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As a rule, incommensurable structures are observed in crystals which have a center of inversion, 
so that the energy expansion does not contain Lifshitz invariants linear in the derivatives. The 
excitation spectra of such systems are studied over a wide range of temperatures-in the low- 
temperature region, where the dynamics of the magnetic order parameter is of the nature of a 
precession of the magnetic moment and is governed by the Landau-Lifshitz equation, and in the 
neighborhood of the phase transition, where the dynamics includes precessional and oscillatory 
motion. We find the dispersion curves for the excitation of the two basic modulated structures-a 
simple spiral and a longitudinal spin wave-and obtain the temperature dependence of these 
curves. The spectrum calculated in the neighborhood of the phase transition joins with the spin- 
wave spectrum of the low-temperature region. In the other limit-the case of strong anisotropy- 
the precession of the magnetic moment is suppressed, and the dynamics of the magnetic fluctu- 
ations is like the dynamics of the order-parameter fluctuations at a structural transition. In the 
case of weak anisotropy the fluctuation spectrum exhibits gaps of a dynamical nature due to 
precession of the magnetic moment in the periodic field of the magnetic structure. The size of 
these gaps depends on a dimensionless parameter which characterizes the relative share of preces- 
sion and oscillations in the dynamics of the magnetic order parameter. We calculate the response 
of the system in terms of two-time classical Green functions and use the result to obtain the 
complete neutron-scattering pattern in (0, q) space and the temperature evolution of this pattern. 

1. INTRODUCTION 

The overwhelming majority of incommensurable struc- 
tures in crystals-structures of the simple-spiral (SS) or stat- 
ic longitudinal spin wave (LSW) types-result from a modu- 
lation of the initial ferromagnetic or antiferromagnetic 
stucture, whose symmetry does not admit Lifshitz invariants 
which are linear in the derivatives. This is because the sym- 
metry group of the crystals which exhibit incommensurable 
(modulated) structures contains inversion. ' Thus the situa- 
tion in magnetism is contrary to that at structural phase 
transitions to incommensurable phases, where Lifshitz in- 
variants typically do appear in the Ginzburg-Landau func- 
tional.' The physical mechanism for the long-wavelength 
modulation of magnetic structures, as a rule, is competition 
between the positive and negative exchange interactions 
between nearest and next-nearest neighbors in the crystal. 

The structure of the incommensurable magnetic phase 
in the presence of Lifshitz invariants was established by 
D~~alosh insk i i ,~  who showed that in this case the incom- 
mensurable phase can be described by a lattice of solitons 
inserted into the commensurable phase (see also Ref. 4). The 
excitation spectrum of this phase was studied in Refs. 5 and 
6, where it was shown that the periodic potential that go- 
verns the motion of fluctuations of the soliton lattice is a 
single-band potential, and the excitation spectrum of the sys- 
tem is described by a Lam& equation with band index n = 1. 

In this paper we report a study of the excitation spec- 
trum of modulated magnetic structures in systems without 
Lifshitz invariants, where the modulation stems from the 
exchange interaction. We shall start from a phenomenologi- 

cal approach based on an expansion of the energy in powers 
of the spatial derivatives of the order parameter under the 
assumption that the wave vector of the modulation is small 
compared to the reciprocal lattice vectors of the crystal, and 
we shall consider a wide range of temperatures, including 
the low-temperature region, where the order parameter 
changes slowly with temperature, and the immediate vicini- 
ty of the phase transition. 

In the low-temperature region the dynamics of the mag- 
netic order parameter is governed by the Landau-Lifshitz 
equation, which describes the inhomogeneous precession of 
the magnetic moment at a constant modulus of the local 
magnetic-moment vector. As the phase transition is ap- 
proached the modulus softens, and the dynamics of the mag- 
netic order parameter is no longer determined solely by the 
precession but by oscillatory motion as well. Thus the dy- 
namics of the order parameter near T, is richer for magnetic 
systems than for systems with a structural phase transition. 
The contribution of the two modes of motion (precessional 
and oscillatory) at an antiferromagnetic homogeneous reso- 
nance was studied in Refs. 7 and 9, but, as we shall see, the 
superposition of these two modes of motion is manifested 
more clearly for incommensurable magnetic structures, 
since it occurs against the background of a periodic structure 
which leads to a band picture for the fluctuation spec- 
t r~m.~. 'O 

