we can assume 
that g: (1 and the quantity 

is also small, since we are interested in the energy region 
within the ionicity gap: Jw I < lA I. As a result of the calcula- 
tions we find 

GnoZ ( a )  = - 

where J,  (z) are Bessel functions of the first kind. Of the ex- 
pressions following the curly bracket, the upper one should 
be used when n, is even and the lower one when n, is odd. 
Formula (13) is valid under the condition 

For large n, the preferred status of the z axis becomes less 
significant. From (14) it can be seen that the anisotropic 
structure of the Green's function (13) is preserved at large 
distances from the zeroth site, out to n, ~ 2 r / (  : =: 300-500. 
The quantity G&,, which according to (7) determines the 
spectrum of the localized states is equal to 

This formula follows from (1 1) if terms of order 6 : and x2 are 
retained. As can be seen from (15), G&, is identical for all 
three bands. Consequently, if Eq. (7) has a solution, then the 
corresponding level is three-fold degenerate. It is easy to 
show that a solution of (7) exists when the signs ofA and the 
effective coupling constant g= V , g o  are opposite. The ener- 
gy of the level is 

E O  (g) =A (1-g2) / (l+g2).  (16) 

IfgA > 0 then a level does not arise. In the derivation of (16), 
the corrections g f and x2 in (15) were dropped. As is shown 
below (section 4) they are important only in the calculation 
of the spin-orbit splitting of the triplet E,. 

For vacancies it is natural to assume that the constant 
g > 0, i.e., it corresponds to repulsion. In the following sec- 
tion we shall see that actually in this case a distribution of 
electron density similar to the atomic electron density distri- 
bution is expelled from the vicinity of the site occupied by the 
vacancy. The entire difference between A and B vacancies 
reduces to the sign of the ionicity A. For the chalcogen va- 
cancy (B) A < 0 and therefore the level&, exists (Fig. l), while 
for the metal vacancy (A) A > 0, and there is no level. 

According to formula (8) the coefficients c; are propor- 
tional to G k, (13) and are even functions of n. Because thep 

FIG. 1 Dependence of the levels of the localized states on the coupling 
constant in the quasi-one-dimensional model. The level ~ , ( g )  lies in the 
ionicity gap 216 1; ford > 0  (defect on an A site) it exists only for an attrac- 
tive potential g < 0 (left branch) and for A 1 0  (B site) it exists only for a 
repulsive potential g > 0  (right branch). The state E, is strongly localized 
and influences the electron density in the unit cell containing the defect 
(see section 3). 

orbitals f;. (r) are themselves odd, the wave functions in the 
coordinate representation 

n 

are odd and transform according to the irreducible represen- 
tation r,, of the cubic group. Consequently the threefold 
degeneracy of the level go is due to symmetry and can be 
lifted only to the extent of the spin-orbit interaction. 

The decay of the wave function in, for instance, the z 
band along thez axis is characterized by a distance a,= l/x. 
Because of the oscillations of the term after the curly bracket 
in (13) the amplitude of the wave function at the nearest- 
neighbor site is greater than at the zeroth site. In the trans- 
verse plane (n, , n, ) the rate of falloff of the envelope of c', is 
determined by the Bessel functions and depends on In, I. For 
In, I >g1 In, I the function has the asymptotic form 

If we consider the matrix elements V,,. = (nJ V In') for 
(nl, In'/ = 0, f 1 then from Eqs. (7) and (8) we obtain the 
state E-  with an odd envelope of c ! - ) .  The condition for 
existence of this state, g-A > 0, is the opposite of the condi- 
tion for the existence of the even state, and the effective cou- 
pling constant 

g-=(Vi, -i-Vi, t)/Eos-Vt, i / E o  (1 8) 
determines E-(g-) according to formula (16), in which the 
replacement g+g- should be made. Thus, an A vacancy can 
create an even localized state that is slightly split off from the 
valence band (according to the smallness of g-). 

In some semiconductors of type A4B6 (GeTe and SnTe) 
a ferroelectric phase transition takes place. It is of interest to 
determine the effect of this transition on the depth of the 
level. 

