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The singularities in the components of the dielectric tensor and in other kinetic characteristics of 
metals are analyzed as functions of the wave vector in the semiclassical approximation. No 
assumption is made regarding the shape of the Fermi surface. For certain directions of the wave 
vector, a quantum-mechanical treatment may be necessary. The role played by the Fermi-liquid 
interaction in the structure of the singularities is determined. When this interaction is taken into 
account, the divergence in the kinetic characteristics is eliminated. 

1. INTRODUCTION or 

The singularities in the components of the dielectric 
tensor E , ~  and other kinetic characteristics of metals as func- 
tions of the wave vector k at vanishing temperature T and at 
a mean free path I = co stem from the Fermi degeneracy, 
which gives rise to a nonuniform distribution of conduction 
electrons in quasimomentum space. 

These singularities can be classified conveniently by us- 
ing the gas approximation for ~,(w,k) (i.e., by ignoring the 
Fermi-liquid interaction); in this case, the analysis can be 
restricted to the longitudinal component E,, (w,k). In this ap- 
proximation we have 

In the static case (w = 0), expression (1) can have either 
Kohn singularitiesZ or Taylor ~ingularities.~.~ The Taylor 
singularities occur only for metals whose Fermi surfaces 
have lines of parabolic points. At w # 0 these singularities are 
accompanied by some which stem from the separating of the 
surfaces E, = E, and E~ * = E, f fiW in energy [see (4) and 
(4')I.At fiW(~,, the critical wave vector corresponding to 
these singularities is kc -w/v, (v, is the Fermi velocity). 

For an isotropic dispersion law we find from (1) with 
k z k ,  = w/vF 

(1) 

where n ( ~ )  is the Fermi step function, 

1, E<EF, 

0, E>EF, (2) 

E~ is the energy of an electron with quasimomentum p, and 
E, is the Fermi energy. In the case of a quadratic and isotrop- 
ic dispersion law, function (1) is called the "longitudinal 
Lindhard function." According to (2), the integration in (1) is 
carried out over that region in p space in which either (a) 
E, <EF, but E, + f* > EF, or (b) E, > EF, but E, + <EF (Fig. 
1). Since 

1 

Here 0 = 4nNe2/m is the square of the plasma frequency 
(we are using the standard notation), Ak, = k - k:, 
k: =k,(l+fiW/4~,), and lnx=lnlxl  + i n  for x<O. 
Expression (5) shows that ~\f '(w,k ) has two closely positioned 
singularities on each side of kc = w/u,. The splitting is of 
quantum origin (in the limit &/E,-+O the singularities 
merge and, as is easily shown, become stronger). In Section 2 
(see also Refs. 5 and 6) ,  we describe the singularities at 
E, -u/vF in the case of an electron gas with an arbitrary 
dispersion law. 

~ ~ + A ~ - t ? ~ + a r + i O  

1 
= P  - in6 (~~+ho-E~+hr ) ,  (3)  , 

E ~ + A O - E . + ~ ~  cP = tF 

where P means the principal value, the singularities of 
4 (w,k) are observed only at those values of the wave vector 
k = kc at which the surfaces are tangent: 

E ~ = E F ,  E . + ~ ~ ~ = E F + A ~ ,  

FIG. 1. Intersection of the surfaces E, = E, and E, + tik > s,. The 
hatched region is that region in the plane of the intersection in which we 

(4) h a v e & p < ~ f b u t ~ p + ~ k > ~ , a n d ~ p ~ s f , b u t s p + f i k < s f .  
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It is clear that the only singularities which can be mani- 
fested in the macroscopic properties of a metal are those for 
which the condition +ikc (p, -ii /a holds (a is the interato- 
mic distance). If &a(&,, this condition holds for singulari- 
ties with kc -w/u,. As for Kohn and Taylor singularities, 
we note that the condition WcC -p, usually holds for them. 
Exceptional cases are singularities which stem directly from 
the line of parabolic points on the Fermi surface and its vi- 
cinity ."8.4 