Further, a quantum calculation of the spin-wave spec- 
trum of a simple spiral in the exchange approximation has 
shown" that there are two Goldstone modes: one at q = 0, 
due to the breaking of the symmetry of the ground state with 
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respect to rotations, and a second at q = k (where k is the 
wave vector of the spiral), due to the breaking of the transla- 
tional symmetry. It has been shown 9*10.12 that the presence 
of a Goldstone mode (phason) at q = k is a general property 
of incommensurable structures. From this point of view the 
spin wave in a simple spiral in the neighborhood of q = k is 
also a phason. In discussing the dynamics of the magnetic 
order parameter near T, we shall make wide use of the gen- 
eral ideas of the theory of the order-parameter dynamics at a 
structural phase transition to an incommensurable phase. 
We shall investigate the dispersion curves of the excitation 
spectrum of the two basic incommensurable structures, SS 
and LSW, evaluate the response function, and analyze the 
neutron inelastic scattering cross section and its evolution 
with temperature over a wide region of (a, q) space. 

We shall assume that our structure is a long-wavelength 
modulation of the initial ferromagnetic structure, and we 
shall write the functional for the magnetic energy of the crys- 
tal (taken to be uniaxial for the sake of definiteness) in the 
form 

@= ! dr{rM2+yd,Ma,M+aaz2M~12M+yI(dXMd2M 

Here M is the magnetic-moment density vector, and 
M ,  = M, f iM, are its angular projections. The first five 
terms derive from the exchange, and the last two allow for 
anisotropy, with the number n (equal to four or six) indicat- 
ing the order of the anisotropy in the basal plane. The signs 
of the coefficients of the gradient terms, y < 0, a > 0, and 
y, > 0, correspond to structural inhomogeneity in the z di- 
rection only; in other words, the wave vector of the structure 
should be directed along the z axis: k = (0, 0, k ). 

The equilibrium distribution of the magnetic-moment 
density is determined from the equation S@ /S M = 0 and, 
depending on the sign of the anisotropy w, corresponds to 
two different magnetic structures, described by the spatial 
dependence of the vector M = MO(z): 

A 

where L is the fourth-order differential operator 

and differs from L II by the replacement A - A , where 

The solution of equations (1.2) and (1.3) can be written 
in the form of harmonic series,13 with the amplitudes and 
wave vector found by minimizing functional (1.1). We thus 

w<o: 

MzO=Mi cos kz+ M3 cos 3kz-k.. . , 

A 'la - n ~ , - ' w ,  
.,=(%) , 

L ( (1-n)  k )  - L  ( k )  ' (1.7) 

In these expressions L ( q) is the eigenvalue of the opera- 
A 

tor L, namely 

Thus in the exchange approximation a pure LSWor SS 
structure arises, with a wave vector k = ( - y/2a)112. 
Allowance for anisotropy gives rise to multiple harmonics in 
the spatial distribution of the magnetic moment; here the 
multiple is determined by the order of the anisotropy, and 
the amplitudes are attenuated by a factor - wM" - 2  for 
plane anisotropy and by a factor -uM:  for axial anisotro- 
py.13 

Let us now find the spectrum of linear excitations above 
the vacuum determined by relations (1.6) and (1.7), consider- 
ing separately the low-temperature region and the neighbor- 
hood of the phase transition. 

2. EXCITATION SPECTRUM FAR FROM THE PHASE 
TRANSITION 

At low temperatures, where the modulus of the local 
magnetic moment is nearly constant, the motion of the mo- 
ment is described by the Landau-Lifshitz equation 

and the linearized version of this equation describes spin 
waves. For functional (1.1) it separates into the following 
three equations: 

A h 

whereL andL ,, are the differential operators defined in (1.4). 
Let us investigate the spin wave spectrum for the spiral 

structure specified by relations (1.7). The linearized equa- 
tions for m (M = Mo + m) can be written in the form 

m+'=2ip (M,+Mn-,e-inAz) [ L  (k) -L,, (a , ) ]  m,, (2.4) 
m,=-ipMi[L(d,+ i k )  -L (k ) ]  m,' 
+ipMn-,ei"kz [ L  (a,+ik) - (1 -n)  L ( ( I - n )  k) 

-nL  (k)] m+'S c-c., (2.5) 

where the transverse components of the magnetic moment 
have been subjected to the gauge transformation 
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which eliminates the periodic potential from the fundamen- 
tal harmonic of the spiral magnetic structure in the equa- 
tions for m. If there is no anisotropy, this transformation 
turns Eqs. (2.4) and (2.5) into differential equations with con- 
stant coefficients, giving a frequency spectrum 

Expression (2.7) corresponds precisely to the spin wave spec- 
trum of the simple spiral structure in the quantum theory1' 
and represents a Goldstone branch at momentum q = 0 
[corresponding, by virtue of relation (2.6), to a momentum 
q = + k in the laboratory system of coordinates]. In a pure- 
ly exchange approximation (w = 0) there is a second Gold- 
stone branch at momentum q = + k (i.e., at momentum 
q = 0 in the laboratory system). 

