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The stability of inhomogeneous distributions of the order parameter in a superconductor during 
optical pumping and tunnel injection is analyzed. Over a broad range ofthe pump power level, for 
the superconductor-normal-metal boundary conditions which are of interest for superconduc- 
tors, there exist stable, steady-state, inhomogeneous distributions of the order parameter. This 
conclusion generalizes and extends the previous understanding of the stability, and it explains the 
experimentally observed onset of a resistance in a steady state. 

INTRODUCTION 

Inhomogeneous states in which the order parameter 
varies along the coordinates are known to arise in nonequi- 
librium superconductors.' The stability of such inhomogen- 
eous states in an important question and one which has not 
been completely Analogous problems arise in 
plasma theory,4 in the theory of semiconductors with a nega- 
tive differential conductivity,536 and in other areas. The sta- 
bility was studied in Refs. 3 and 5-7, by the approach pro- 
posed by Zel'dovich and Barenblatt.8 According to Refs. 3, 
6, and 7, only monotonic solutions are stable. Bass et al.' 
assert that the only stable solution is a singular layer solution 
which separates phases with identical free energies and 
which occurs at a certain pump power S = So. 

In the present paper we show that the results of Refs. 3 
and 5-7 do not apply to certain inhomogeneous solutions 
(which have a limiting point, as discussed below). In particu- 
lar, we show that for the boundary conditions of primary 
interest in the case of superconductors, i.e., the boundary 
conditions corresponding to the interface between a super- 
conductor and a normal metal, there may be stable inhomo- 
geneous solutions over a broad range of the pump power. 

This result yields an explanation for the experimentally 
observed9-" and previously unexplained onset of an inter- 

pump, with a temperature T = 0 in the homogeneous and 
equilibrium case. 

In the absence of a pump, the nonequilibrium param- 
eter is e, = 0, and Eq. (1) becomes the Ginzburg-Landau 
equation (as Tapproaches T, , the critical temperature). The 
maximum value, r j ~  = 1, is reached at T = 0 in thin films.' 
For simplicity we consider the one-dimensional case, also 
assuming go ) I, where I is the diffusion length of the quasi- 
particles. Equations (1) and (2) are to be supplemented with 
the boundary conditions 

We know12,13 that we have b = 0 for a semiconductor-insu- 
lator interface b = 0 for the boundary conditions at an inter- 
face between a superconductor and a normal metal; in the 
latter case, b depends on the purity of the superconductor 
and on the reflection from the interface,12 so that its value 
varies over a broad range: O(b < co . 

To simplify the calculations we introduce some new 
variables: 

mediate resistance in nonequilibrium superconductors in a In a steady state, Eq. (1) becomes 
steady state. 
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From Ref. 1 we have the following equation for the or- 

which is the equation of motion of a "particle" with a "coor- 
der parameter A(x, t ) of a superconductor subjected to opti- 
cal pumping or tunneling injection (wide sources): 

dinate" 5 in the "field" n. Figure 1 shows the "energy" 
and the phase traiectories of Eq. (5). 
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a t  axz a A '  EO 2. INHOMOGENEOUS STEADY-STATE SOLUTIONS 

where go is the coherence length at the point of the phase 
transition with A = 0 and T = 0, a is the numerical factor of 
order unity, the parameter e, is a measure of the deviation of 
the system from equilibrium, S is the dimensionless extent to 
which the power exceeds the critical power [i.e., 
8 - ( p- /?= )/& 1, T* is the relaxation time of the order pa- 
rameter, - U is the energy of the nonequilibrium supercon- 
ductor, and A, is the order parameter in the absence of a 

A first integral of (5) is given by the equation 

where z is a constant, and the bi (i = 1,2,3,4) are the roots - - 
of the equation z - U (A,) = 0.  

Analysis of the trajectories shows that the following 
spatially inhomogeneous solutions h(2 are possible: 1) solu- 
tions which oscillate from h2 to x,, 2) solitary layers with - 
A#O or h = 0 (soliton solutions), and 3) monotonic solu- 
tions. 
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FIG. 1. The ''energy" U>nd_the phase trajectories 
of Eq. (5). a--6 > 6,; b--6 = 6,; c - 4  < 6,. 