Briefly, here are the properties of a metal in which sin- 
gularities of E , ~  are manifested: a) the static and dynamic 
screening of the field of a charge in the meta19.10; b) the anom- 
alous penetration of electromagnetic and sound waves into 
the interior of a C) the angular anomalies of the 
sound absorption c~efficient"~.~; d) the frequency depen- 
dence of the effective cross section for inelastic scattering of 
light by conduction electrons.I4 

We must emphasize that in most of the studies men- 
tioned above the Fermi-liquid interaction has been ignored. 
The Fermi-liquid interaction between electrons, which plays 
an important role in shaping the spectrum of conduction 
electrons, is manifested primarily in the quantitative charac- 
teristics of metals. Under the condition w7-( 1 (7- is the elec- 
tron relaxation time), the linearized kinetic equation for the 
electron distribution function can be rewritten in such a 
manner that the Landau matrix function f (p,pl), which incor- 
porates the Fermi-liquid interaction,15 does not appear at all 
in the "ans~ers. '"~ Under the condition wr) 1 the function 
f (p,pf) cannot be eliminated, but in general the equations 
which incorporate the Fermi-liquid interaction differ from 
the "gas" equations only by numerical factors. It has been 
found that there are very few phenomena in whose existence 
the Fermi-liquid interaction dominates. Among these few 
are spin waves in normal (nonferromagnetic) metals. l7 As we 
will see below (see also Ref. 5), the incorporation of the Fer- 
mi-liquid interaction leads to qualitative changes in the 
structure of the singularities in and in other kinetic char- 
acteristics of a metal which have a spatial dispersion (which 
depend on k). In this paper we will be concerned only with 
the singularities in the long-wave region: kc -w/u, with 
kg&,. 

2. DIELECTRIC TENSOR OF AN ELECTRON GAS WITH AN 
ARBITRARY DISPERSION LAW 

In the semiclassical approximation, which is legitimate 
under the conditions +ik=gp, and +id&,, the expression for 
E , ~  becomes 

v=de,/dp; R= (kv- o-iO) - I .  (6) 

The superscript (g) means, as before, that the Fermi-liquid 

interaction is being ignored (in this section); the integration 
is over the Fermi surface; and d S  is an element of area on this 
surface. 

It is clear from (6) that the singularities of ~?b(w,k) stem 
from the multiple zeros of the denominator of R. The equa- 
tions 

where 6 and 7 are mutually orthogonal coordinates on the 
Fermi surface (dS = dldv), determine the "critical point" pc 
on the Fermi surface (f = gc, 7 = rlc), and also that value 
k = kc at which the components of a,@ are singular (the fre- 
quency w and the direction of the vector k = xk are assumed 
given). In the case of a Fermi surface of complex shape, a 
single value of kc may correspond to several critical points 
pCi(i = 1,2, . . . ,n) on the Fermi surface and to an entire line 
of critical points." 

If the Fermi surface is a sphere, then we have kc = w/u, 
for any x. In general, there can be a spectrum of singularities: 
several values of kc for a given x. The values of kc are deter- 
mined by the positive (ifw > 0) extrema of xv as a function of 

and 7:  

When a single point pc on the Fermi surface is responsible 
for a singularity, then under the condition u: uf, #O, where 
vc=v(pc), the single part (SP) of the tensor (uaRvp) can be 
written as follows, according to (6) and (7): 

When n points pci are responsible for a singularity, then un- 
der the condition uZiufji #O (v+v(pCi), i = 1,2,. . . ,n) we 
have 

Here the angle brackets mean an integration over the neigh- 
borhood of the critical point [p, in (9) or pci in (lo)]. 