The anisotropy in the basal plane generates the periodic 
potential described by the terms e * lnkz in Eqs. (2.4) and 
(2.5); this potential should lead to discontinuities in spec- 
trum (2.7) at the edges of the magnetic Brillouin zone, ie., at 
momentaqsuch that q, =pnk/2 ( p  =0,  + 1, + 2, . . . ). 
The values of the discontinuities can be found by writing the 
solution for m from Eqs. (2.4) and (2.5) in Bloch form 

and using the two-wave approximation. For example, for 
momenta q, near nk /2 it is sufficient (provided that the an- 
isotropy w, is small) to keep only two terms, Co and C-  ,, in 
the equations for the coefficients C, .  This leads to a gap 

nk 
6021 , = . k , 2 = 4 p 2 ~ , ~ n - , [  L (Z-) -L (k) +w] 

In an analogous way one can show that for successive 
gaps 

but to actually calculate the gaps it would be necessary to 
first find the contribution of the next harmonics to the spiral 
magnetic structure (1.7). 

The appearance of band structure in the spin-wave 
spectrum reflects the general rule for motion in a periodic 
potential. The band character of the spin-wave spectrum in 
the spiral magnetic structure due to a relativistic interaction 
described by a Lifshitz invariant of the form M.(VXM) in a 
crystal lacking a center of inversion was established in Ref. 
14. 

In an LSWstructure the spin-wave spectrum cannot be 
obtained using Eq. (21), since it does not hold for systems in 
which the modulus M 2(r) of the local magnetic moment 
changes rapidly in space-as is just the case for a LSWstruc- 

ture. Nevertheless it is clear that here too the spectrum of 
magnetic excitations should have a band character on ac- 
count of the periodicity of the structure itself. The excitation 
spectrum of the LSW structure near the phase transition is 
obtained below on the basis of a Lagrangian formalism. 

3. EXCITATION SPECTRUM NEAR THE PHASE TRANSITION 
POINT 

The expression for the magnetic energy in (1.1) is the 
Ginzburg-Landau functional if one sets r- T-T:, where T :  
is the "bare" phase transition temperature. The temperature 
dependence of M I  in Eqs. (1.6) and (1.7) is standard: 

For reasons of symmetry, in a uniaxial crystal the two 
components M+ and M- of the magnetic moment trans- 
form according to a two-dimensional irreducible representa- 
tion, while M, transforms according to a one-dimensional 
irreducible representation. The two representations form 
one exchange multiplet,' which is split by the uniaxial an- 
isotropy. Expression (1.1) can be treated as a functional for 
coupled order parameters. This coupling is not manifested in 
equilibrium magnetic structures (which arise when either 
M :  or M $  is nonzero), but it is very important for the dy- 
namics of the order parameter. To write down the dynamical 
equations for the order parameter we construct the Lagran- 
gian L? = T - @, where the kinetic part T for a magnetic 
system must include8 an invariant which is linear in ma : 

Because of this invariant the equation of motion will contain 
a term describing the local precession of the magnetic mo- 
ment about its equilibrium position in the magnetic struc- 
ture. As to the two phenomenological parameters a and p 
which describe the dynamics of the magnetic order param- 
eter, one of them, a, is directly related to the gyromagnetic 
ratio, while the microscopic nature of p is not fully under- 
stood; it is clear only that it describes the inertia associated 
with oscillations of the size of the order parameter. The dy- 
namics of order-parameter fluctuations described by a vec- 
tor m is governed by the equation 

6  d 6 8  6F 
----=- 
am, dt 6m, 6ma (a=+, -, 4, (3.4) 

where F is the dissipative f ~ n c t i o n ' ~ . ' ~  

Let us first study the case w > 0, when a spiral structure 
arises. The equilibrium value M 0  of the order parameter is 
given by relations (1.7) with allowance for (3.1). We shall 
assume that the anisotropy in the basis plane is negligible. 
Lagrange's equations for the fluctuations on top of the struc- 
ture M $  = M,e * '" (the simple spiral) are of the form 
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which is a cubic equation in w2: 

pm,&iaM,e*'kzmz+ (2+4uMi2) 

i 
pm, - -oMi (eik'm--e-ik'm+) + (Z+2uM,Z+w) m,=-vm,. 