The solutions of Eq. (6) are expressed in terms of elliptic 
functions. Here we will write out only the solution which 
describe "limiting" trajectories 1, 2, 3, 4 (Fig. 1) and which 
can be expressed in terms of elementary functions: 

a) trajectory 2 (a layer solution), 

where 
(A,-&) (&-A,) =16A,," exp {-6o"E)K1, L=L% (8) 

b) trajectories 1,4. 

where 
- - 

~ ( 6 ,  Z)=sh { (d3-2@'"(5+~~)  1, 6<60 ( trajectory 41, 
- - 

~ ( 6 ,  5 )  =ch { (&-2K)'"(zf C3) ), 6>& ( trajectory I ) ,  

c) trajectory 3, 
- - 

n ( 5 )  = 3 6 [ 1 + ( l - ~ / ~ a 6 ) ' ~  ch ( 8 2 ( z + ~ , ) )  I-', O<6<ti0, (1 1) 
where 

A , - ~ ~ = 2 4 ~ [ 1 - ~ / ~ a ~ ] - ' "  exp {-6'"L)el. (12) 

On the right side of (7)-(lo), 

is the limiting value - - of E3, which corresponds to a maximum 
of - the energy U(A) (the limiting point for trajectory 3 is 
A = O), and the Ci (i = 1, 2, 3, 4) are constants to be deter- 
mined from the boundary conditions. For these trajectories, 
the distance along3 from h2 to x3 (the - - half-period) is & 1, 
and the roots of the equation - U (A) = 0 coalesce at the 
accuracy specified in (8), (lo), and (12). 

3. STABILITY CONDITION FOR HOMOGENEOUS 
DISTRIBUTIONS 

To analyze the stability we use Eq. (1). Setting 

A(?, t)=A(Z)+q(Z) exp ( -yt ) ,  q(?)c<A(Z), 

where x(2) is a solution of Eq. (5 ) ,  we find from (1) an equa- 
tion from which we can find y: 

Since the boundary conditions on ~ ( 2 )  are homogeneous, 
they are the same as the boundary conditions on x(2). Stabil- 
ity of the steady-state solutions A(x) with respect to spatially 
inhomogeneous perturbations results when we have 720  for 
all 7. If we have 7 < 0 for at least one 7, the solution Z(2) is 
unstable. 

The stability problem thus reduces to the solution of the 
Sturm-Liouville problem (14) with boundary conditions (3) 
for the eigenfunctions ~ ( 3 )  and the eigenvalue 2 the steady- 
state solution h(3) determines the "potential energy" 

The stability analysis in Refs. 3 and 5-7 was based on a 
representation of the general solution of (14) in the case 
7 = 0 in the form 

- 
2 

Using an oscillation theorem, Bass et showed that all the 
solutions E(3) are unstable (except for the singular layer so- 
lution). 

For the case of limiting trajectories 1,3, and 4, however, 
expression (15) cannot be used for a stability analysis, since 
the second term diverges at the limiting point = h, . Using 
(6) we find the following result as h -+ h, : 

- - 
E A 

dii dl I ar 
- J (--) = - {C-U(A)Y~S {cig(A,)h dz df '  2  

We must therefore set z2 = 0. The solution which remains, 
however, does not satisfy the boundary conditions (3). The 
question of the stability of such solutions therefore remains 
open. 

We now turn to an approximate analytic determination 
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and a numerical determination of the decay rate 7 for these 
solutions; we show that some of these solutions are stable. 