IfAk = k - kc = 0, the expressions (R ) and (R )i be- 
come infinite. The nature of this divergence by the local 
structure of the Fermi surface near pc (or near pci). In general 
(for arbitrary x) we would have (a) an 0-type singularity, 
with Re(R ) a ln(Ak ( and with a discontinuity in Im(R ), 
and (b) an X-type singularity, with Re(R ) discontinuous and 
Im(R ) a lnlAk I. These singularities are named on the basis 
of the shape of the belt-shaped line along which the Fermi 
surface intersects the surface kv = w under the condition 
Ak(k, (cf. Refs. 7, 4, and 6). Logarithmic singularities are 
the weakest. In metals whose Fermi surfaces have lines of 
parabolic points (i.e., depressions and connecting necks) 
there are necessarily directions along which a singularity is 
strengthened and we have (R ) a 1 k,/Ak 1 ", 0 < v < 1 (cf. 
Refs. 5 and 6). 

The components E , ~  may remain finite at k = kc if we 
have u:iuf,i = 0 for all i (i = 1,2, . . . ,n). In this case 
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d~zb/dk [or a higher derivative, depending on the relation 
between the multiplicities of the zeroes of the numerator and 
the denominator in (6)]  will become infinite. If the Fermi 
surface is spherical, only the longitudinal component will 
diverge: Re~l f )  a In lAk I. The imaginary part, Imcfi, will be 
discontinuous. The strengthening of the singularity [in com- 
parison with ( 5 ) ]  results from the neglect of the quantum 
splitting. The singularities of the transverse components 
have the behavior Re&!pl a Ak lnlAk I, while aIm&!pi/ak is 
discontinuous. If the Fermi surface is anisotropic we have 
v', = vc - (xvc) x#O (at least for an arbitrary value of x), 
and the transverse components E , ~  may become infinite. 

If the Fermi surface has a complex shape, a quantum- 
mechanical treatment may become necessary, since at cer- 
tain values x = x, the values of kc given by the "classical" 
expression becomes infinite. For clarity we assume a dumb- 
bell-shaped Fermi surface; we will show that xc coincides 
with the direction of the tangent to the parabolic points 
(points A and B in Fig. 2; x,lvA ,v,). On the Fermi surface we 
construct xv = 0 belts at x z x ,  (Fig. 2, a and c) and at 
x = xc (Fig. 2b). The region with xv> 0 is hatched. Also 
shown in these figures is a plot of xv versus the angle 8, 
which describes the position on the Fermi surface. We see 
that as x+xc the values of xv at the extrema vanish: at the 
point 8 = 0, when approached from one direction and at the 

FIG. 2. a, b, c-The belts xv = 0 (the heavy lines) on a Fermi surface 
which is a dumbbell-shaped solid of revolution; d, e, f- xv versus the 
angle 0. a, d-xv, < 0, xv, > 0; b, d-x,v,,, = 0; c, f-xv, > O;xv, < 0. 
The points A and B are parabolic points; 0 is the angle reckoned from the 
p, axis in thep, = 0 plane ( 0 < 0 < 2 ~ ) .  

point 6 = 8, when approached from the other direction. A 
quantum-mechanical treatment is therefore necessary at 
x -- xc . We wish to emphasize that this result is independent 
of the particular shape of the Fermi surface. This result oc- 
curs exclusively because the belt xc v = 0 has a self-intersec- 
tion point. An analogous situation prevails if at some x = x, 
a loop of the belt appears or disappears (cf. Ref. 7). Again in 
this case we find k , + ~  as x+xc. To determine the finite 
value of kc at x = x, (we denote this value by kcc) we must 
use the quantum conditions (4), (4'), under the condition 
h g ~ , ,  of course. Retaining the quadratic terms in the ex- 
pansion of .cp * tik in powers of fik, we easily find (first) 

which means that kc, lies in the intermediate region between 
the classical and quantum-mechanical values2' 
(w/v, gkcc <pF/fi), and (second) 

which means that the parabolic antipodes (A and B in our 
example) generate singularities at several different vectors x. 
The values of k!c and k are approximately equal 
(u/v, g k  tiB). 