2 

They include two types of periodic potentials, which can be - 2 

eliminated by gauge transformation (2.6). The frequencies 
are found from the characteristic equation Zd 

In this equation w * and w, are defined by the relations 

det 

and we have introduced the dimensionless parameter 
E = u 2 / p ~ ,  which characterizes the ratio of the precessional 
motion of the magnetic moment to the oscillatory motion. 

The quantities given in (3.9) and (3.10) are the eigenfre- 
quencies of fluctuations in the limit of large uniaxial anisot- 
ropy w,when the role of the a term in the dynamical equa- 
tions is unimportant. In this case the motion of the 
transverse components of the order parameter m , sepa- 
rates from the motion of the longitudinal component m, and 
the precession of the magnetic moment about the direction 
of its average value, which lies in the basis plane, is reduced 
by a factor aM,w/w. If the anisotropy is small, the branches 
~ 2 ,  and wa can cross, and gaps can appear on account of the 
a term, which intermingles these oscillations. We note that 
the resulting hybridization has a dynamic character. It is 
easily shown that in the vicinity of the crossings 
W: (q) = w;(q) the gap Sw, between the hybridized 
branches is approximately 

pwZ - ( L  ( q  + k )  + 4uM12) -2uM12 --(SOM~ 0 k Zk 4, 
-2uMi2 paZ - ( L  ( q  - k )  + 4uM12) owM, b 

The fluctuation spectrum thus turns out to have a com- 
plex pattern (Fig. 1). It depends on three energy parameters 
(of dimension pa2) ,  a k  4, W, and A ,  and one dimensionless 
parameter, E. For a given material all the parameters are 
fixed and only A - T, - T can vary. One can see by formally 
taking the limit A + cc in equation (3.7) that one of the fre- 
quencies coincides with the spin-wave frequency (2.7), which 
follows from the Landau-Lifshitz equation if one takes 
p = 1/2uM:, while the other two frequencies lie very high 
(they contain a factor ofA ) and are unphysical. On the other 

-awM1 03M1 in a simple spiral in the limit of large uniax- 
ial anisotropy (1) and in the absence of anisotropy (b); q, = q, = 0. 

= 0, (3.7) 

hand, the limit A + cc corresponds to a transition to low 
temperatures, where the modulus of the magnetic moment is 
constant, and under these conditions the Landau-Lifshitz 
equation is valid. The characteristic equation (3.7) thus en- 
sures the joining of the two limiting cases-the case of low 
temperatures, where the dynamics of the magnetic order pa- 
rameter is precessional, and the case of large anisotropy w, 
where the precession of the order parameter is completely 
suppressed and the dynamics is purely oscillatory, as at the 
structural phase transitions studied by Golovko and Levan- 
yuk." 

In the general case the ratio of the precessional motion 
to oscillatory motion is characterized by the parameter E,  

which one can estimate as follows. The two quantities which 
appear in the expression for E are in order of magnitude 
u - kT, /pi and a- l/f~p;, wherep is the gyromagnetic ra- 
tio ( p -p, / f i ) ,  while p, is the Bohr magneton. It follows 
that E- ( pp2kTc ) -  '. Using the experimental value of E de- 
termined from the dispersion curves, one can estimate p .  

Let us now turn to the case w < 0. The equilibrium value 
of the order parameter is determined by relations (1.6). The 
equations of motion for the transverse and longitudinal fluc- 
tuation of the order parameter separate: 

Unlike the spiral case, the periodic potential cannot be eli- 
minated from both equations, since in the equation for the 
longitudinal oscillations the periodic potential is generated 
by the termI3 

where 

and the equation for the transverse components contains two 
types of terms, M :  and M y .  It follows that the band spec- 
trum of the longitudinal excitations has discontinuities at 
momenta q, =pk, while that of the transverse excitations 
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has discontinuities at q, =pk /2 as well (the latter are due to 
the CY terms in the energy). 

