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We analyze the problem of low-frequency magnetosonic solitons (MSS) propagating in a plasma 
across the magnetic field. We note that such an analysis is made necessary by the contradictory 
results of earlier papers, in some of which these solitons are treated as rarefaction solitons and in 
others as compression solitons. We show that in a plasma with a Maxwellian particle velocity 
distribution these solitons are compression solitons. We explain that the opposite point of view is 
an error connected with the use of insufficiently accurate hydrodynamic equations. We obtain a 
set of hydrodynamic equations which adequately describe low-frequency MSS. We work out a 
combined kinetic-hydrodynamic approach to the problem of nonlinear low-frequency magneto- 
sonic waves. Using this approach we study low-frequency MSS in a plasma with a non-Maxwel- 
lian particle velocity distribution (in that case rarefaction solitons are possible) and also in a 
plasma with cold and hot impurity ions (the impurity ions can significantly affect the characteris- 
tic spatial scale of the solitons). We study the gyro-relaxation damping of low-frequency MSS in a 
weakly collisional plasma. We show that such a damping is a more important effect than the 
transverse collisional viscosity which was considered earlier in connection with the shock wave 
problem. 

1. INTRODUCTION 

Low-frequency magnetosonic solitons (MSS) propagat- 
ing across a magnetic field are one of the basic kinds of soli- 
tons in a high-temperature magnetized plasma. The first 
study of these solitons was presented in Refs. 1,2 in which it 
was stated that they are rarefaction solitons. The results of 
Ref. 2 were subjected to criticism in Ref. 3 in which it was 
noted that magnetosonic solitons in a plasma with a Max- 
wellian ion distribution must be compression solitons. The 
validity of the criticism in Ref. 3 was acknowledged in Refs. 
4, 5. In accordance with Ref. 3 a solution of the nonlinear 
equations for compression solitons was given in Ref. 6. How- 
ever, the discussion started in Ref. 3 bypassed the authors of 
later  paper^^-^ who again considered magnetosonic rarefac- 
tion solitons. The incorrect dispersion relation for magneto- 
sonic waves which is the primary cause for the incorrect 
analysis of magnetosonic solitons in Berezin's paper1 is re- 
produced (with an additional error!) also in his recently pub- 
lished book1' which contains no mention of this discussion 
(see the equations at the bottom of p. 17 and the top of p. 18 of 
this book"). 

In order to warn future researchers against yet another 
repetition of old errors it is advisable to elucidate the cause 
for these errors and to show what a valid theory of low- 
frequency MSS should look like. This is one of the main aims 
of the present paper. Moreover, we extend the development 
of the theory of MSS in a direction which we shall indicate 
later. 

The authors of the original papers on the theory of low- 
frequency MSS1.2 as well as the contemporary authors of 
Refs. 7,8 started from the idea that the dispersion of magne- 
tosonic waves caused by the finite ion Larmor radius can be 
described using the hydrodynamic equations with the tensor 
(magnetic) viscosity tensor in Braginskiys form." They were 
stimulated to use these equations in the MSS problem by 

their successful application to the problem of the flute insta- 
bility of a plasma with a finite ion Larmor radiu~.".'~ How- 
ever, this kind of hydrodynamics is suitable only for describ- 
ing effects which are linear in the Larmor radius p. This is 
sufficient for the flute instability problem. As to the disper- 
sion of magneto-sonic waves, that effect is quadratic in p (of 
order k : p2, where k, is the transverse wavenumber). The 
use of this kind of hydrodynamics to study the dispersion of 
magnetosonic waves is thus unjustified. The formal applica- 
tion of this kind of hydrodynamics in the problem studied 
here led the authors of Refs. 1,2, 8,9 to results which are in 
error in two respects. Firstly, the dispersive correction to the 
wave frequency for smallfl turns out not to be of order k : p2, 
but of order Pk : p2, whereb is the ratio of the plasma pres- 
sure to the magnetic field pressure. Secondly, the wave dis- 
persion turns out not to be negative, but positive (in the pres- 
ent case, that of Maxwellian ions). 

The problem of low-frequency MSS obtained a correct 
thanks to the derivation of a set of hydrody- 

namic equations which takes into account terms of order 
k : pZ. This was caused by the inclusion of corrections of 
order k, p to Braginskiys expressions" for the viscosity ten- 
sor ; and the heat flux q. Since the dispersion emerges as an 
effect which is linear in the wave amplitude it can also be 
described by means of the plasma dielectric tensor calculat- 
ed using the linearized Vlasov kinetic equation. This was 
done in Ref. 5 and this confirmed the hydrodynamic conclu- 
sion14 about the negative dispersion of magnetosonic waves. 