In concluding this section of the paper, we find the locus 
of the singularities: that surface in k space which is formed 
by the vectors k = kc(x)x. For definiteness we assume that 
the Fermi surface is a solid of revolution of the dumbbell 
type; this example reveals the characteristic features of the 
locus of singularities. Figure 3 shows the intersection of the 
locus of singularities with the k, = 0 plane. The k, axis runs 
parallel to the axis of revolution. On the solid lines we ob- 

FIG. 3. Intersection of the locus of singularities with the k,  = 0 plane for 
a Fermi surface which is a dumbbell-shaped solid of revolution. 
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serve singularities of the X type, while on the dashed lines we 
observe singularities of the 0 type. At points of transition 
from the X-type to the 0-type singularities (at the points S) 
the components E~ have enhanced singularities of the type 
(k - kc)-'12. Points A and B in Fig. 3 correspond to the 
values k fc and k E. We stress that the lines of the locus of 
singularities are terminated because of our use of the semi- 
classical expansion. In a quantum treatment, beyond the 
points A and B the lines would move off to values Hzc -p, 
(according to Ref. 4, the locus of points has no discontinui- 
ties). 

3. DIELECTRIC TENSOR OF THE ELECTRON FERMl LIQUID 

In this section we show that the renormalization of the 
components E , ~  made necessary by the Fermi-liquid interac- 
tion eliminates the divergence of these components (this top- 
ic was covered briefly in Ref. 5). 

The linearized kinetic equation incorporating the Fer- 
mi-liquid interaction is written in the w,  k representation in 
the limit kl-KI as f o l l o ~ s ' ~ ~ ' ~ - ~ ~ :  

where Sn = n - no(&,) is the derivation of the electron distri- 
bution function from equilibrium, and 

is the deviation from a "locally equilibrium" distribution 
function. Its argument E is a functional of the distribution 
function: 

We write Sn and Sii in the following form: 

By virtue of the definition of SE we have 

x=%+<f (p, p')$(pl) )'=$-iJ. (13) 

Using (1 I)-( 13) we easily find 

which differs from the "gas expression" (6) only in the pres- 
ence of a term - wJp The vector function J = J(p) is the 
solution of the integral equation 

J (p) +<kv'f (p, p') R'J')'=(vff (p, p') R')', v'=v (P') , . . 

where ( . . . )' means an average over the Fermi surface in p' 
space. 

It can be shown that expression (14) is not symmetric 
under a permutation of the indices a and p. If, however, we 
write J in the form 

J (p) = ( v f G  (p, p') Rf>' 

with a matrix G(p,pl) which satisfies the matrix integral 
equation 

G (p, p') -t (kvf'f (p, p") RNG (P", P') )"=f (pi P') 

then it can be shown that the symmetry of the matrix f (p,pf) 
leads to a symmetry 

In view of the proportionality of all the divergent inte- 
grals (R ) [see (9)], when a single point pc on the Fermi sur- 
face is responsible for a singularity we have 

since kcvc = w according to (7). The tensor thus has no 
divergent  component^.^' 

This assertion remains true when n points pci on the 
Fermi surface are responsible for a singularity. From (1 5) we 
find in this case 

The sum must vanish for any value of the quasimomentum p 
on the Fermi surface. This condition can be satisfied only if 

since the velocities vf at all the critical points satisfy Eq. (7): 
kc$ = w (this assertion does not mean that all the vT are 
equal to each other). We wish to stress that we have made use 
of the circumstance that f (p,pf) cannot be represented as a 
product of functions of p and p'-this is not a limitation, 
since there is no basis of any sort for such a degeneracy. 

Finally, it is clear that the conclusion that the tensor 
has no divergent components can be generalized in a natural 
way to the case in which a singularity is generated by a line 
on the Fermi surface [this conclusion is based on the replace- 
ment of the sum in (17) by an integral]. 