4. STABILITY OF SOLUTIONS DESCRIBING TRAJECTORIES 
WITH A LIMITING POINT 

Trajectory 4. We first consider the case of most interest, 
trajectory 4, described by expression (9) (8 < 8,). We examine 
the stability of the half-period of this trajectory for the 
boundary conditions 

We write Eq. (14) in the form 

wherep(X) = (7  - V(F)) is an analog of the classical mo- 
mentum. In the limit 8 + So, the conditions of the semiclas- 
sical approximation hold: 

Using (lo), we can write this condition more rigorously as 

In the semiclassical approximation, the values of y are 
found from the transcendental e q ~ a t i o n ' ~ , ' ~  

ctg  o=-'/,exp {-2S), (19) 
where 

and F, and F2 are the roots of the equationp(F) = 0. Substi- 
tuting h(F) into (20), and expanding w and S in the small 
parameterx = 1 - 8/8, (Ref. 16), we find from (19) 

We see that both values of ? are positive; i.e., this solution is 
stable. Numerical calculations show that this result also 
holds for values of 8 which are not close to 8,. It should be 
noted that in the case we have the following estimate for 
k i n  : - 

jjmin=d,-2'6>0. (22) 

We now examine the total period of trajectory 4, which is 
described by (9) (with x -+ - 1x1) and the boundary condi- 
tions x( f z /2) = 0. 

In this case the potential V(F) in the stability equation 
has two depressions separated by a large distance -I;. Ex- 
panding in the small parameter exp ( - 8;I2E ), we can easi- 
ly show that the level splitting is weak and that the lower 
level, yo, shifts downward by a small quantity of the same 
order, -exp( - 8A/2Z j ( 1, as 8 -+ 8,; using condition (1 8), 
we see that this shift does not change the sign of yo. The 
solution which described the total period of trajectory 4 is 
therefore also stable. 

The situation is different for trajectories which have 3/2 
of a period or more. In such cases, the potential barriers in 
V (2) are low, and the level shift is correspondingly significant 
and leads to negative values of y. Numerical calculations 
confirm these arguments. 

Trajectory 3. For 0 < 8 < 8, we have yet another limiting 
trajectory: trajectory 3, described by (11). Let us find the 
decay rate y for the half-period of this trajectory and for the 
boundary conditions 

Substituting (1 1) into (14) and into the boundary conditions, 
we find 

where 

and 

Equation (23) is a Fuchs equationL7 with four singularities 
(poles), at 0, 1, l , ,  and a. 

In the limit 8 + 0 [condition (12) holds automatically in 
this case: (24/a)8exp ( - 8'I2z 1 ( 11, the poles 6, and 
6 = cc coalesce, and Eq. (23) becomes the equation for Le- 
gendre polynomials [after the change of variable 
t = (1 - 6)"2]. Expanding in the small parameter g; ' , and 
retaining terms up to second order, we find 

Since yo is negative, the solution h(x) is unstable. 
In the other limiting case, 8 -So, in which we have, 

according to (l2), 

the poles 6, and g = 1 merge, since 6, + 1. With 8 = 6 ,  
using a change of variables (gc = 1 - 26), we find from (23) - 
the equation for Legendre polynomials, yo = 0, and y, = 1/ 
6a, Using the semiclassical approximation, as in the preced- 
ing case, we find the corrections to ?from the transcendental 
equation 

c t g  o='/, exp {-2S1, (27) 

where expressions (20) hold for w and S. The integrals w and 
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S can be written in terms of elliptic integrals.16 Expanding 
them in the parameter x = 1 - S/So, we find 

It follows from (28)  that we have Po < 0 ,  and the solution z ( Z )  
describing the half-period of trajectory 3 is unstable. We can 
go through the same analysis for a half-period with the 
boundary conditions 

we find that h(3) is also unstable. This conclusion holds for 
the period of trajectory 3 and also for, longer periods; for a 
period with the boundary conditions x( + / 2 )  = 0 the sta- 
bility problem - can be solved exactly: 7, = d x / d Z  and 
7,  =o, yo<o. 