It is clear that the main stumbling block for the develop- 
ment of a theory of low-frequency MSS was the problem of 
how to take dispersion into account. It is thus advisable to 
start an analysis of MSS with an analysis of the dispersion of 
linear magnetosonic waves. We shall proceed in this way in 
the present paper. 

It is clear from what has been said above that an analysis 
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of the dispersion may be performed in the framework of two 
approaches: a hydrodynamic and a kinetic one. At first sight 
it may turn out that in a hydrodynamic approach which op- 
erates with macroscopic plasma parameters we may obtain a 
more intuitive picture of the dispersion than in the kinetic 
approach. However, a hydrodynamic formulation which is 
suitable for describing dispersion, in accordance with what 
has been said above, is considerably more complicated than 
the usual (ideal) hydrodynamics and is thus not so intuitive. 
In a number of cases the kinetic approach possesses greater 
intuitiveness and turns out to be more effective for studying 
the effect of various factors on the dispersion of low-frequen- 
cy magnetosonic waves (for more details see section 5). In 
this connection we first expound the kinetic theory of the 
dispersion (section 2) and afterwards the hydrodynamic the- 
ory (section 3). This order of exposition is also useful because 
once we have the kinetic result we can more easily solve the 
problem of which set of hydrodynamic equations to choose. 
In other words, we use kinetics not only to obtain physical 
results, but also to control the hydrodynamics. Moreover, in 
accordance with what has been said above it turns out to be 
useful for the study of MSS to use both hydrodynamics and 
kinetics and to combine these two approaches. 

One must bear in mind that the dispersion of magneto- 
sonic waves depends on the nature of the equilibrium state of 
the plasma. We pay most attention to the case of a Maxwel- 
lian plasma with a finite value o f p  which contains one kind 
of ions, i.e., the same plasma to which the chain of errors 
discussed above applied. This case, to be called the standard 
case, is the subject of the analysis of sections 2 ,3  and also of 
section 4 where we discuss solitons corresponding to this 
case. Moreover, in section 5 we take into account the non- 
Maxwellian nature of the particle velocity distribution and 
consider the case of infinitesimally small p and elucidate the 
role played by a multi-component ion composition of the 
plasma. The case of a non-Maxwellian plasma (subsection 
5.1) is interesting because the wave dispersion in such a plas- 
ma may be and the corresponding solitons may be 
rarefaction solitons. The discussion of the case of a plasma 
with infinitesimally small 0 (subsection 5.2) is connected 
with the necessity to reconsider the erroneous criterion for 
the applicability of the cold-plasma approximation applied 
in Ref. 2. An interesting feature of a cold plasma with several 
kinds of ions having different charge-to-mass ratios is an 
appreciable increase in the wave dispersion even when there 
is only a small fraction of impurity ions present (for details 
see subsection 5.3). In the case of a hot plasma the dispersion 
of low-frequency magnetosonic waves can be appreciably af- 
fected by the admixture of high-energy ions if the tempera- 
ture of those ions is much higher than the temperature of the 
main ion component (subsection 5.4). 

In the present paper we consider mainly the case of a 
collisionless plasma. A conclusion was reached in Ref. 2 
about the possibility of the formation of magnetosonic shock 
waves in a plasma with weak collisions. We show in that 
connection in section 6 that weak ion-ion collisions lead not 
to the formation of shock waves, but to the damping of low- 
frequency magnetosonic solitons. This damping is caused by 

the gyro-relaxation effect; we call it gryo-relaxation damp- 
ing. 

The results of the paper are discussed in section 7. 

2. KINETIC DESCRIPTION OF LOW-FREQUENCY 
MAGNETOSONIC WAVES 

We assume that the plasma is spatially uniform and is in 
a uniform magnetic field B, 11  z. We assume the equilibrium 
particle velocity distribution to be Maxwellian. We assume 
that the ion component of the plasma consists of one kind of 
particle. We consider linear waves propagating at right an- 
gles to B,; to fix our ideas we put their wavevector k along 
thex-axis, i.e., k = (k,O,O). The ~ a g n e t i c  field of the waves is 
characterized by the quantity B, and the electric field has 
components Ex,  E,, . We assume the wave frequency w to be 
small compared to the ion cyclotron frequency w,;, ~(w, ; ,  
and the wavelength large compared to the ion Larmor radius 
p, kpg 1, where 

oBi=e,Bo/mic, p= (Ti /mi)  I h / a B i ,  

e , ,  mi are the ion charge and mass, T, is the ion equilibrium 
temperature, and c the velocity of light. We assume the equi- 
librium plasma density no to be sufficiently large that c i  < cZ, 
where c i  = B i/477n0 mi is the square of the AlfvCn velocity. 
In that case the waves may be assumed to be quasineutral. 