The fact that the integrals over the Fermi surface do not 
have divergences does not imply that the components E$ are 
regular functions of the wave vector k: The Fermi-liquid 
interaction weakens but does not eliminate the singularities. 
Restricting the discussion to the case of a single critical point 
p, (to avoid unnecessary complications), we can determine 
the general structure of the components 

Singling out the divergent part of each of the integrals in 
(IS), we can write the solution of the integral equation at 
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k z  kc with the required accuracy as follows: 

where 

and the functions I = I(p) and F = F(p) are determined by 
integral equations with renormalized kernels, 

I ( p )  +(k,v'E (p, p') R,'If>' 

=( [V'R,l- ( v C / o )  ( fc ' l fcc)  I E (P, p') )', 

F ( P I  +(kcv'E ( P ,  p')RcfF')'=fc, 
E ( P ,  P')  =f  ( P ,  P') - f c f c ' l f e c  (19) 

According to (19), we have Fc =f,, and I, = 0; these results, 
along with the relation V, = 0, guarantee that there are no 
divergences in the expressions for and Y. 

Substituting (18) and (19) into (14), we find an expres- 
sion for which incorporates, along with the term 
EEA(W,~,=E:~, the main term (insofar as the nature of the 
singularity is concerned), which contains the singularity, 

: 
aB 

0)- ('3 1 
Gap - ~ a b ' f  E ~ Q  7 

eaBC=GaB-t (4ne2/o)  {< V,R, (Vb-ole) >+ (v,"/f,,) [(fez,) 

Expressions (20) hold for ( R  ) a In JAk 1 or JAk / - ' I 6 .  If 
( R  ) a lAk [- 'I4 [the case of a belt of the type 
- 6,)' - (7 - T , ) ~  = Ak; cf. Refs. 4 and 61, or if ( R  ) di- 

verges more rapidly, then the conclusion that the diver- 
gences cancel out remains in force, but the expressions for 
E& and AaB become more complicated. 

The condition for the applicability of expressions (20) 
containsf,, : 

If I kc/Ak I is replaced by k,l, and if the Fermi surface is 
spherical, this applicability condition can be put in a more 
specific form: 

where 

is the dimensionless Landau function. [The values of this 

function are known only poorly for real metals, and there is 
no basis for assuming that they are anomalously small. For 
liquid He3 we have2' F(p,pf) - 10. For Na and K, the ampli- 
tudes of the spherical harmonics are given in Ref. 22; they 
fall off rapidly with the index of the harmonic. The zeroth 
harmonic is approximately - 0.6.1 

If the condition AaB = 0 holds for any of the compo- 
nents, then the component E$ has a singularity weaker than 
the others, and for it we can write 

and A I =A I(p) is determined by the integral equation 

=(E (p ,  p') (R'-R,') (v'-oI') )'. (25) 

Again in this case, the component EEL vanishes at k = kc. 
When the Fermi surface is a sphere, the latter case ap- 

plies to the transverse components E , ~ ,  and we must use Eqs. 
(24) and (25). As a result we find E$) a Ak lnlAk I .  

It should be noted that in the case of a Fermi gas the 
singular part of the components eUB is determined by the 
electrons in the immediate vicinity of p, on the Fermi sur- 
face. The Fermi-liquid interaction has the consequence that 
E ~ S ) S  is determined by all the Fermi electrons. 

Table I shows the characteristic singularities of the real 
parts of the components We see that the Fermi-liquid 
interaction may cause not only a weakening but also a 
strengthening of a singularity (see the second row in Table I). 

