
Magnetoelectric effects in conductors with mirror isomer symmetry 
L. S. Levitov, Yu. V. Nazarov, and G. M. ~ l i ashbe r~  

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 25 June 1984) 
Zh. Eksp. Teor. Fiz. 88,229-236 (January 1985) 

A kinematic magnetoelectric effect M = BE should be present in nonmagnetic conductors and 
may be isotropic for conductors with mirror isomer symmetry. A simple model is used to calcu- 
late this effect and an estimate is given for the isotropic case. It is shown that there is a current 
dependence j = - 2aB which is conjugate to the magnetoelectric effect; one-half of the current 
associated with the magnetization current cV XM and is therefore canceled by a surface current 
which is concentrated in a layer whose thickness is of the order of the mean free path. The part of 
the current associated with the spin contributes significantly to the Hall effect and makes the 
magnetoresistance anomalously large in relatively weak fields. 

INTRODUCTION 

As a phenomenon associated with thermodynamic 
equilibrium, the magnetoelectric effect is observed in mag- 
netic dielectrics which satisfy certain symmetry require- 
ments.'-3 By contrast, the kinetic magnetoelectric effect can 
also occur in nonmagnetic conductors which lack a center of 
symmetry: in this case the current flow is associated with a 
magnetization M = BE, where E is the electric field. Since 
the pseudotensor & contains the relaxation time, it is not 
constrained to be covariant under time reversal (as it is in 
other time-dependent phenomena). The magnetoelectric ef- 
fect appears in its simplest form for conductors with mirror 
isomer symmetry. In this case, & has a nonzero trace and 
reduces to a pseudoscalar for cubic crystals or isotropic ster- 
eoisomeric materials; the magnetization M is thus a multiple 
of E, 

where a has opposite signs for the two different isomers. 
This is the situation which we consider here. We note that 
although the magnitude of the magnetoelectric effect may be 
comparable for arbitrary conductors which have mirror iso- 
mer symmetry but lack inversion centers, it vanishes after M 
is averaged over the orientation of the crystal axes relative to 
E. Therefore, there is no magnetoelectric effect in polycrys- 
talline samples. 

If the ac field varies slowly enough so that M and E are 
locally related, the Onsager principle and the expression 

for the rate of change in the entropy impy that in addition to 
containing an ohmic component, the conduction current 
density j, should also contain a component proportional to 
B: 

jCS-aB (3) 

where B is the magnetic induction. The total current density 
also contains the magnetization current cVX (aE), so that 
the volume current density associated with B is equal to 

j=-2aB. (4) 

By virtue of the Maxwell equation V X E = - B/c, we 

can regard this contribution to the current as reflecting the 
fact that under these symmetry conditions, the spatial dis- 
persion a(k)  contains a term which depends linearly on the 
wave vector k. We thus have the preliminary order-of-mag- 
nitude estimate 

for a. Here I is the mean free path of the electrons, and the 
numerical factor depends on the degree of asymmetry, 
which is responsible for the k-linear term in a(k). Since klg 1 
for the low frequencies of interest, the effect is small-the 
current component along B induced by the ac field in the 
skin layer is l/a,,, times smaller than the component along 
E. On the other hand, if we compare (1) with the magnetiza- 
tion which is induced by the magnetic field of the current 
and depends on the diameter d of the conductor, we find that 
(1) is dominant for d up to -1~- ' ,   where^ is the magnetic 
susceptibility of the material. 

CONTRIBUTION TO THE ORBITAL MOMENTUM 

Both orbital and spin effects can contribute to the mag- 
netization, and we will consider them by using the model 
employed previously in Ref. 4 to analyze the photovoltaic 
effect. In this model the electrons are scattered by impurities 
whose potential lacks an inversion center. We will assume in 
addition that most of the impurity is in one of the two possi- 
ble' stereoisomeric configurations. In terms of the orienta- 
tion ofthe scattering centers, two extreme cases can occur. l )  
If both the orientations and the spatial distribution are ran- 
dom then we have a model for an isotropic stereoisomeric 
medium. 2 )  If the scattering centers have the same orienta- 
tion, an anisotropy persists which is dependent on the sym- 
metry of the centers. This case corresponds to a conducting 
isomer with a plane of mirror symmetry in a simplified mod- 
el, according to which the potential of the impurities ac- 
quires a stereoisomeric distortion induced by the lattice. For 
cubic symmetry (we will assume this case for simplicity), this 
implies that the expansion of the impurity potential U (r) in 
spherical harmonics must contain at least the two following 
polynomials: 

