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The absorption of sound by dislocations is analyzed in the delocalized kink model. The cases of 
"pinned" and "free" dislocations are considered. The spectrum and temperature dependence of 
the logarithmic damping factor are derived for various dislocation distributions in the crystal. 
The estimated absolute values of the damping factor agree with experimental results. 

An anomalously large absorption of energy from sound 
waves is observed experimentally in helium crystals.'-3 
Tsymbalenko3 found that the amplitude-independent damp- 
ing factor of bending vibrations of a rod reached R = 0.4. All 
the experimental results which have been obtained have been 
derived in the classical Granato-Liicke theory,4 but the ap- 
plicability of this theory to such quantum-mechanical enti- 
ties as 4He has not been directly analyzed. 

The influence of quantum effects on the absorption of 
sound due to defects in helium crystals was first studied by 
Meier~vich.~ He calculated the component of the internal 
friction which arises from the presence of delocalized point 
defects in the crystal. The estimated absolute values of this 
component of the friction, however, are several orders of 
magnitude smaller than the values observed experimentally, 
so that point defects can be eliminated from the posible ex- 
planations for the anomalously high damping factor. An- 
other explanation, and apparently the most likely one, is 
based on dislocations. We show below that the quantum- 
mechanical structural features of dislocations give rise to a 
spectrum and a temperature dependence of the sound ab- 
sorption which differ substantially from the predictions of 

To calculate the energy absorption we start from the 
kinetic equation for the kink density matrix 6, in the T ap- 
proximation: 

A 

Here Ho is the unperturbed Hamiltonian of the kink, and HI 
is the Hamiltonian of the perturbation. In the absence of a 
perturbation, the equilibrium de2sity matrix po is diagonal 
in the states of the Hamiltonian H,; i.e., 

The propagation of a periodic sound wave through the 
crystal is described by off-diagonal terms in the perturbation 
Hamiltonian. Most of the absorption is caused by the matrix 
elements Hi,, + , = Hj + ,, = V ,  coswt representing transi- 
tions between nearest levels (V ,  is real). Taking the Fourier 
transform of Eq. (2), we find the following equations for the 
off-diagonal elements of the density matrix in the linear ap- 
proximation: 

the-~ranato-lucke theory. {iw + 1 i i + h(e,-ei-,) Bpi,,-, = -Hi,,-, (n,-ni-d. 
1. Dislocations in crystals contain kinks because of ei- fi 

ther the geometric arrangements of the dislocations or ther- 1 i i 
ma1 fluctuations. In a quantum crystal, as Andreev6 has {iu +T-h(&i-&l-*) B ~ j - , , j = - ~ j - , , i ( ~ i - 1 - ~ i ) .  72 

pointed out, each kink on an infinitely long dislocation is a 
The energy absorbed per unit time per unit volume is 

quasiparticle for which quasimomentum is a good quantum 
number. The values of the kink energy E fill a continuous 
band: 

E = E ~ - J  cos ka, (1) 

where E~ is the "classical" energy of the kink, J i s  the width of 
the energy band, k is the quasimomentum, and a is the inter- 
atomic distance. 

For dislocations in a real crystal there are always pin- 
ning points, which are dislocation branch points, regions of 
attachment to an impurity, etc. If the height of the potential 
barrier at these points exceeds the widths of the energy band 
of the kink, the kink is elastically reflected from the barrier 
and localizes between neighboring pinning points. Let us as- 
sume, for example, that the length of a dislocation segment 
between pinning points is I. It is easy to see that in this case I / 
a states arise with an energy given by (1) with kj = (%-/I) j, 
wherej = 1, . . . , I /a. The external sound field induces tran- 
sitions between these states, so that energy is absorbed from 
the sound wave. 

where the superior bar means a time average. Writing the 
sum of diagonal elements, and taking the time dependence of 
the matrix elements into account explicitly, we find the fol- 
lowing expressions for the energy dissipation: 

Averaging over the time is an elementary procedure; it re- 
sults in the following final expression in the physically inter- 
esting case in which the reciprocal of the relaxation time is 
smaller than the distance between energy levels: 
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To apply this expression we need to express the transition 
matrix elements in terms of the characteristics of the crystal, 
sum over all possible transitions, and average the various 
positions of the dislocations. We write the wave functions of 
kinks in unperturbed states as follows in the gas approxima- 
tion: 

where w,(x) is the wave function of a localized kink. The 
matrix element V,, for a transition between kink statesj and 
m is 

17.  - 81jm , - ( - 2 2  f for 0 ( j  - 4, 
V,,=O, for even ( j  - m). (6) 

Here f is the force acting on the kink, and the unit vector n 
specifies the direction of the dislocations. In accordance 
with the suggestion above, the absorption is caused primar- 
ily by transitions between adjacent levels. In the case of shear 
stresses at a kink, a nonzero force acts even if the strain in the 
crystal is uniform: 

f t=&ikIOki 'b j l l ,  

where a6 = a, - +6,all is the stress deviator, bj is the 
Burgers vector, and the vector I ,  is a measure of the length 
and direction of the kink. We are interested here in waves 
which are long on the atomic scale. Clearly, the processes of 
interest occur particularly intensely during the propagation 
of a transverse sound wave. This is the case which we consid- 
er below. 