The relative shift of the A and B sublattices creates an 
odd doubling potential Aph (r). This potential increases the 
energy gap due to the ionicity. In order to allow for the struc- 
tural distortion, the replacement A-A + id,, sin k; should 
be made in (1 1) (Ref. 9), where A,, is a constant proportional 
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to the displacement of the sublattices. It is found that in the 
presence of the distortion a bound state for the one-side per- 
turbation (6) exists for any relation between the signs ofg and 
A. The energy of this state is given by 

A A,h2 

E O ( ~ )  = - 7 [sign ( g ~ )  ( I +  (l+g2) - ) +  g2 1. 
l+g A 

In this way the structural rearrangement makes the level of 
the localized state deeper and can cause the appearance of a 
level at an A vacancy. 

According to (16) a chalcogen (B) vacancy creates a lo- 
calized state within the ionicity ga~21A 1 53-1 eV.6 As will 
be shown below, the interactions A and W, which cause a 
mixing of the quasi-one-dimensional bands, bring about only 
a small correction of (16) if the coupling constantgz 1. How- 
ever, these interactions have an important effect on the band 
energies near the points of degeneracy of the bare bands f ,  , 
(Ref. 6) .  At the L point where the extrema of the bands are 
located, these interactions cause a strong reduction in the 
gap 2 1 A 1 and to a small observable band gap E, . The L terms 
of the bands for various A4B6 compounds have been calcu- 
lated within the framework of the p model in Ref. 6. The 
positions of these terms, as well as of the level go are refer- 
enced to the Fermi surface of the metallic parent phase. This 
makes it possible to determine the position of the level rela- 
tive to the band edges. The coupling constant g cannot be 
found from the theory without a self consistent calculation 
of V(r). However, it can be estimated from experiment for 
some specific A4B6 compounds. According to experimental 
data5 the level of the Te vacancy in PbTe lies near the con- 
duction band edge. For this it is necessary that g,, =: 1. An- 
other possibility of determining g is associated with the fact 
that this constant enters into the triplet E, splitting (see sec- 
tion 4), which can be determined experimentally. It is prob- 
able that the constant g is not very different from one chalco- 

gen to another. For chalcogen vacancies in a series of lead 
salts, PbTe, PbSe, and PbS, the constants g, (v = S, Se, Te) 
can be evaluated from the relation g, = g,, I, /I,, , where 
I, is the atomic ionization potential of the vth chalcogen. 
Attempts to detemine more accurately the values of g, are 
meaningful only if lattice relaxation is taken into account. 
This is because, owing to the degeneracy of the level E,, the 
crystalline environment of the defect undergoes a rearrange- 
ment, and as a result there is a shift and a splitting of the level 
(the Jahn-Teller effect). lo 

Figure 2 shows the position of the level E, calculated 
from formula (1 6 )  for g,, = 1.15 (and, correspondingly, 
gse = 1.24, and g, = 1.32) for the different A4B6 com- 
pounds. From this figure it can be seen how the level can be 
expected to move in solid solutions of the A4B6 compounds. 
The shift of the level E, relative to the band edges in the alloy 
Pb, -, Sn, Te agrees qualitatively with experimental 
data.'.' ' 

The difference in the energy spectra of the A and B 
vacancies is caused by the difference in their charge states. 
As can be seen from Figs. 1 and 2, a chalcogen vacancy in the 
lead salts brings about a transfer of the triplet E, from the 
valence band to the conduction band. Of the six electrons 
that have been "freed" four p electrons are removed along 
with the B atom and the other two are transferred to the 
conduction band. In the case of a metal vacancy, the state E, 

does not exist, and the level E-, on account of the smallness 
of the constant g- necessarily lies below the edge of the va- 
lence band. Therefore transfer of the states across the gap 
2 1A 1 does not occur, and the removal of twop atoms with the 
metal atom leads to the formation of two holes in the valence 
band. In SnTe the level E, lies in the valence band (Fig. 2). 
Therefore a Te vacancy in this compound will not be a do- 
nor, but an acceptor, just like an Sn vacancy. It is probable 
that this is the reason that only p-type SnTe is known. 
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A similar explanation of the charge activity of vacancies 
in PbTe was given by Parada and Pratt4 on the basis of a 
numerical calculation. In the numerical approach, the pres- 
ence of three close-lying levels at a tellurium vacancy ap- 
pears accidental. Furthermore, the complete lifting, ob- 
tained in Ref. 4, of the threefold degeneracy of the bare level 
E, is inconsistent with symmetry considerations. 