Differential equations (3.12) and (3.13) yield the follow- 
ing finite-difference equations for the coefficients in the cckq+~wl 
Bloch function (2.8): 

[ p a 2 - L l l  (g+ lk)  -2Al , ]Clz  + t p C l : 2 p = ~ ,  (3.16) 
P 

[po"~, l  (q+Zk) - - All+w ] C l + + o o  M ~ c , ' ~  
3 

P 0 k/2 k 3k/Z Zk 

FIG. 2. Fluctuation spectrum in the "longitudinal spin wave" structure. 

P 

(3'17) transition from the LSW structure to a structure in which 
The two-wave approximation is then used to find the the perpendicular components are also ordered with the 

form of the spectrum in the vicinity of the momenta q = k, same wave vector. The general picture of the spectrum is 
2k, and k/2 for longitudinal oscillations: shown in Fig. 2. 

po,,2=4ak2 ( q z - k ) 2 + ~ ~ ( q 2 +  q:),  P @ ~ ; = ~ A I I + ~ ~ ~ ~  (92 4. CALCULATION OF THE RESPONSE 
- k )  '+y ,  (q2+qu2) 7 I qz-k IKk,  We shall use the two-time Green's functions for classi- 

(3.18) cal qantities,I7 which is what the components m, of the 
order parameter are in this case: [ ( d i i l q )  ) z ( g , - 2 k ) 2  ]"' p o i , i = ~ I l ( 2 k )  +2All+ Az2+ --- 

G,, ( r t ,  r't') =-8 ( t - t ' )  ( {m, ( r t )  , mB (r't') ) ). (4.1) 

Here ( . . . , . . . j is the Poisson bracket, 0 (t - t ') is the step 
function, and ( . . . ) denotes a statistical average using Ha- - - 

(3.19) miltonian A?': I q,-2k 1 <k, A2= t, - - - (T,,-T)'; I iLk41 
<. . .) = C e - x i h ~ T ( .  . . ) d r  /Ce 

-?e/ksT 
dl ' ,  . , . . 

I .J 
while for transverse oscillations 

2 '12 

where d r  is the volume element in phase space. The Fourier 
.s2AII2 + - E A ~ ~ P ~ ? )  , component of the fluctuation correlator in the variable t - t ' 

3 is expressed in terms of the corresponding Green function oy 
(3.20) means of the spectral relationI7 

P o 2  ( q )  =L11 ( q )  +2/3A11+I W I  7 
(m ,  ( r )  mB ( I")  )u= (kBT/o))  2 Im Gafl ( r ,  r', o )  . (4.2) 

po, ,z=a(qzz-k2)2+1 wI+yL(q,2f  q ; ) ,  (3.21) To actually write down the equation of motion 
poz12=a  (4.'-k2) '+ I W J - ' / ~ A ~ ~ + ~ ~  (q,2+qry ), I qz-kl K k .  

The longitudinal branches in the vicinity of q, = k are 
thus the phase (Goldstone) and amplitude branches of the 
order-parameter fluctuations; these branches are well 
known in the theory of structural phase t rans i t ion~.~ , l~  At 
momenta q, = pk the spectrum exhibits discontinuities with 
a width A, which falls off exponentially with the band index: 

8,- ( T , I l - T ) P -  e x p  (3.22) 

such behavior is also characteristic for the order-parameter 
dynamics at structural phase transitions. Specific to the 
magnetic system is a transverse branch, where the usual dy- 
namics of the two-component order parameter becomes cou- 
pled to the precession of the magnetic moment. This leads to 
adiscontinuity - E  maxtA 11, (A a k  4)'12] in the spectrum at 
q, = k /2. At q, = k the Goldstone branch in the transverse 
spectrum does not exist, on account of the anisotropy. The 
soft mode w: at q = k loses stability when 2/3 A ,, = I w 1, and 
at the corresponding point in temperature there is a phase 

we must use the Hamiltonian formalism, i.e., introduce gen- 
eralized momentap + = SY/Sm + andp, = SY/Sm,. Us- 
ing these relations and (3.3), we express the velocity in terms 
of the momentum 

and construct the Hamiltonian 

x = J dr (pi*-+p-a++p,*,) -8. (4.5) 

For the simple spiral structure (w > 0)  in the harmonic 
approximation A?' is represented by the following quadratic 
form of the generalized coordinates and momenta: 
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and the equations of motion for these functions in matrix 
form are 