133 Sov. Phys. JETP 61 (I), January 1985 0038-5646/85/010133-05$04.00 @ 1985 American Institute of Physics 133 



Ui (r)  =xyzui ( r ) ,  

U 2  ( r )  = [x4 (y2 - - z2 )  + y 4  ( z2 -x2)  +z4 ( x 2 - y 2 ) ]  u2 ( r )  . 
(6) 

We first consider the second case; here it suffices that 
the orientations be correlated over the mean free path I .  
Since we want to calculate the coefficient of B in the current 
density, by the above discussion we must find the k-linear 
component of the conductivity tensor: 

where o,, = 6,,o. The tensor do,,/dk, is completely anti- 
symmetric for a material with cubic symmetry. Writing 
- 2a for the desired coefficient [as in (4 ) ] ,  we therefore find 

that 

The current density j, = Q,,A, linear in the electro- 
magnetic field given as usual5 by a sum of diagrams of the 
type shown in Fig. 1. The following expression for diagram c 
in Fig. 1 illustrates the rule for writing down the time-vary- 
ing component Q,,, which determines the conductivity: 

Here ni is the impurity concentration, 6 is the electron ener- 
gy relative to the Fermi level, p + , - = p +_ k/2, and the re- 
laxation timer is determined by the scattering by the impuri- 
ties; we omit the Planck constant in the intermediate 
formulas. Expression (8) contains the scattering amplitudes 
r " ( p , p l )  = [r A (p ,p l ) ]  *, which in general must be found to 
higher order than the Born approximation: 

C 

FIG. 1 

We assume in the following estimates that the electron den- 
sity is typical for a metal and that there are relatively few 
impurities:p,l) 1, wherep, is the Fermi momentum. In this 
case most of the contribution to the k-dependence comes 
from the sections of the diagram which contain g = G RG A. 

If we integrate these sections over by the usual change of 
variable 

d 3 p  mp, dO 
- 

( 2 r ~ ) ~  2n2 4n a ,  

and defer the angular averaging until later, we find that 

The expansion parameter here is kl. By contrast, the k-de- 
pendence of the amplitudes r is weak-k appears only in the 
Green functions for the intermediate states, and the depen- 
dence is determined by the momenta in the region of integra- 
tion far from the Fermi surface. The expansion here is there- 
fore, in terms of the parameter k /p,. 

According to (7),  allowance for the k-dependence in the 
central section of diagram c in Fig. 1 will give a nonzero 
contribution to a which is equal to 

1 where const = d n t  dOpdOp,dOp,, p[p"pf 1 
12?? P: 

Ir (ptp')121T (p',pl')l . Because the tensor in (7)  is antisymme- 
tric, all three of the independent momenta must appear and 
it is therefore unnecessary to allow for the k-dependence in 
the remaining sections of the diagram. For the same reason, 
diagram c is the simplest one giving a nonzero contribution 
to a, and we will confine our analysis to it because the more 
complicated diagrams do not alter the form of the estimate. 
If we recall that 

we see that the constant in (9)  depends only on the angular 
structure of the potential. This is confirmed by the estimate 
( 5 ) ,  which was derived by qualitative arguments. We note 
that the Fourier components of the odd-order harmonics of 
the potential (6)  are imaginary (in particular, this is true of 
U,) .  The term /r 1 in the second and higher Born approxi- 
mations therefore contains a component which is odd in the 
momenta; to first order in U, ,  T R  = rt + U1 and this com- 
ponent is equal to - 2iU1 Im rf. The even harmonic U, 
cancels the antisymmetry of the term p-p" Xp' with respect 
to permutations of x ,  y, z. As a consequence, the angular 
averaging in (9) gives a nonzero result. 

We now briefly analyze what happens when the scatter- 
ing centers are randomly oriented. In this case the harmon- 
ics (6)  must be expressed in an arbitrary reference frame, and 
the final result must be averaged over the frame orientations 
independently for each center. I t  is easy to see that the con- 
tribution from the k-dependence in the g sections now van- 
ishes (this contribution was large in the previous case). In- 
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deed, if we average rR (P+,P'+ ) r A ( p '  ,p-) over the frame 
orientations, the result must be a pseudoscalar combination 
of the external momenta; the only combination with these 
properties is of the form k - p X p'. We must therefore allow 
for the dependence of r on k; as a result, the magnitude of 
the magnetoelectric effect in this case turns out to be l/p,l 
times the magnitude for (5). 