3. ELECTRON DENSITY NEAR A DEFECT 

The potential V(r) of a defect not only produces local- 
ized states, but also causes a perturbation of the vaIence elec- 
tron density. A calculation of the electron density is required 
in order to check the adequacy of the description of a va- 
cancy by a repulsive potential V(r). Moreover, such a calcu- 
lation makes it possible to give an intuitive interpretation (in 
coordinate space) of the charge activity of vacancies. 

In the lattice site representation the variation of the 
electron density is determined by the standard formula 

where the integration is carried out over the closed contour 
that corresponds to the occupied states. Since, in the calcula- 
tion of (19) terms of order x2 cannot be neglected, we shall 
investigate the purely one-dimensional case g, = 0), in 
which the problem can be solved exactly. Hence, we shall 
omit the band index i in the treatment below. Using formulas 
(2) and (6), we find from (19) 

Calculating Gno for the one-dimensional band f, = f, cos k 
from formula (1 1) and substituting the result into (20), we 
obtain 

(21) 
where 

Z ( 0 )  = l + v o  ( A + o )  [ (Eo2+A2-0') (A2-0 ' )  ] - I h ,  

a (0)  = [ (A2-0 ' )  Ih- (g02+A2-a2 )"I /Eo. (22) 

The meaning of the curly bracket in (2 1) is the same as in (1 3). 
The integrand in (21) is analytic in the w plane with cuts 
along the segments, lA I < Iw I < (f + A ')"' of the real axis, 
corresponding to the band gaps (12). The zeros of the func- 
tion Z (0) determine the levels of the localized states. One of 
them, ~,(g) ,  Eq. (16), lies in the ionicity gap. The energy of the 
other is 

E o ( g )  =to sign g ( I + A 2 / ~ 0 2 + g 2 ) ' h .  (23) 

The state Eo(g) is situated outside of both band gaps (Fig. 1) 
and it exists both in the metallic parent phase and in the 
dielectric phase regardless of the relation of the signs ofg and 
A .  This is, in fact, the level that was obtained by Koster and 
Slater7 in the one-dimensional one-band model. The distri- 
bution of the electron density of the localized states is asso- 
ciated with the residues in (21) from the poles of (16) and (23). 
For the state E, the distribution has the form 

where 6 ( x )  is the step function. The distribution of electrons 
associated with the level (23) and lying outside of the band 
continuum is described by the formula 

8pEa(n)  = [ g Z /  ( I f  g Z )  I"'[ ( l+gz)"*-Ig)  ]Zln'. 

For g 2 1 the function SpEo (n) is localized on a scale of order 
the lattice constant a of the cubic parent phase (we recall that 
we take a = 1). The distribution SpEo is characterized by a 
radius 

which is aminimum ( a , ~ f d l A  I )  forg = 1, when the level of 
the bound state (16) is exactly at the middle of the ionicity 
gap. It is interesting to note that the radius a, is large both in 
the case of a small and a large interaction constant g. Within 
these limits, however, the distribution of the electron density 
is quite variable. In the case of a weak potential (Ig/ ( 1) there 
is a substantial change in the density, according to (24) at the 
even sites, i.e., at sites of the same species as that correspond- 
ing to the site occupied by the defect. In the case Igl> 1 the 
electron density is greatly changed at the odd sites. 

In order to determine the change in the density of band 
electrons, it is necessary to calculate the integral (2 1) over the 
contour that encloses the cut corresponding to the valence 
band. For a strong perturbation, g) 1 the result has the form 

where the numbers B are defined by the expansion of the 
Legendre polynomials'': 

P, (cos r )  = B.' cos ns. 
n 

The first term in (27) corresponds to a density decrease local- 
ized within the unit cell (forg > 0 the level E,(g) is empty and 
the contribution from (25) is absent). In accordance with the 
condition that the bands of the parent phase are half filled, in 
the absence of the perturbation V, the electron density at a 
lattice site is -- 1/2 (with accuracy up to terms of order A /go 
and disregarding spin). The first term in (27) exactly cancels 
this quantity, so that in the case of strong repulsion there are 
no electrons at the site where the defect is located. This result 
is completely obvious. The second term is of great interest. 
In the first place, its sign depends on the sign of the ionicity, 
i.e., on the kind of site occupied by the defect. In the second 
place, it decays in a distance of order 