In a cubic latice, dislocations can lie along three equiva- 
lent directions. Considering only single kinks and disloca- 
tions (for which the height and the Burgers vector, respec- 
tively, are equal to the interatomic distance); taking an 
average over all possible n, b, and 1; and noting that for the 
case of shear the deviator is identical to the stress tensor, we 
find the following expression for the square matrix element: 

1 V j ) 2 = 4 L 2 ~ 4 )  (sikl  ' /3n1. (7) 

We then substitute (7) into the absorbed energy (5). Us- 
ing expression (1) for the kink energy, and noting that the 
number of levels is large ( -  lo4), we switch from a discrete 
summation to an integration. We describe the kinks by 
means of Boltzmann statistics. As a result we find the ab- 
sorbed energy as a function of the frequency of the incident 
wave, expressed parametrically: 

II 

4 a 5 1 J ]  ( ~ i k  1 0'6 p-EO 
jq7= 

3n31iT exp Tj o exp {+ oos } 
(8) 

X [(?,in x-a) : 2+1 ] -1  dx, 

wherep is the chemical potential of the kinks. 

It is easy to evaluate this integral in the limit in which 
the relaxation time is much longer than the reciprocal of the 
characteristic frequency w, = 2n-a J / f i l .  The integrand 
tends toward a 6-function, so that we find 

- 2aqz1 0 j k  ( 2 ~ 0 2 0  p-Eo w=-- exp - 
3n3T T 

if w < w, or p= 0 if w >a,. A singularity appears in the 
absorption spectrum at the resonant frequency w, in this 
approximation, as it should. This frequency corresponds to 
the inflection point in the quasiparticle dispersion law. This 
singularity is removed by taking into account the finite re- 
laxation time. After a simple but lengthy integration, and 
after expanding the integrand near the singularity, we find 

where 

@ (E)  =[~+(l-!-g~)'~~]'~~(l+ g 2 ) - ' h .  

Assuming that the width of the energy band of the kink is on 
the order of 1 K, we find a resonant frequency 13,- lo7 Hz 
for 1- lo4 cm. 

2. To calculate the scale time for relaxation to a thermo- 
dynamic equilibrium in the ensemble of kinks, we note that 
the number of thermal kinks is not constant; it must be deter- 
mined from the condition minimizing the thermodynamic 
potential. As we will see below, however, the relaxation time 
for an equilibrium in terms of the number of particles is far 
longer than the time for relaxation to an equilibrium distri- 
bution function for a given number of kinks. The latter pro- 
cesses occur in transitions of quasiparticles between levels 
accompanied by the emission or absorption of transverse 
phonons; they also domiante the absorption of the sound at 
frequencies w - lo7 Hz. 

The vector operator representing the displacement of 
the atoms for a phonon is given by the standard expression7 
in the second quantization representation: 

Here 2; and 2, are the phonon creation and annihilation 
operators, and the unit vector e specifies the polarization 
direction. To evaluate the matrix elements (V, )for the emis- 
sion of a phonon with a momentum k, we construct a coordi- 
nate system at the dislocation. We direct the vector n, along 
the z axis, while b and 1 run along the x axis. The component 
&; component of the phonon stress tensor then contributes 
to V, . The interaction operator is 

v k = < $ i l ~ ) $ i - ~ ) ~ ~ ~ ~ ~ + .  (I2) 

The calculations for all other possible arrangements of the 
vectors n, b, and 1 are completely analogous, and they lead to 
the result found above. Using (6) and (1 I), we find from (12) 
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G is the shear modulus). The phonon absorption operator is 
given by the Hermitian-adjoint expression. To calculate the 
total probability (w) for the emission and absorption of a 
phonon per unit time, per unit volume, we need to average 
the square matrix element over all directions of the wave 
vector and all polarizations of the phonon. We use the famil- 
iar expression 

(14) 

where do is the element of solid angle. Substituting ( 1 3 )  into 
(14), we find 

where we and w, are the phonon emission and absorption 
probabilities, and n, is the phonon distribution function. 
Here we have used the usual formula for taking the average 
of unit vectors e perpendicular to the vector k: 