If the current and electric field distributions are uni- 
form, we can immediately calculate the magnetic moment 
associated with the orbital momentum. We immediately ob- 
tain the result (7) for M = aE from the definition 

of the moment. The coefficient of E in the expression for the 
magnetic moment is thus - 1/2 times the coefficient of B is 
the expression for the current. 

We have preferred to start with the expression for the 
current, because this enables us to treat the case of strong 
spatial dispersion directly. As we noted in the Introduction, 
the conjugate current reaches a maximum for kl- 1, i.e., for 
I-S,,, . This effect is analogous to the rotation of the polar- 
ization plane in optics; however, the concept of orbital mag- 
netization becomes meaningless for kl- 1. 

SPIN POLARIZATION INDUCED BY THE ELECTRIC FIELD 

As in the previous section, we will find the current - B 
associated with the interaction between the spin and the 
magnetic field. Of course, this current is due entirely to the 
spin-orbit interaction, and the interaction of the spin with 
the impurity potential is decisive here. By contrast, the di- 
rect effects of the electric field on the spin are much weaker 
and do not cause longitudinal polarization. 

The physical picture is as follows. The nonequilibrium 
component of the spin fluctuation (which is determined by 
the rate of change B of the magnetic field) induces a current 
fluctuation via the spin-orbit interaction with the stereoiso- 
meric impurity. Since the spin fluctuation amplitude is pro- 
portional to the spin relaxation time for low frequencies, the 
current is not multiplied by the relativistically small factors 
associated with the spin-orbit interaction. 

Figure 2 shows a diagram for the relevant contribution 
to the current: it corresponds to the expression 

Here we have already carried out the integration over E ,  

which leads as in (8) to the factor w; we have also integrated 
overp in the right-hand section of the diagram. The hatched 
region denoted by the symbol 2, contains the spin-orbit in- 
teraction and takes the current vertex into a spin vertex. We 

will find its structure in m o z  detail below. The wavy line 
corresponds to the operator D (k,w), which acts on the spin 
and is given by the usual sum of ladder diagrams. We intro- 
duce the notation 

1 n2 
- 2 tr o { ~ p B  ( k ,  O) ov) = - 

mpoz2 
D,(k,-o) 

for the trace. If we include only the isotropic part of the 
impurity potential and the corresponding czmponent of the 
spin-orbit interaction in the calculation of D, we get 

where D =pol /3m is the diffusion coefficient, and the reci- 
procal spin relaxation time 7; ' is second-order in the small 
spin-orbit interaction constant A = (Ze2/&l2. A more de- 
tailed examination shows that under our symmetry condi- 
tions, (D -I) , ,  contains a linear term proportional to E,, k ,  
which causes the spin to rotate during the diffusion process. 
We will discuss the additional features of the spatial disper- 
sion elsewhere; here we confine ourselves to the region 
wr, g 1, Dk '7; 4 1 for which the dispersion a(k) can be ne- 
glected. 

Assume that a magnetic field B, has been turned on; we 
then find the expression 

for D - ' which allows for the spin precession (here ,uo = e/ 
2mc). If Bo = (0, Om B,), the nonvanishing components of 
D,, are equal to 

We now discuss the structure of L?, in (10). Unlike the 
orbital mechanism, which was determined by the k-linear 
term in the nuclear dispersion and was therefore very sensi- 
tive to the degree of correlation of the impurity orientations, 
the spin-associated effect does not depend significantly on 
the correlation. In our estimate we therefore need consider 
only the interaction with a single impurity. Figure 3 shows a 
typical diagram for 2, to fourth order in the impurity poten- 
tial. Additional diagrams with different configurations of 
the impurity vertices on the electron lines must also be con- 
sidered. It is readily shown that the effect of interest first 
appears in fourth-order perturbation theory. In fact, the 
contribution to the coefficient a for a single center must be 
independent of the orientation of the center. We can there- 
fore average over the orientations of the frame in terms of 

FIG. 2 
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which the asymmetric part of the potential is expressed. 
Only the product II U (q,) of the amplitudes is averaged in the 
expression corresponding to the diagram; this product must 
change sign if all the q, are replaced by - q,. The averaged 
expression will contain an invariant factor of the form 

q, .q, x q,. However, since C q ,  = 0 in the diagram, the dia- 
I 

gram must contain at least four amplitudes. 
The next step is to integrate over the momenta pi, 

i = 1, . . . ,4; the differences between these momenta also 
appear in the amplitudes U(q,). It is important to note that 
we may neglect the dependence on the momenta in the diffu- 
sion ladder included to the right of the portion of the dia- 
gram corresponding to &,, because this dependence occurs 
only in the angular harmonics for which the denominator in 
(1 1) is not small. Since a, is the only vector which can result 
from the integration, we must have 

kfi=ao,.. (13) 