This dimension can be interpreted as the radius of localiza- 
tion of the charge that is transferred from an A site to a B site 
after the ionicity is turned on. It is easy to determine the total 
number of electrons that are concentrated in a cloud of di- 
mension a,, . In fact, the change SN in the number of parti- 
cles in the valence band is equal to the number of levels that 
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are split off. Therefore, in the case of an A vacancy, when 
SN = 0 (there is no E, level), a cloud of radius a,, contains an 
increase of 1/2 in the number of particles, and when this is 
added to the first term in (27) the result is zero. For a chalco- 
gen vacancy SN = - 1, and the second term in (27) contrib- 
utes - 1/2 to the total number of particles. 

Formula (27) is valid for Igl, 1. In the intermediate case 
g- 1 there appears in the density distribution an oscillatory 
part that decays exponentially in a distance a,, . This part is 
a remnant of Friedel oscillations that are suppressed by the 
dielectric gap 2 [ A  I. In the absence of this gap (for A = 0) we 
obtain from (2 1) 

1 4 
6p (n) = - - 6p,(n) +sign g- 

2 n 

Here the second term, which is proportional to ( - 1)" /In 1 
for In 1 1, represents Fridel oscillations in a one-dimension- 
a1 metal. 

In the weak binding limit, as one would expect, the 
change in the electron density in the two-band model that we 
are considering coincides with the results of the one-band 
model. It is equal to the electron density at the localized 
level, but with opposite sign. 

It is now possible to give a clear picture of how the 
electron density in a crystal changes when a vacancy is creat- 
ed. For vacancies of both types, three electrons are expelled 
from the unit cell (the first term in (27) multiplied by two for 
the spin and by the number ofp bands). This corresponds to 
the removal of an atom of the parent phase along with its 
electron cloud. The difference between a metal and a chalco- 
gen vacancy is contained in the second term in (27) and is due 
to the ionicity. In the case of a metal vacancy, this term gives 
an increase in the electron density within the radius a,, , the 
integrated density increase being equal to three particles 
(Fig. 3a). This integrated increase in the electron density 
compensates for the density decrease in the central cell. The 
removal of two atomic p electrons is accompanied by the 
appearance of two holes at infinity (a doubly charged accep- 
tor). 

For a chalcogen vacancy the second term in (27) has the 
opposite sign and corresponds to the expulsion of three elec- 
trons from a region of size a,, (Fig. 3b). When the central 
cell is taken into account, altogether six electrons are re- 
moved from the vicinity of the vacancy. Four of them are 
removed with the B atom and two free electrons remain at 
infinity (a doubly charged donor). Generally speaking, these 
electrons could be localized at the level E,. However, as 
shown above, in the lead chalcogenides, this level lies above 
the bottom of the conduction band. Therefore the electrons 
turn out to be free and are not frozen out at low tempera- 
tures. 

Thus, the point potential V(r) actually leads to the same 
electron density distribution that one would expect from 
qualitative considerations. At the same time the presence of 

-3-2-1 1 ZmJn  

'ion 'con 

FIG. 3. Redistribution of electron density in the vicinity of the A and B 
vacancies. 

a region of increased (for an A vacancy) or decreased (for a B 
vacancy) electron density of dimensions on the order of a few 
lattice constants indicates that there is some "spreading- 
out" of the bare perturbation. This must be taken into ac- 
count in a self consistent determination of the potential V(r). 
For our purposes this is not important, since we take the 
constant g as a phenomenological parameter, to be deter- 
mined experimentally. 

4. THE EFFECTS OF THREE-DIMENSIONALITY; SYMMETRY 
CLASSIFICATION OF THE LEVELS 

The number of levels of localized states increases with 
the number of sites that are touched upon by the pgtential of 
the defect, since the dimensionality of the matrix V,,, deter- 
mines the degree of the secular equation (3). 