Solving the simple kinetic equation, we find the relaxation 
time to be 

Substituting numerical values into this expression, we find 
7, - lop6  s. We can now immediately estimate the relaxation 
time r ,  in terms of the number of particles. The interaction 
operator, which reduces the number of kinks, differs from 
(12) only in that the wave function of the kink in the matrix 
element is replaced by the wave function of a kink of the 
opposite sign. However, these two wave functions are identi- 
cal. In this case we thus have (16), where &,-the formation 
energy of two kinks-appears in the argument of the hyper- 
bolic tangent. As a result we find 7 ,  )r,. 

Substituting the relaxation time (16) into expression (10) 
for the energy dissipation, we find 

In different crystals, the dislocations will have different 
length distributions. We first assume that the lengths of the 
dislocations are spread over a narrow interval near the mean 
value L.  We introduce A, the total length of the dislocations 
per unit volume, and D, the number of geometric kinks per 
unit length of a dislocation. At sufficiently low tempera- 
tures, the number of thermal kinks is small, and geometric 
kinks dominate the absorption. The chemical potential ap- 
pears implicitly in the expression for the number of particles, 

where Io(x) is the Bessel function of imaginary argument of 
index zero. Substituting (19) into ( 1  8), and multiplying by the 
total number of dislocations, we then find 

The number of thermal kinks is found by minimizing the 
thermodynamic potential. Substituting p = 0 into (18), we 
find 

We now consider the case in which the lengths of the 
dislocation segments differ greatly from the mean value. For 
randomly distributed impurities, for example, the number 
N ( I  )dl of dislocations with lengths between I and I + dl is4 

N ( 1 )  = (AILz) exp (-1/L).  (22) 
For the absorbed energy we have the average 

m 

w=l N(l )W( l )d l ,  
0 

where W(1)  is given by (9). In this case, we can write the final 
results for the logarithmic damping factor in the case in 
which thermal or geometric kinks are predominant. For 
thermal kinks we have 

Here we have used the condition h, < T, which holds down 
to K. 

From the experimental standpoint the quantity of most 
interest is the logarithmic damping factor, rather than the 
absorbed energy. We assume that a standing transverse 
sound wave has been excited in the crystal. Using the expres- 
sion 

E'lzS ~ikuikd~x 

for the elastic energy of the wave, we find from (17) an 
expression for the logarithmic damping factor: 

p-Eo x exp - cD ( (oo-o) 7 ) .  
T 

32nZa7c2pJsA 
R =  

3R3T03LZ e--'~(i%) , where (23) 

Here I, (x )  is the Bessel function of imaginary argument of 
index n, and L,  ( x )  is the Struve function of index n. Here we 
have used Eq. 3.387(3) from Ref. 8 for the definite integral. 
For geometric kinks we should replace the number of ther- 
mal kinks, (A/a)ecedT,  in (23) by the number of geometric 
kinks, aDA /LI , (J /T) ,  as in (20) and (21). It is easy to see that 
the damping factor in (23) has a maximum at frequencies 
w-w, = 21~aJ/f iL.  

All these expressions have been derived in the gas ap- 
proximation. Strictly speaking, at a high kink density we 
would have to take into account the interaction between 
kinks, which would give rise to collective excitations and 
which would redetermine the quasienergy spectrum. Ignor- 
ing this complication, we derive a result which is correct in 
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order of magnitude. The scale value of A for a helium crystal 
is A - lo7 cm-,. The mean length of a dislocation segment is 
L - cm. With T-J- 1 K and w - lo7 Hz, we then find 
R - lo-' from (21), in agreement with the results of Ref. 3. 
The absorption of longitudinal sound, which interacts more 
weakly (by a factor ka- with dislocations, was mea- 
sured in Refs. l and 2. The absolute values of the damping 
factor are small by a factor of the same order. An interesting 
dependence was found in Ref. 2. As the temperature is 
lowered in the vicinity of 1 K, the damping factor for the 
sound increases. The crystal studied there was apparently 
one describable by (20), in which dislocations contain a large 
number of geometric kinks. Study of the frequency depen- 
dence is interesting, especially at low temperatures. Data on 
the resonant frequency were given in Ref. 1. Over the tem- 
perature interval 1.62-1.78 K the absorption peak lies at 20 
MHz. 