The spin operator appears because of the spin-orbit interac- 
tion, which contains the term a.pXpl and the constant A 
defined after Eq. (1 1) above. We easily see that to first order 
in A, the entire expression reduces to an integral of a deriva- 
tive with respect to the momentum and therefore vanishes. 
This is not true to second order i nn ,  because the spin matri- 
ces do not compute. The same conclusion of course also 
holds for the more complicated diagrams. The expression 

can be derived after some manipulation. Here dP is the com- 
plete phase volume element for the momenta pi; where 6, 
appears in the denominators, the integrals must be regarded 
as principal value integrals. The form of the potential must 
be specified in order to proceed further in the calculations. 
We will therefore confine ourselves to the rough estimate 

which will also be needed in the next section. 
As usual, the total current density, including the inter- 

action of the spin with the magnetic field, also contains a 
term cV.M,. However, the diagram giving the part of M, 
proportional to E is clearly the same as the one in Fig. 2 ,  
except that the current and spin vertices are interchanged. In 
the absence of a constant magnetic field, we thus again find 
that 

j=-2a.B, M,=a,E 

and a, is - (e2/fic)(pol ), as in the case of the magnetoelectric 
effect associated with the orbital interaction for randomly 
oriented impurity centers. 

We see from (12) that if BOZO then j and M contain 
components proportional to Bo X B and B, X E, respectively. 
The entire spin current is suppressed in a transverse field if 
TsoB>1. 

FIG. 4 

ANOMALOUS MAGNETORESISTANCE AND THE 
CORRECTION OF THE CONDUCTIVITY 

The current and spin fluctuations responsible for the 
magnetoelectric effect considered above can be interconvert- 
ed, which also affects the ordinary conductivity because the 
long diffusion length 1, -A - ' I  starts to become important 
in electron transport in addition to the mean free path I. 
These effects are accompanied by anomalous dispersion and 
are extremely sensitive to the transverse magnetic field for 
relatively weak field strengths w, rS ( 1. We will give some 
results which illustrate how the magnetic field influences the 
conductivity tensor a,, . 

The relevant diagram is shown in Fig. 4, where both of 
the current vertices have a structure &,, of the type (13), (15). 
1f we use the expressions for D (the wavy line in the diagram), 
we immediately get 

for the corrections to the components a,, in a magnetic field 
along the z axis. The numerical constant depends on the 
form of the scattering potential. We see that even though the 
positive correction to the transverse conductivity is extreme- 
ly small, its contribution to the magnetoresistance for fields 
o, T, - 1, oB T -A '< 1 is larger than the usual contribution 
by a factor ofA -'. For this range of fields, the contribution 
to the Hall effect is also large and essentially determines the 
nature of the nonlinearity. 

CONCLUSIONS 

The above estimates are physically quite transparent 
and predict effects which should be experimentally accessi- 
ble. The chief obstacle to observing these effects is the exotic 
nature of the materials which exhibit them. Materials with 
the metallic conduction and symmetry required are prob- 
ably not available at the present time. Semiconductors show 
greater promise in this regard, but in this case the estimates 
apply only in a rough, qualitative form. I t  is worth noting 
here that magnetoelectric effects of comparable magnitude 
but with a more complicated tensoral structure should also 
occur in arbitrary conductors which lack inversion centers. 
As we mentioned in the Introduction, the principal differ- 
ence is that the tensor does not reduce to a pseudoscalar for 
conductors without a plane of mirror symmetry; single crys- 
tals will therefore be needed to observe the magnetoelectric 
effect. We also note that any crystal lacking an inversion 
center can be turned into a stereoisomer by uniaxially com- 
pressing it along an arbitrary direction (with the exception of 
certain symmetry axes). Of course, the characteristic iso- 
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meric effects will be small in this case unless the lattice dis- 
tortion is large. 

The above analysis has several qualitative conse- 
quences, one of which is that the spin fluctuations partici- 
pate directly in electron transport phenomena for materials 
with mirror isomer symmetry. For a ferromagnetic material, 
the naive self-consistent field theory predicts that the ex- 
change interaction will increase the coefficient a without 
limit as the Curie point is approached. We therefore expect 
that the magnetic transition in this case will also be accom- 
panied by important changes in the electrical properties of 
the conductor. 
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