The classification of the localized states and their ener- 
gies depends on the location of the central point of the poten- 
tial V(r). For a defect located at a B site the one-site repulsive 
potential (6) creates in each of thep bands a localized state E, 

(16). In the spectrum of $e states arising when the dimen- 
sionality of the matrix V,,, is increased, this level is the 
ground state level. In accordance with the oscillation 
theorem its envelopes of c l  are even and have no nodes. Alto- 
gether the level E, is threefold degenerate and the corre- 
sponding wave functions $i (17) transform according to the 
vector representation r15 of the cubic group. This is due to 
the vector character of the localizedp orbitals on which the 
envelope is defi~ed. Mixing of thep bands by the crystal field 
(hybridization W )  cannot lift the degeneracy, since the repre- 
sentation r,, is irreducible. Only as a result of the spin-orbit 
interaction is the triplet E, split into a singlet (r,) and a doub- 
let (r,) level: 

I',5@D1,~=r~+ra. (30) 

This result is due only to the symmetry of thep orbitals and is 
therefore exact. 

For the repulsive potential (6) centered on an A site the 
state E, does not occur. The first localized level arises only 
when the neighboring sites n = + 1 are taken into account 
in each of thep-chains. This state can be interpreted as the 
first excited state. The state E-  is threefold degenerate like 
the level E,. However its envelope is odd and therefore the 
functions t+hi (17) transform according to the representation 
A (as x2, y2, and z2). Calculating the characters, we obtain 

n=r,+r,,, 
which implies a splitting of the triplet E-  into a singlet (TI) 
and a doublet (TI,) already as a result of hybridization. The 
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spin orbit interaction does not change the degree of the de- 
generacy: 

Thus, the structure of the energy spectrum of the local- 
ized states is in the form of a series of doublet and singlet 
terms of different parity. Obviously, this is valid only for a 
centrally symmetric defect. In a structurally distorted lattice 
the degeneracy of the levels is completely lifted and the states 
E~ and E-  can be realized at a single center. 

The treatment above refers to the spectrum that arises 
at once in the quasi-one-dimensional model. In principle, in 
a three-dimensional model, other levels having a more com- 
plicated envelope symmetry are possible. For these levels the 
classification according to parity is preserved. However, 
since these levels are determined by overlap integrals with 
distant coordination spheres, their binding energies are ex- 
tremely small, and they cannot be responsible for the charge 
activity of the vacancies. 

Let us calculate the spin-orbit splitting of the ground 
state E, for the one-site model of a B vacancy. In the n repre- 
sentation the spin-orbit interaction has the form 

n 

where the operators 2, = A  + J ,  and J is the matrix of the 
spin-orbit interaction in the basis of the p functiom6 The 
constants A * and A - refer to the A and B sites. The contri- 
bution A, of the zeroth site to the sum (3 1) should vanish in 
the case of a vacancy. 

A 
The Green's function in the absence of the potential 

V,,, satisfies the equation 

h 

where G,,, is defined by formulas (5) and (13). Equation (32) 
is easily solved in the momentum representation.13 As a re- 
sult the quantity G g )  is expressed by a complicated triple 
integral which can be calculated analytically only for the 
case g VJc0( 1. For the range of values ofg z 1 that we are 
kterested in, a more effective way is the direct calculation of 
G g )  by the successive iterations of Eq. (32): 

For g z  1 it follows from (16) that E,( /A I. In this energy 
region the series (33) converges according to how small A + / 
lA I < 1 is. For a substitutional impurity in the zeroth site, 
A,#A + #O, and the main contribution would be given by 
the first order A, G ,$, . Taking into account that the eigenval- 
ues of& are - W ,  (for the singlet) and& (for the doublet) 
we find from Eq. (3) the magnitude of the splitting: 

6 e o - 1 2 ) A  1 1 , / ( l + g Z ) 2 ~ o .  (34) 

However, for a vacancy A, = 0. In this case the first order in 
(33) is nonvanishing only in proportion to the size of 6, 
which breaks down the one-dimensionality of the p band 
(Eq. 10). Actually, for g, = 0, the functions G :,, correspond 

to one-dimensional motion along the axes i = x ,  y, and z. 
Rotations are possible only at sites containing the operator 
A,. Therefore in first order it is impossible to construct 
closed trajectories which emerge from and terminate at the 
zeroth site. In second order the only closed paths that are 
possible are those that begin and end in the same band i. 
xhese trajectories do not give a nondiagonal contribution to 
Gg).  Only in third order are there nontrivial trajectories 
which contribute to GZ;~'"' (for i#j). Thus, in (33) we must 
calculate the first order taking into account 6, and the third 
order in the one-dimensional approximation. As a result we 
obtain 

From Eq. (3) it follows that in the second and third terms in 
(35) we can set Goo= l/Vo. The magnitude of the splitting is 
given by formula (34), in which, in place of A,, one should 
substitute the product of A+ and the factor in curly brackets 
in (35). 