Under the assumptions made the Maxwell equations 
reduce to the following 

d~z/dx=-4nj,/c, (2.1) 
d~z/dt=-cdE,/dx, (2-2) 

jx=O, (2.3) 
where j,, j, are the components of the electric current den- 
sity. Bearing in mind a later generalization of the results to 
the case of nonlinear waves have written Eqs. (2. I), (2.2) in a 
coordinate-time representation. In the present section we 
shall be dealing with the Fourier components of these equa- 
tions. In that case we must be put a /ax+ik, a /at-+ - iw. 

We use the fact that in the case of quasi-neutral waves 
ia=- (io/4n) EagEg, (a, P) = (x, y), (2.4) 

 where^,^ is the dielectric permittivity tensor. It then follows 
from (2.3) that 

Es=-~x,Ey/~x, .  (2.5) 

Using (2.5) we get from (2.4) 

Substituting (2.6) into (2.5) we are led to the dispersion rela- 
tion 

Expanding the general kinetic expressions for E , ~  giv- 
en, e.g., in Ref. 16, in series in kp and o/wBi to an accuracy 
sufficient for what follows we get 

110 Sov. Phys. JETP 61 (I), January 1985 A. B. Mikhallovskland A. I. Smolyakov 110 



Here 
z=kZp2, P=Pi+Pe, pa=8npalBo2, pa=noTa (a=e, i) . 
Substitution of (2.8) into (2.7) gives 

oZ(l+'/4z) - ~ ~ ~ k ~ ( l + ~ - ~ / ~ z P i )  =O. (2.9) 

Hence it follows, if we use the fact that z is small, that 

w2=k2V2(l-k2aD2), (2.10) 

where V 2  = C; (1 + p ), a, is the so-called dispersion length 
given by the relation 

The dispersion length a, turns, according to (2.1 I), out 
to be, of the order of the ion Larmor radius, a, - p, both for 
small and for large 8. 

It is clear from (2. lo), (2.11) that with increasing wave- 
number k the phase velocity w / k  decreases, i.e., the waves 
have a negative dispersion. 

Turning to (2.6) and using (2.8) we note that the electric 
current of the wave type considered consists of three physi- 
cally different parts: the inertial part j i ,  the so-called "P" 
part j,f, and the dispersive part jf, 

ju=j{+j:+juD. (2.12) 

The corresponding parts of the current are given by the 
equations 

This division of the current into separate structural parts 
turns out to be useful for comparing the results of the kinetic 
and the hydrodynamic approaches (see section 3), for con- 
structing equations for nonlinear waves (section 4), and for 
various generalizations of the magnetosonic wave problem. 

HYDROELECTRODYNAMIC APPROACH TO THE 
MAGNETOSONIC WAVE PROBLEM 

In contrast to section 2 we supplement Eqs. (2.1) to (2.3) 
with the hydrodynamic expression for the electric current 
(cf. (2.6)): 

Here B = B, + 3, is the total magnetic field, n is the total 
density of each kind of particle (electron or ion), V, is the x-  
component of the velocity of the plasma as a whole, p is the 
total plasma density, and rXX is the appropriate component 

A 

of the voscosity tensor n-. 
To use (3.1) we need to have equations for V, , n, p, and 

?r,, . As the equation for V, we use the freezing-in condition 

We determine the plasma pressure from the heat balance 
equation: 

where q, is the x-component of the heat flux. We can use Eq. 
(3.3) also to evaluate the pressure of any one of the compo- 
nents (ions or electrons) of the plasma by putting appropriate 
indexes for the kind of particle on the corresponding quanti- 
C .  ~ies. 

We note that if we neglect the heat flux we get from (3.2) 
and (3.3) the equation for the two-dimensional adiabat 

wherepA is the pressure evaluated in the adiabatic approxi- 
mation. This approximation was used in Ref. 7. It is clear, 
however, from what follows that when we take into account 
the dispersion of the magnetosonic waves in a plasma with 
0- 1 this approximation is inapplicable. We need therefore 
also an expression for q, (and, indeed, for the ion heat flux 

qxi 1. 
According to the Appendix the expressions for n-,, and 

q, differ from the corresponding expressions of Braginskii. ' I  

They have the form 

Here pi,  Ti are the total ion pressure and the ion tempera- 
ture, Vy is the y-component of the plasma velocity given by 
the standard equation of motion 

mindV,ldt=-dn,,/dz, (3.7) 

and the expressions for rXX and qy have a form similar to the 
one in Ref. 1 1: 

We note that in Ref. 7 in the expression for r,, only the term 
with dVy/dx was taken into account. This is insufficient for 
the problem considered. 