, I 

Sm, (Z+2uMC0M-O+ w )  m,). (4.6) (t - +- v - i  - B + )  0 F=-6( t - t r )6  (r-r') -KG, 
P P 

Owing to relation (4.4) the Green function Ga8 is cou- 
pled with the function where all the matrices are 3 x 3; A is a diagonal matrix with 

elements 1, 1, and 1/2 on the diagonal, B has two nonzero 
FaR(rt, r't') =-0(t- t ')  ( { p a ( r t ) ,  ms (r't') j ) ,  (4.7) elements B13 = - M $ and B,, = M O- , and 

I 

The damping in Eqs. (4.8) was introduced16 with the aid 
of Hamilton's equation with the dissipative function (3.5): 

p+=-6%/6m,-6F/6riz+. (4.10) 

Equations (4.8) contain two types of periodic potentials: 
- e + 'jkZ and - e * jkZ, both of which can be eliminated by 
gauge transformation of the matrices G and F: 

G' (rr't) =UC ( z )  G (rr't) U ( z ' )  (4.1 1) 

with a diagonal matrix U (z) having elements eikz , e - jk, and 
1 on the diagonal. For the Fourier transform of the matrix G ' 
we obtain the explicit expression 

where the 3 X 3 matrix M (q) is the same as that in Eq. (3.7) 
except that p w 2  must be replaced by p w 2  + i v o  in the diag- 
onal terms. The function G of interest differs from G ' by a 
shift of the momenta by the wave vector of the structure. 
This relationship is most simply expressed by the relation 

in which a, P = + , - , z with the index z in the arguments 
of the function G set identically to zero. 

Since it is extremely awkward to invert the 3 X 3 matrix, 
we shall give the explicit form for the limiting case of large 
anisotropy w, when the a terms in (3.11) can be neglected. In 
this case the Green function matrix can be represented as 
two diagonal blocks: 

and the frequencies w * and wz are given by (3.9). 
In the case of the LSW structure the equations for the 

matrix of Green functions (4.1) and (4.7) are also of form 
(4.8), only now the 3 X 3 matricesp and K are diagonal. This 
makes the matrix G diagonal, with diagonal elements obey- 
ing the following equations [cf. (3.12) and (3.13)] 

( C C o 2 + i v o + 2 a ~ M , 0 - ~ l I + ~ - 2 ~ M ~ 2 )  G+-=6 (r-r') , (4.17) 

2 (pa2+  i v ~ - ~ ~ ~ - - G u M , ~ ~ )  G,,=6 (r-r') . (4.18) 

(The equation for G - + is obtained from (4.17) by changing 
the sign of the term containing a). 

Recognizing that the potential - M F  is periodic, we 
transform to the Fourier representation for the function G,, : 

X ), exp{i (q+2pk) r-i (q'+2p'k)r1) G:,, (q, q'). (4.19) 

For the function G + - one must take into account that the 
periodicity is given by the vector k and not 2k, and we shall 
denote the corresponding Fourier component by Gip,  (q,ql). 

With allowance for (3.14) the differential equation for 
G, is converted to a finite-difference equation in the band 
indices p and p': 

and tion 

The solution of this equation can be found for separate re- 
gions of (w, q) space by using a special perturbation theory. 
Let us write Eq. (4.20) in the form of a matrix Dyson equa- 
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where Vis defined as the off-diagonal part ofthe matrix G -' 
and has elements Vip = ti -, (I #p), V,, = 0, while G o  is de- 
fined as the diagonal matrix G :p. = G ; a,,. . 

Let w and q be such that G;-' is much smaller than 
G O -  1 with I #p, i.e., we are located near a pole of the func- 
tion G: for fixedp. Then, regrouping terms in (4.21), we can 
write any matrix element of the function G in the form 

G I ~ = G ~ ~ + J I , , G ~ ~ J ~ , ~ ,  (4.22) 

where 

(the prime means that the term with m = p is to be omitted 
from the summation). 

From here it is clear that for small Vwe have perturba- 
tion series for both the corrections Tp to the pole of the 
Green function of J,, (this correction determines the residue 
at the pole) and for the nonpolar contribution GI, to the 
matrix element of the Green function. It follows from what 
we have said that 

Of course, this perturbation theory has meaning only when 
the damping is sufficiently small that the imaginary part of 
the pole G: is much less than the real part. 