In acJual fact it is found that the contribution of the first 
order in A is dominant. For a Te vacancy in PbTe, setting 
A +  =0.28, A- = 0.42, go = 3.41, )A  ] = 0.876, and 
fogl = - 0.9 (all quantities are in eV)6 we find that the first 
term in the curly brackets in (35) is more than an order of 
magnitude greater than the second term. An estimate of the 
splitting gives S E , ~  10 meV, with the singlet level lying 
above the doublet (Fig. 4). The magnitude of SE, is clearly not 
accessible to numerical calculations, the accuracy of which 
in the best case is - 100 meV. This is the reason for the 
considerably greater splitting obtained by Parada and Pratt4 
(Fig. 4). The overlap of the levels of the localized states with 
the continuous spectrum (Figs. 3 and 4) results in broadening 
some of them. A rigorous calculation of the broadening r is 
possible within the framework of thep model, since the wave 
functions of both the localized and the band states are 
known. In the present discussion we shall limit ourselves to 
just an estimate of the broadening. 

The magnitude of r should be compared with the split- 
ting of the level E, from the valence band, and f o r g z  1 this is 
of order lA I. The standard procedure of the theory of virtual 
states14 gives 

I' / lAl*VoNL, 

where NL z eV- ' is the density ofband states per atom 
near the L point. The ratio T/lA I - 10-2/10-3 is small to 

FIG. 4. Spin-orbit splitting of the triplet level E, of a Te vacancy in PbTe. 
The dashed lines show the levels obtained by Parada and Pratt4 from a 
numerical calculation. 
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the extent that N, is small. Allowing for the actual form of 
the wave functions (that is, the selection rule for transitions 
between the localized level and the band states) can only 
make this number smaller. Moreover, the broadening r may 
be comparable with the spacing SE, between the singlet and 
the doublet. 

5. CONCLUSIONS 

The A4B6 cubic semiconductors comprise a class of ma- 
terials that can be considered model substances. Practically 
all their electronic properties can be understood within the 
framework of thep 

A point defect such as a vacancy is the ultimate local- 
ized probe, being sensitive to the electronic structure at dis- 
tances of the order of the lattice constant. It is at just these 
distances (large momenta) that the zeroth approximation of 
thep model, the approximation in which the mixing of thep 
bands is weak, is effective. This makes it possible first to 
construct the localized state in the quasi-one-dimensionalp 
bands and then take into account their interaction. When the 
p-orbital origin of the localized states is taken into account, 
then an exact symmetry classification of the levels can be 
given. Together with the simplest considerations of valency, 
this is sufficient to account for the different charge states of 
the A and B vacancies. 

The parameters of thep model which characterize the 
band spectrum are determined from experimental data on 
the effective masses and energy gaps.6 Similarly, the con- 
stants V:", , which characterize the defect, also can be deter- 
mined from experiment. In the one-site approximation this 
is a single parameter g= Vo/<,. For the chalcogen vacancy 
the constant g=: 1, and it determines not only the position of 
the level E, but its spin-orbit splitting 6~,=: 10 meV. Because 
of the smallness of SE, the level is a quasidegenerate triplet. 
Therefore the capture of electrons in this level will be accom- 
panied by a Jahn-Teller distortion of the lattice." This cir- 
cumstance must be taken into account in the analysis of ex- 
perimental data. 

Because of the high degree of degeneracy of the level E,, 

it is evident that multicharged defect states are possible. 
Each of them is characterized by a particular Jahn-Teller 
distortion symmetry. In this case an important problem is 
the self-consistent determination of the perturbation poten- 
tial V(r), which is different for the different charge states. 

"'In a number of articles (e.g., Refs. 2 and 3) this circumstance has been 
ignored. The authors investigated a short-range perturbing potential in 
a Kane-type band model, assuming the matrix element (nkl V Jn'k') to 
be independent of the quasimomentum of the Bloch states. In this ap- 
proach the position of the defect in the crystal lattice drops out of the 
calculation, and this, for a strongly localized potential is clearly errone- 
ous. 
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