The basic equations of the present section are closed by 
the continuity equation in standard form 

As in section 2 we consider linear waves. We then write 
the electric current in the form (2.12) and the perturbed pres- 
surep in the form 

p"=p""+p"", 

where PA, jD are the adiabatic and dispersive parts of the 
perturbed pressure. It then follows from (3.1) that 
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We find from (3.2) that 

Vx=cEuIB0, 

so that, according to (3.12) 

It follows from (3.4) that 

jiA=2poBlBo. 

Here p, = ( T ,  + Toi)no while To,, Toi are the equilibrium 
values of the electron and ion temperatures, i.e., the same as 
T, ,  Ti in section 2. Substituting (3.17) into (3.13) we get 

To evaluate the right-hand side of (3.14) it is necessary 
to find solutions of Eqs. (3.7)-(3.10). From (3.10) we find that 
the density perturbation ii has the form 

Using (3.17), (3.19) we find from (3.7)-(3.9) 

Toi 1 dB, no dB, 2poi dB, --) . ( mi ax 
(3.20) 

It then follows from (3.3), (3.5), (3.6) that 

where v$ = 2TOi/mi .  Substituting (3.21), (3.23) into (3.14) 
we find that 

Comparing (3.16), (3.18), (3.24) with (2.13) to (2.15) and 
using (2.12) we conclude that when using a hydrodynamic 
description of the plasma we get exactly the same expression 
for the electric current as in the kinetic description. It is thus 
clear that the dispersion Eq. (2.9) and the expression (2.10) 
for the square of the frequency are the consequence not only 
of kinetics, but also of hydrodynamics. 

4. STANDARD CASE OF MAGNETOSONIC SOLITONS 

In contrast to section 3 we now take into account the 
nonlinear part of the electric current, i.e., we write j,, in the 
form 

jY = juL+ jvNL, (4.1) 

where j;, j? are the linear and the nonlinear parts of the 
current. The linear part of the current is characterized by 

Eqs. (2.12), (3.16), (3.18), (3.24). To evaluate j? we use Eq. 
(3.1). The contribution from ~r, to j? is unimportant. When 
evaluating the contribution from the pressure to j,NL we can 
use the equation of the adiabat (3.4). It then turns out that the 
combination B -'ap/dx does not contain terms quadratic in 
Bz, i.e., the term with the pressure in (3.1) does not contri- 
bute to j?. Using (3.2) and (3.10) we find that 

n/B=const. (4.2) 

Therefore 

We find the nonlinear relation between V, and gz 
which we need by expanding the right-hand side of (3.2) in a 
series in ~ J B , .  We then get [cf. (3.15)] 

Substituting (4.4) into (4.3) we are led to the required expres- 
sion 

Using (2.  I), (4.1) and the expressions we have found for 
the linear and the non-linear parts of the current we get a 
nonlinear equation for the electromagnetic field of the waves 
considered [cf. the dispersion Eq. (2.9)]:  

We assume that 3 ,  and E,, depend on =x - ut and 
r = t, where T is the so-called slow time. It then follows from 
(4.6) that 

where h = z z / ~ , .  
In the stationary case a / a r  = 0 and Eq. (4.7) has a soli- 

ton solution of the form 

where 

The quantity h, characterizes the maximum amplitude of 
the soliton and x is the reciprocal of the characteristic size of 
the soliton. For V / u (  1 (as follows from the fact that x is 
real), we have h,> 0 ,  i.e., in accordance with (4.2) we are 
dealing with a compression soliton. 

Our initial assumption that the dispersion is weak is 
justified provided xu, ( 1 ,  i.e., when hog 1 .  In terms of h, the 
characteristic size of the soliton is 

U 1,-p/ho . (4.10) 
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5. SPECIAL CASES OF MAGNETOSONIC SOLITONS 

5.1. Plasma with a non-Maxwellian ion distribution 

It is clear that the original dispersion relation Eq. (2 .7)  is 
independent of the nature of the particle velocity distribu- 
tion and therefore remains valid. The same is true for Eq. 
(2 .8)  for E,. We now elucidate how the expressions for E,, 

and E,, are modified when the particle velocity distribution 
is non-Maxwellian. 