In addition to the direct emission and absorption of 
phonons, processes which are second order in the interaction 
amplitude occur, but these can be ignored at low tempera- 
tures, as we will see below. The matrix element for the scat- 
tering of a phonon with an initial momentum k and a final 
momentum k', accompanied by a transition of a kink from 
state i to state i + 2, is 

where the frequencies satisfy the identity E ~ +  - E~ 

= ok - wk '. To evaluate the probability for the process, w,, 
we integrate over all possible initial momenta k; taking ener- 
gy conservation into account, we find 

Substituting matrix elements Vk from (13) into (24), we 
then find a simple estimate of the relaxation time for the 
second-order processes: 

- p2a414c2u03T5 
9 

@' 

where 8 is the Debye temperature. Comparison of (25) with 
the single-phonon relaxation time in (1 6) yields r2/r1 - (19 / 
T)300r,; i.e., the single-phonon processes dominate in the 
range of applicability of the resonant-relaxation theory 
(wOr > l), as stated above. 

3. The results derived above are valid when the recipro- 
cal of the relaxation time is smaller than the energy distance 
between adjacent levels: w0r > 1. Using (1 6), we find that this 
condition is equivalent to the condition 

@a/T1>10-3 (8/a3pc2) ( O N )  - iO-3;  

if this inequality is violated, the kinks on the dislocations 
should be treated semiclassically. At T- 1 K, the semiclassi- 

cal region corresponds to I >  cm. As will be shown be- 
low, dislocations of this type contribute to the absorption of 
the sound at frequencies w < lo6 Hz. 

In this approximation, the boundary conditions clearly 
do not impose any further restrictions on the energy quanti- 
zation, and we should describe the one-dimensional gas of 
kinks by a semiclassical kinetic equation. In this sense, the 
dislocations may be regarded as free. This problem was 
solved in Ref. 5 for a three-dimensional gas of vacancy quasi- 
particles. The kinetic equation for a gas of kinks can be writ- 
ten as follows in the r approximation for the case with a 
spatially uniform external force: 

Noting that the absorbed energy is determined by the aver- 
age over the ensemble of the product fv, where v = M a p  is 
the quasiparticle velocity, we find5 

Substituting the kink energy spectrum (1) for Boltzman sta- 
tistics into (25), and carrying out the straightforward inte- 
gration, we find 

- aJ2f2 p-so 'C w=- exp - - 
4Tfi2 

(28) 
The procedure from this point on is the same as in Section 1. 
We substitute in the external force f and take an average over 
the positions of the dislocations. The final result in terms of 
the logarithmic damping factor is, for the case of thermal 
kinks, 

Here A, is the total length of the dislocation segments for 
which the condition R l / 8 a  > lo3 holds. For geometric kinks 
we should replace e by D,aI; '( J / T ) ,  where D, is the 
number of geometric kinks per unit length of a dislocation, 
as described above. 

To evaluate the damping factor in (27), we use a pre- 
viously obtained e ~ t i m a t e ~ . ~  of the transport relaxation time: 

Here m*  is the mass of a kink, andp is a typical value of the 
quasimomentum. The relaxation time (30) is found from an 
analysis of two-phonon processes, as in the derivation of (16). 
The different powers of the temperature can be explained on 
the basis that the quasicontinuous kink spectrum causes (30) 
to be dominated by processes with a small energy transfer, 
for which the cross section is cr-w4-very different from the 
scattering cross section in(16) because of the threshold for 
the energy of an absorbed phonon. 

Substituting the values of the parameters in estimates 
(20)-(23) into (29) and (30), we find R - 10W4 A, at frequen- 
cies w - lo4 Hz. However, it does not seem possible to evalu- 
ate A, in anything approaching a reliable manner, since this 
quantity depends exponentially on the large ratio I /L, and 

121 Sov. Phys. JETP 61 (I), January 1985 A. V. Markelov 121 



the deviation from (22) in a real crystal 
the tail of the distribution. 

The scattering of a dislocation by 

may be significant in 

a boundary changes 
the effective relaxation time. In the case w < v/ l  we can use 
the estimate T - I /v, where v is the average kink velocity. If a 
crystal contains extended dislocation segments, there will be 
a nonzero absorption of energy, even if the shear strain in the 
crystal has a time-independent gradient. 

From the standpoint of structural features in the sound 
absorption spectrum, we are interested in frequencies on the 
order of 10 MHz, where the absorption should reach a maxi- 
mum due to the resonant mechanism, as follows from Sec- 
tion 1 and 2. It should be noted that the results derived here 
apply only to delocalized kinks, so that the condition J >  f i / ~  
must hold. This condition seems to apply to helium up to the 
Debye temperature. 

We note in conclusion that the expressions derived here 
can, in an independent study of the structure of a dislocation 
forest, be used to calculate the exact values of the quantities 
characterizing the kink spectrum. 
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