Strictly speaking, Eq. (14) and the results which follow 
from it are valid under the conditions iikvF9T and tiwg~,. 
As T+O, we cannot use the Boltzmann equation to deter- 
mine the nature of the singularities; a quantum-mechanical 
treatment is necessary. What changes will be caused by 
allowance for the finite values of the momentum fik and of 
the energy tiw? Unfortunately, we must restrict the discus- 
sion to the gas approximation-to the best of our knowledge, 
there is no equation analogous to (1) which incorporates Fer- 
mi-liquid interaction (but see Ref. 23). According to (9, the 
singularity at k = w/v,  splits into two weaker singularities 
of the type Ak * lnlAk * I, where k $ = k,(l f tiw/4~,). 
This result means that the semiclassical expression for E,, is 
valid unless we are too close to k = kc, and it is limited by the 
condition JA k ]/kc ,tiw/&,. The maximum value which ( R  ) 
can have is proportional to ln(e,/h). This conclusion can 
apparently be generalized by assuming that the finite value 
of tiw [in the numerator; see (I)] splits each ~ ingu la r i t~ ,~ '  and 
all the equations of this section are meaningful under the 
condition IAk I/k, >tiw/~,. 

The maximum value of ( R  ) for a Fermi surface which 
has lines of parabolic points depends on the direction of x:  
For a random direction we would have 
maxi ( R  ) I a ln(s,/tiw), while for certain selected directions 
we would have max ( ( R  ) I cc (&,/tiw)',O < v < 1. The quan- 
tum splitting does not eliminate the singularities but it does 
weaken them (d ( R  )/dk diverges as k+k 5 1. The finite 
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TABLE I. 

I 
- 

1 Electron gas I Fermi liquid 

Sph-a1 Fermi surf. / In ]AX\ 1 in-I IAkl 
Ak In Akl Ak In IAkl 

Femi surf. of arb. shape 
E l l y  In IAkl 

(not sph-all, % /  x I 1 } 1 for v; + 0 

temperature Tand the mean free path eliminate the singular- 
ities (they spread them out). If T, fi/r>fiw, then we have 
maxi (R ) I a ln(~,/T *) or ( E ~ / T  *)", where T * = max ( T,fi/ 
7) ;  if instead T, fi/~gfiw, then the latter estimates are valid 
for maxld (R )/dk I. 

Attention has recently been called6214924 to the renor- 
malization of the kinetic coefficients (in particular, the com- 
ponents E , ~ )  which "eliminates" the infinities. The argu- 
ments in those papers were based on a "field" 
renormalization involving the elimination of the longitudi- 
nal electric field for electrodynamic  problem^'^ and all com- 
ponents of the electric field for electroacoustic 
In our case eliminating the longitudinal field leads to the 
replacement of E, by 

In-l IAkl 

carding the Fermi-liquid term, 

Assuming that the divergence is of the same type (e.g., 
SP(R )i = ailn(Ak ( orai  (Ak ( -", wherev> 0) at all critical 
points, we find 

where 
where the subscript x means the projection on to the direc- 
tion of x. Substituting from (14) into (26), we find n n 

$0. = C uPjcaj / a.. 
j-i r - i  

We see that in this case the infinities cancel out only if vcj is 

(v,R (xv-oxJ) >(xvR (up-oJp) ) independent of j. 
- 

o/4ne2f  <xvR (xv-oxJ) > 4. THE FERMI-LIQUID INTERACTION DURING THE 
PROPAGATION OF SOUND IN A METAL. CONCLUSION 

Here a andP are the coordinates in the plane perpendicular 
to x.  Since all the components are finite, renormalization 
(26') does not qualitatively change the k dependence of the 
components E , ~ .  