We introduce the notation 

where f, is the equilibrium distribution function; the integra- 
tion is over the particle velocities v. We shall also use the 
following notation, which is analogous to those introduced 
in section 2: 

Pi=2el/ca2, p2=e,/oat2, z = k Z ~ , / ~ B i 2 .  (5 .2)  

We then conclude, turning to the general formula16 for E , ~  

that Eq. (2 .8)  for E, remains valid if we take forz the quanti- 
ty (5.2).  As to the expression for E,, it is modified as follows: 

where 

h = z / 2  (9,) (5 .4)  
One gets then a formula for the square of the frequency of the 
form (2.10) with the following expression for the square of 
the dispersion length a: replacing Eq. (2.11): 

For a Maxwellian particle velocity distribution A = 1 .  
In that case (5 .5)  goes over into (2.1 1 ) .  However, if all parti- 
cles, for instance, have a single velocity, f, cc6(v, - vy)  
where vy is a constant, then A = 4. In that case 

It is clear that a: < 0 ,  if 

Pi>:! (l+,Pe). 

Then the wave dispersion turns out to be positive, w/k  > V.  
Using (5 .3)  we find that the linear part of the current jy is 

characterized by the old formulae (2.12) to (2 .14)  for jy , j:, j: 
and the following expression for jf (cf. (2 .15)):  

As the nonlinear pa r t j y  of the current does not depend 
on the nature of the particle velocity distribution, it is clear 
that for a modification of the nonlinear Eq. (4 .7)  it is suffient 
merely to take into account what is new, which results from 
the difference between (5 .8)  and (2 .15) .  This difference con- 
sists in a new expression for the square of the dispersion 
length a; which is now given by Eq. (5 .6) .  

Of considerable interest is the case a; < 0 correspond- 
ing to waves with a positive dispersion. In that case we get 

from (4 .7)  a soliton solution of the form (4 .8)  with h, of the 
form (4 .9)  and with 

Such a solution corresponds to a rarefaction soliton, n < n,. 
We note that Refs. 3 , 6  were the first to discuss the problem 
of positive dispersion of magnetosonic waves and rarefaction 
solitons in a plasma with non-Maxwellian ions. Recently 
this problem was studied by Zhdanov. 

5.2. Cold plasma with one ion species 

According to (2 .11)  the dispersion length a, tends to 
zero when the ion temperature decreases. However, for suffi- 
ciently low ion temperatures Eq. (2.11) becomes inapplicable 
because in its derivation we neglected the electron motion. 
We consider how (2 .11)  is modified when we take the elec- 
tron inertia into account. We shall then assume that Pi( 1 ,  
because the ion temperature is low. Moreover, for the sake of 
simplicity we assume that Pe ( 1 .  

Under those assumptions we have as before Eq. (2 .8)  for 
cXy and the following expressions for E,,, , E,, , which replace 
(2 .8):  

where me is the electron mass. The term with m , / m i  in E, is 
caused by the electron inertia. 

Accordingly we get instead of (2 .9)  the dispersion rela- 
tion of the linear approximation 

Hence it follows that the square of the wave frequency is 
given by Eq. (2.10) with V Z  = c i  and an expression for a; of 
the form 

aDz=p2/4+~2/ope2, (5.12) 

where w; = 4 r n g 2 / m  is the square of the electron plasma 
frequency and e the electron charge. 

It is clear that one can neglect electron inertia when 

,@i88me/mi. (5.13) 

This is the region where the results of sections 2 to 4 are 
applicable, corresponding to the case of "hot" dispersion. 
When (5.13) does not hold, a,  = c / o p e .  In that case we are 
dealing with "cold" disper~ion'~ and the solitons are charac- 
terized as before by Eqs. (4 .8) ,  (4 .9)  with a, = d u p e .  We 
note also that in Ref. 2 one has instead of (5 .13)  the incorrect 
criterion B> (me/mi)"*  obtained through using an incom- 
plete expression for the viscosity tensor (see section 3) .  The 
correct criterion (5.13) was obtained in Ref. 5 .  We note this 
in connection with the fact that the incorrect criterion was 
again repeated in Ref. 10. 

5.3. Cold plasma with two kinds of ions 

From Eq. (5.10) for E, it is clear that in a cold plasma 
the dispersion of low-frequency magnetosonic waves is de- 
termined by small corrections to the "standard" value of the 
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dielectric tensor. In the case considered in subsection 5.2 we 
obtained a term with the cold dispersion in Eq. (5.12) "shift- 
ing" the standard expression for E, by an amount of the 
order of me/mi, i.e., taking into account the electron inertia. 
We can obtain a similar result in the case of a plasma con- 
taining an admixture of a different kind of ions (having a 
different particle charge-to-mass ratio) with a density of the 
order of me/mi times the density of the main component of 
the plasma. If, on the other hand, the density of the impurity 
ions substantially exceeds (m,/mi)n, the electron dispersion 
will be small compared to that caused by the impurity. We 
give expressions which confirm this statement. 