Applying these relations to Eq. (4.20), we can write, in 
the limit Y -+ 0, a relation which is suitable over all of (w, q) 
space except on the boundary of the Brillouin zone: 

where the frequency w, corresponds to the single-wave ap- 
proximation to Eq. (3.16). 

Near the zone boundary q, = pk the two quantities G ;  
and G;, can simultaneously have nearby poles. Then they 
must be joined into a single matrix block; formulas (4.22)- 
(4.26) remain valid in this case, only now the quantities G: in 
them are matrices. This corresponds to the two-wave ap- 
proximation. For reasons of space, we shall not write out the 

explicit form of the Green functions near the zone boundary. 

5. INELASTIC NEUTRON SCATTERING 

Let us briefly discuss the possibility of studying the dy- 
namics of the fluctuations of the magnetic order parameter 
by the methods of neutron spectroscopy. The cross section 
for scattering with momentum transfer x and energy trans- 
fer w in the classical limit (w<kB T) is given by" 

--- go kBT J dq6 (q-x) 
d x d o  o 

where e is the unit scattering vector. 
Let us first consider the case of a LSW in the limit of 

weak damping. Using expression (4.27) for the matrix ele- 
ments of the Green fuctions in the single-wave approxima- 
tion, we find a formula for the cross section in regions of (w,q) 
space that are far from the Brillouin zone boundary: 

-k,r 5 d q l j  d p Z ( ( l + e 2 )  J: 6 ( - x + q + l t )  d x d o  o2 ' ,P 

Here the indexp is the number of the energy branch and I is 
the number of the Brillouin zone: the coefficients J deter- 
mine the scattering intensity on the pth branch with 
allowance for Umklapp processes. The temperature depen- 
dence on the factor J& is determined by relation (4.28) for 
longitudinal excitations, while for transverse excitations 
J b  -(Tell - T ) ~ ~ - ~ ~ ' ~  . 

The corresponding cross section for modes with mo- 
menta q close to the zone edges can be obtained by using the 
Green's function of the two-wave approximation. For exam- 
ple, for scattering by transverse modes near the Brillouin 
zone boundary ( q, = k /2 - 6) one should take into account 
the hybridization of the energy branches with indicesp = 0 
and p = - 1; this hybridization gives rise to a gap in the 
spectrum [see (3.20)], and we get 

where the index Y = 1,2 specifies one of the two hybridized 
branches (3.20). Experimental observation of this gap would 
yield the value of the parameter E. 

In the case of the simple spiral let us first consider the 
limit of strong uniaxial anisotropy (wsak  4, A ), when the 
Green's function of the transverse and longitudinal compo- 
nents separate. Using their explicit form (4.14) and (4.15) in 
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Eq. ( 5 . 1 )  and neglecting damping, we write the cross section 
for scattering by low-lying transverse modes as 

where the frequencies w + (q) are determined by expressions 
(3.9), and the intensities of the spectral lines are determined 
by the factor 

A,=1*4akq,3/(A2+16aZk2q,")'". 

For T + T, one of these factors A + (q)  is close to two, while 
the other is small-of order A - (T,  - T ) 2 .  

It is important to elucidate the role of damping for the 
lowest-frequency modes, primarily for the Goldstone mode. 
As is clear from ( 5 . 1 )  and (4.14), damping is manifested in 
scattering at x = + k.  In the vicinity of this x and at small 
pm2gA the general expression ( 5 . 1 )  reduces to the familiar 
spectral function for a damped o~cillator '~: 

6=- 1 x r k  1 .  ( 5 . 5 )  

In the overdamped-oscillator regime (v2 > 8ak ,S2p) the be- 
havior of the Goldstone mode is relaxational. If v2 ZpA then 
the amplitude branch w+(q)  will also be overdamped. We 
note that an analogous expression could have been obtained 
for the scattering by the Goldstone branch w, in an LSW 
structure with an angular factor ( 1  - e:). 