In connection with the existence of various renormali- 
zations (the field and Fermi-liquid renormalizations), we 
should make the following comment: In a sense, the Fermi- 
liquid renormalization is more fundamental. It redefines 
  the tensor of coefficients of the proportionality 
between the vectors D and E--in a natural way for an arbi- 
trary value of the electric field E (D is the displacement vec- 
tor; D = E + ~ T P , P  = j). The field renormalization, on the 
other hand, is a result of a solution of Maxwell's equations 
which imposes a condition on the electric field which can 
actually exist in a metal. Furthermore, the field renormaliza- 
tion eliminates an infinity only if it results from a single criti- 
cal point or from a group of completely equivalent points. If 
there are several critical points, then we find from (26') dis- 

Incorporating the Fermi-liquid interaction in the kinet- 
ic equation for the distribution function of the conduction 
electrons naturally leads to renormalization of the expres- 
sions for both the current density and the force 
For the current density, for example, we have 

and the function J = 5 (p) satisfies an integral equation which 
generalizes Eq. (1 5): 

J (p) + (kv'f (p, p') R'JIO' 
= k o < f  (p, p') R'ATr)'u,+e(f (p, p')R'v,'>'E,, (28) 

where u is the displacement vector and A is a vector with the 
coordinates A ,, x, , where A ,, = A ,, - (A ,, ) / ( 1) is the re- 
normalized strain energy." Arguments analogous to those 
in the preceding section show that the Fermi-liquid interac- 
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tion causes the divergent terms to cancel out. It must be kept 
in mind, however, that the condition for the applicability of 
the resulting finite (nondivergent) expressions is consider- 
ably more stringent than that in the preceding case. Since for 
a sound wave we have w zsk ,  wheresis the velocity of sound, 
we have the following in this case instead of (21) and (22): 

"Sincep, - fi/a, the condition k "'a( 1 holds, and a wave with wave vector 
k = x,k, can be treated macroscopically. 

3 '~nalysis of the enhanced singularities6 shows that in all cases studied the 
vanishing of the numerator at the critical point (at p = p,)eliminates the 
divergence. 

4 ' ~ h i s  comment of course also applies to the singularities at k = k fc and 
k:. We might note that the splitting of each singularity, 
Ak,, -(~/u,)(lfW/~,)"~, is considerably smaller than the difference 
lkfc - k:l-W/uF. 

"See Ref. 6, which has a bibliography on this question. 

where Y = 1/6 if the critical point is a flattening point.6 
These conditions of course do not hold. Furthermore, the 
terms containing the Fermi-liquid interaction can simply be 
omitted, since they are negligible even near a resonance. 

We thus see that the singularity-cancellation mecha- 
nisms studied previously also operate during the propaga- 
tion of sound: a) the field renormalization (elimination of the 
transverse field) and b) the resonant interaction of the sound 
wave with a quasi-electron wave with a dispersion law 
w = kv,, which means that we are going beyond perturba- 
tion theory. The elimination of the transverse field (like the 
elimination of the longitudinal field for E,) does away with a 
divergence only if it is generated by a single point on the 
Fermi surface. In more complex cases and also when no 
transverse field is excited at all (e.g., when longitudinal 
sound propagates along a high-symmetry crystallographic 
direction) the only mechanism which keeps the observable 
quantities (in particular, the sound absorption coefficient) 
finite is the resonant interaction. 

The renormalization of E, due to the Fermi-liquid in- 
teraction should be manifested in all the effects listed in the 
Introduction. To calculate the corresponding characteris- 
tics in the case with a Fermi-liquid interaction is a separate 
problem. 

We have not considered here effects due to a magnetic 
field. We simply note that a magnetic field H (even in the 
classical limit, but under the condition w , r ) l ,  where w, is 
the cyclotron frequency) effectively changes the "dimen- 
sionality of the resonance," since the denominator of R is a 
function of the single variable pH = pH/H, rather than two 
variables, if H #O; i.e., 

where TH is the period at which the path is traced out in the 
magnetic field, and tH is the time required for motion along 
this path [cf. Eq. (6)] .  

"Model Fermi surfaces have cylindrical and planar regions comparatively 
often. Lines of critical points arise in a natural way because of cylindrical 
regions. If the vector x is perpendicular to a plane region, then all its 
points will be critical. We will not discuss this case since, strictly speak- 
ing, a metal whose Fermi surface has planar regions is unstable. 
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