Let the plasma contain two kinds of ions with densities 
n ,,n,, charges e,,e2 and masses m ,,m,. For the sake of simpli- 
city we assume both kinds of ions to be cold, T-+O. Instead of 
(2.8) we then get the following expressions for the compo- 
nents of the dielectric tensor: 

E,, = + 7 
C A  Bo 

The summation is here over the kinds of particles a = 1,2. 
Similarly to (5.12) the square of the dispersion length is now 
given by the relation 

For small impurity ion density, n,(n,, it follows from 
this that 

where mii = 4 ~ n ,  e: /m , is the square of the plasma frequen- 
cy of the main ion component. In particular, in the case of an 
electron-proton plasma containing a small fraction of a-par- 
ticles (m, = 4m,, e, = 2e1), Eq. (5.5) means that 

From a comparison of (5.16) and (5.12) it is clear that in 
agreement with the discussions given above the impurity dis- 
persion is more important than that caused by the electrons, 
if 

Comparing (5.16) with (5.12) we note that the impurity 
dispersion is more important than the hot dispersion (caused 
by the term withp2) if 

For thermonuclear reactors there is interest in a plasma 
containing deuterium and tritium. In that case 

n2 = n, = nd2,  e, = e,, m, = 3m1/2 so that Eq. (5.15) takes 
the form 

The presence of a small numerical factor in Eq. (5.20) for a, 
is explained, firstly, by the relatively small difference in the 
deuterium and tritium masses and, secondly, by the strong 
dependence of the dispersion on the magnitude of the AlfvCn 
speed. 

According to (5.15) a; > 0, i.e., the wave dispersion 
caused by the presence of two kinds of ions is negative (see 
section 2) and the corresponding solitons must be compres- 
sion solitons (see section 4). 

5.4. Hot plasma with a component of fast particles 

According to the general expressions (2.8) for the com- 
ponents of the dielectric permittivity tensor the components 
E,,, E ~ ,  and some of the terms in E , ~  are responsible for the 
dispersion of the low-frequency magnetosonic oscillations. 
The terms in E,, responsible for the hot dispersion depend on 
the pressure and the temperature derivative of the pressure 
of the ion component of the plasma (the third and fifth terms 
in the expression for E~,, respectively). The analogous term 
in E,, corresponds to the ion pressure. As the dielectric per- 
mittivity tensor for a plasma with several kinds of ions is an 
additive quantity one may expect that the presence in the 
plasma of another kind of ions with a pressure comparable to 
the pressure of the main ions in the plasma will give rise to an 
appreciable increase in the dispersion. 

For impurity particles with a temperature considerably 
higher than the temperature of the main particles in the plas- 
ma this effect may be important even for a low impurity 
density. Such high-energy particles may arise when neutrals 
are injected into the plasma, in hf heating or as the result of 
thermonuclear reactions. 

We consider a plasma containing an admixture of hot 
particles with a temperature T =  yTi, a density n = ani ,  
particle mass m = am,, where Ti, n,, mi are the tempera- 
ture, density, and ion mass of the main plasma component; 
y, a ,  a are some dimensionless coefficients. Bearing in mind 
that in actual cases we shall be interested in the case of low 
impurity densities we shall assume that a( 1. For the sake of 
simplicity we assume that the impurity ions are singly 
charged and that their distribution function is Maxwellian. 
The correction to the &,,-component of the dielectric per- 
mittivity tensor caused by the impurity particles will then 
have the form 

wherez, pi are defined in section 2 and refer to the main ions 
in the plasma. The corrections to the other components of 
the dielectric permittivity tensor caused by the admixture 
are unimportant. We then find that the square of the fre- 
quency of the low-frequency magnetosonic oscillations is 
given by an expression similar to (2.10) with an AlfvCn speed 

V2=ca2 (l+,p+a~Pi) (5.22) 
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and a dispersion length 
(p2/4)  [ I+$,+ (5Pi12) (1-t-2ay/5+3ayao/5) I 

x(l+,p+ayB.) -'. (5.23) 

When 

2ay/5+3ay2015> 1 (5.24) 

according to these equations the dispersion caused by the 
fast impurity ions will be larger than the dispersion deter- 
mined by the main component. 