Let us now consider the more interesting case of small 
anisotropy: w 5 a k  4. Far from the points of intersection of 
the bare frequencies w; and w: the cross section ( 5 . 1 )  can be 
evaluated using formula (4.27), and the result can be put in a 
form analogous to (5.2): 

d20 --- kBT I d q [ i -  (--l)'r,']l:,6 (-x-tq+lk) 
d x d o  oZ ,p 

where the summation is over the three indices I,p = 1 ,  - 1 ,  
0 which enumerate the branches of the spectrum. The quan- 
tities J2,p evaluated with formula (4.23) depend on the tem- 
perature through A: 

where Joo = JI,, = J -  ,, - , = 1 .  
Expressions (5.7) show that each branch of the spec- 

trum at fixed x is manifested three times in the scattering- 
at momenta q, q + k, and q - k, with intensities of order 1, 
T, - T ,  and (Tc - T ) ,  for the transverse oscillations and of 
order 1 and Tc - T for the longitudinal oscillations. The 
unusual linear temperature dependence is due to the a terms. 
Their importance as is seen from (5.7), begins to grow strong- 
ly at q, = + k,, but then formulas (5.7) are no longer valid 
and one must use the two-wave approximation. 

The hybridization of the branches w: and w 2  in t h e  
vicinity of q, = k /2 gives rise to a dynamic gap (3.1 1 ) ;  here 
the cross section for scattering by the two hybridized 
branches does not contain the small factor T, - T.  By ob- 
serving the gap and comparing with formula (3.11), one 
could determine the parameter E.  Thus the parameter E ,  a 
measure of the relative contribution of the precessional mo- 
tion of the order parameter in comparison to the oscillatory 
motion, can be determined from the corresponding splitting 
of the branches at the momentum k ,  in the two cases-LSW 
and SS. Of course, this is possible only under the condition 
that the damping is small compared to the widths of these 
gaps, which vary with temperature in accordance with 
So2 cc (T,  - T)",. The gaps at k, 3k/2, and 2k, which are 
due to the periodic potential of the structure, will be of high- 
er orders (T,  - T ) P  and will therefore be smeared out at suf- 
ficiently large indicesp even if the first gap is resolved. 

We have not taken the crystal lattice into account here, 
since we have assumed that kgb ,  where b is an arbitrary 
vector of the reciprocal lattice of the crystal. The lattice can 
be incorporated in all the formulas for the scattering cross 
section by replacing x with x + b. 

6. CONCLUSION 

We have considered the dynamics of the order-param- 
eter fluctuations for the particular case of magnetic struc- 
tures which are modulations of the simple ferromagnetic 
structure, where the order parameter is the vector represent- 
ing the spontaneous magnetic moment. In more complicated 
cases, when the chemical cell of the crystal contains several 
atoms or when it is an antiferromagnetic structure that is 
modulated, one must take as the order parameter the mixing 
coefficients of the basis functions of the irreducible represen- 
tation of the symmetry group. It can be shown that in the 
majority of known crystals, magnetic phase transitions to 
incommensurable structures are described by Ginzburg- 
Landau functionals of the following forms, with one-compo- 
nent 5 or two-component (77, l )  order parameters: 

0 ,  = dz {riS2+uS4+y ( a z t ) 2 + a ( a , ' S ) z ) ,  (6.1) 

The functionals Qi,  and Qi2 correspond to the functional (3.1) 
of the present paper in the limit of strong anisotropy, which 
splits the exchange multiplet into a singlet and doublet. 
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However in a certain respect @, and @, are more general 
than functional (3. l), since the components of the order pa- 
rameter can describe structures which are microscopically 
more complex. 

Since expressions (6.1) and (6.2) together [i.e., with 
allowance for interaction terms of the type g2(77, C)] are 
mathematically equivalent to (3. I), the physical conclusions 
reached from them regarding the dynamics of the order pa- 
rameter are extremely general. In particular, in the presence 
of strong anisotropy (very different r, and r,) the o invariant 
cannot appear in the kinetic part of the Lagrangian, i.e., the 
precession of the magnetic moment of the order parameter 
hill be suppressed, and the dynamics of the magnetic order 
parameter will be similar to that of the order parameter at a 
structural phase transition. In the presence of a strong ex- 
change interaction (Irl - r21<rl, r,) the dynamics of the 
magnetic order parameter is governed simultaneously by the 
oscillatory and precessional motion. The relative contribu- 
tion of these motions can be determined experimentally, as 
we have shown above, with the aid of neutron spectroscopy. 
Here one could use different crystals exhibiting SS and LSW 
structures.' Crystals of the spinel type (HgCr,S,, ZnCr,Se,, 
Eu, TbMn,) are examples of crystals with weak anisotropy, 
and rare earth metals (Dy, Tb, Ho, Er) are examples of crys- 
tals with strong anisotropy. 
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