6. GYRORELAXATION DAMPING OF LOW-FREQUENCY 
MAGNETOSONIC SOLITONS 

We neglected so far collisions between particles in the 
study of MSS. We now show that weak ion-ion collisions, 
Y < w (v is the collision frequency and o a characteristic fre- 
quency of the magnetosonic waves) leads to a damping of the 
MSS. We neglect here the ion-electron collisions. 

We shall work in the framework of the two-dimensional 
equations. We introduce the perturbed part jv of the trans- 
verse pressure caused by the collisions. We obtain an equa- 
tion for jv  by integrating the kinetic equation with a weight 
corresponding to the transverse pressure, taking into ac- 
count the ion-ion collisions on the right-hand side. The re- 
sulting equation will differ from (3.3) by the presence of a 
dissipative term caused by the collisions. The equation for jv 
will then have the form 

We note that jv is the diagonal part of the three-dimen- 
sional viscosity tensor and one can obtain Eq. (6.1) by using 
general equations of the type (A. 1) for the three-dimensional 
viscosity tensor, taking from them the diagonal part which is 
independent of the magnetic field. Then solving these equa- 
tions by expanding in the small parameter Y/W find in lowest 
order the adiabatic part of the perturbed pressure, and in the 
next approximation jv. 

Using Eq. (6. I), which is analogous to (3.13), we get an 
expression for the dissipative current (i.e., that part of the 
current which is caused by jV): 

j"= (c /Bo)  djP'lax. (6.2) 

Taking this part of the current into account in the Maxwell 
equations (see section 4) we get the following nonlinear equa- 
tion for the low-frequency magnetosonic solitons (cf. (4.7)): 

Assuming the dissipative term in this equation to be 
small compared to the nonlinear and dispersive terms we 
solve it by the method of successive approximations. This is 
equivalent to an adiabatic treatment of the soliton damp- 
ing17 which is valid when Y <  (hdPi )3 '2~ , i .  We write the 
solution of Eq. (6.3) in the form h = h 'O' + h 'I' where h "' is 
caused by the collisions. We then have in lowest order for h 'O' 

an equation which is similar to (4.7) in the stationary case: 

This equation has a solution which is similar to (4.8): 

h(")=h,'o' /ch ( x E / 2 ) ,  (6.5) 

where h r' and x are connected through Eq. (4.9) and are 
slowly varying functions of the time. In the next approxima- 
tion we then get for h 'I' the equation 

Using the condition that the first and the zeroth approxima- 
tions must be orthogonal we get the required equation for the 
amplitude of the d a m ~ e d  soliton: 

Hence 

hdo' (T) =hdo' ( 0 )  exp (-.c/.co), z o = 5 ~ 2 1 ~ A 2 ~ ~ v .  (6.8) 

It is interesting to note that when pi,l the characteristic 
damping time for the soliton is 7,- l/v. 

The effect described by the last term in the nonlinear 
Eq. (6.3) is analogous to the gyrorelaxation effect in linear 
oscillations. For transverse perturbations of the plasma the 
longitudinal magnetic field is perturbed and an anisotropy in 
the particle distribution function then occurs. The collisions 
tend to equalize the energies of the transverse and the longi- 
tudinal motion and the original perturbation then weakens. 
This mechanism leads to damping of the soliton. We there- 
fore call this effect the gyrorelaxation damping of MSS. 

The off-diagonal parts of the collisional viscosity tensor 
also contribute to the dissipation. In the nonlinear equation 
for the MSS the off-diagonal parts could correspond to terms 
with a second derivative of the soliton amplitude with re- 
spect to the coordinate. However, in the low-frequency case 
the off-diagonal parts of the collisional viscosity tensor are 
corrections, being of order (w/w,,)~ relative to the diagonal 
ones. 

Only the off-diagonal parts of the collisional viscosity 
tensor were taken into account in Ref. 2. This is the reason 
for the incorrect conclusion reached by the authors of Ref. 2 
that weak collisions lead to the formation of a magnetosonic 
shock wave. 

7. DISCUSSION OF THE RESULTS 

From the analysis given here it is clear that the key to 
constructing a theory of solitons of low-frequency magneto- 
sonic waves is an adequate description of the dispersion of 
such waves. Because the dispersion is a small effect of order 
k 2P2 it is necessary to use for their description equations 
which take corresponding small terms into account. Such 
equations can be obtained both through kinetic and through 
hydrodynamic approaches. We elucidated the structure of 
the equations which are the basis of these two approaches 
and showed that both lead to the same results. 

In contrast to the dispersion the nonlinearity of low- 
frequency magnetosonic waves is a rather coarse effect. The 
simplest and most natural way to describe the nonlinearity is 
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thus in the framework of hydrodynamics. On the other 
hand, due to its specific structure (particularly in a plasma 
with impurities) dispersion is more fully described in the 
framework of the kinetic approach. The most effective ap- 
proach therefore turns out to be the combined kinetic-hy- 
drodynamic one suggested in the present paper in which the 
dispersion part of the current is determined from kinetics 
and the nonlinear part from hydrodynamics. Such an ap- 
proach is also fruitful in studying how dissipative processes 
affect soliton dynamics. 

For a description of the dispersion of low-frequency 
magnetosonic waves in the framework of the hydrodynamic 
approach we obtained new expressions for the viscosity ten- 
sor and the heat flux which are, respectively the sum of the 
transverse (magnetic) viscosity and the oblique heat flux in 
Braginskii's form and terms of order k 2pZ. When using the 
kinetic approach we obtained with the necessary accuracy 
expressions for the components of the dielectric tensor 
which describe the dispersion of low-frequency magneto- 
sonic waves. 

Moreover, we have studied in the present paper special 
cases of MSS, among them some not previously discussed. 
We have showed that the dispersion of low-frequency mag- 
netosonic waves is sensitive to details of the plasma ion dis- 
tribution function. Under certain conditions the dispersion 
of a given kind of ions may be positive and, hence, in such a 
plasma the existence of rarefaction MSS is possible (for de- 
tails see subsection 5.1). We have shown that the dispersion 
of a cold plasma is determined by the finite ratio of the elec- 
tron to the ion mass in the case of one kind of ions, whereas in 
a plasma with an admixture of ions with a different charge- 
to-mass ratio the dispersion may be appreciably larger. We 
note that an admixture of ions with a pressure comparable to 
the pressure of the main ion component may considerably 
affect the hot dispersion. This may, for instance, be impor- 
tant for the case of an admixture of thermonuclear a-parti- 
cles. 

In studying the effect of ion-ion collisions on the dy- 
namics of MSS we showed that the structure of the dissipa- 
tive terms depends on the ratio of the collision frequency v 
and the characteristic frequency w of the magnetosonic 
waves. Taking the dissipation into account in the case of 
weak collisions, v < w, leads to a gyrorelaxation damping of 
the MSS, whereas taking dissipation into account in the form 
of a transverse collisional viscosity for the case of strong 
collisions, v > w, leads to the formation of a magnetosonic 
shock wave. 

APPENDIX 

Derivation of expressions for the viscosity tensor and 
for the heat flux in the case of a "two-dimensional" collision- 
less plasma. 

To describe magnetosonic waves propagating in a colli- 
sionless plasma across the magnetic field one can use the set 
of two-dimensional hydrodynamic equations obtained by 
Grad's method19 in Ref. 18. For us the equations from that 
set for the viscosity tensor a=arrS, where (a, /3 ) = (x, y) and 
for the heat flux q=(q, ,qy ,0) are the important ones. With 

the accuracy which we need these equations are 

an,, ( av, av, - + ' 's') -2wBn.,=~, a t  P \ a r - T )  +T(.z-ay 

A 

Here (Va), =draP/~xB, OB = e,wB, e, is a unit vector along 
z. We use the fact that 7 ~ y ~  = - a n ,  cy = ayx. 

We solve Eqs. (A.l), (A.2) by expanding in series in 
l/w, . We then get 

The quantities with index zero have a form analogous to that 
in Ref. 1 1 : 

The correction terms indicated by the index one are given by 
the expressions 

Equations (3.5), (3.6), (3.8), (3.9) follow from (A.3) to (A.7). 
Equations (A.6) describe the so-called "inertial" viscos- 

ity'' and the viscosity caused by the heat flux. These equa- 
tions were first obtained in Ref. 18. Similarly (A.7) describes 
the "inertial" heat flux and the heat flux caused by the vis- 
cosity. In Ref. 18 only the second of these parts of the heat 
flux was taken into account (see Eq. (1.10) of Ref. 18). In the 
problem of magnetosonic waves which we have studied the 
role of both terms on the right-hand side of (A.7) turns out to 
be the same (see the change from (3.6) to (3.22)). 

We note that taking the heat flux into account is impor- 
tant only whena- 1. Whenfig1 Eqs. (A.S),(A.7) turn out to 
be unnecessary and in the right-hand side of Eq. (A.6) it is 
sufficient to retain solely the terms with daaP/dt. 
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