Trajectory I .  We now seek y for the half-period of tra- 
jectory 1, described by ( 9 )  (8, < 8 < 1/4a) ,  and for the bound- 
ary conditions 

Changing variables in (14)  by means of 

where 

we find Eq. (23) to within the formal substitution 
- - 
6-6,-26, dz-+A3-d-u2; (30)  

here 

The analysis of trajectory 3 above remains completely appli- 
cable here; using (30) ,  we find 

where 8 -t s j .  Condition (10) holds automatically: 

As 3 -+ 8, we have 
~O=-O.58xi+o (xi), 

More rigorously, we find from (10) 

As can be seen from (32)  and (33) ,  the solution describing the 
half-period of trajectory 1 is unstable. This result also ap- 
plies to the complete period and more. A unique solution for 
this trajectory, which is stable, occurs only when it repre- 
sents a part of the trajectory near the limiting point K3 [see 
estimate (34)  below]. 

For simplicity, expressions (21) ,  (28) ,  and (33)  have been 
written for the particular value a = 1.9. 

Layer solution (trajectory 2.) For the layer solution de- 
scribed by (7), the stability problem can be solved exactly. 
Equation (14)  can be reduced to the Legendre equation by 
the change of variables f, = 3 a d ( ~ )  and yo = 0, 7,  = 1/6a" 
As was expected in accordance with the analysis of Refs. 3 - 
and 5-7, we find ymin = 0. 

The results found above are shown in Fig. 2. Also 
shown here are the values of 7 found by the numerical calcu- 
lations. We see from this figure that the results of the nu- 
merical and analytic calculations agree completely. 

For a numerical solution of the Sturm-Liouville prob- 
lem we used the program of Ref. (18), modified for the 
boundary conditions. We studied the stability of all of the 
"limiting" solutions with various boundary conditions (with 
various values of & ), both analytically and numerically. For 
S <So, the stable solutions are the monotonic solutions 
which describe limiting trajectory 4 and the soliton solutions 
of the same trajectory with the limiting point A, at its center. 
The numerical calculations for S > So for trajectory 1 lead to 
the same results if the solution describes this trajectory near - 
A = z, and, correspondingly, if the values of 5 are in a small 
interval 0<5 * <Jcr (8), where z,, (8,) = 8;' and Jcr (si) = 0.  
This result is confirmed by the analytic calculations. If 

(6,-d (.?f))/63<1 (6k<6e'b), 
then 

6,, (6) = (h3-2@ 

and - 
~min=6,,~ (6) -max (6,'). 

FIG. 2. The damping rate 7 versus the relative source fo ra  = 1.9. 
1--Half-period of trajectory 1; 2-half-period of trajectory 3; 3-half- 
period of trajectory 4. Solid lines) Analytic calculations; dashed lines) 
numerical calculations. 

87 Sov. Phys. JETP 61 (I), January 1985 V. F. Elesin and V. A. Kashurnikov 87 



These stable solutions apparently correspond to a local mini- 
mum of the energy of the system [see (46) below]. 

5. STABLE INHOMOGENEOUS STEADY-STATE 
DISTRIBUTIONS 

Here the explicit expression for the stable, inhomogen- 
eous, steady-state distributions A(x), where x-x/{, and 
S <a i ,  are 

where 

The constants 8, (i = 1,2,3) are determined from the bound- 
ary conditions. Solutions (35) are shown (in dimensionless 
form, divided by p) in Fig. 3 for various values of the con- 
stants b in the boundary conditions and for various values of 
the pump power. 

The parameter p is a measure of the deviation of the 
system from equilibrium.' In the equilibrium case (with 
p = 0,6 < 0), expression (35) becomes the Ginzburg-Landau 
solution ( T  -+ Tc ) 

for which the damping factor yo is positive and attains a 
maximum. Here{,ISI - ' I 2  = l ( T )  is the coherence length. In 
this case the stability problem can be solved analytically for 

FIG. 3. Stable, nonequilibrium, inhomogeneous distributions of the order 
Earameter in the-one-dimen5onal case near t he  phase transition for 
L = 3 0 , 5 = ~ q , A = A / q , ( ~ A / d j Z ( * ~ ~ ,  = f bhl .t,, .a:_bz2.6. 1- 
8 0.958,, 2--0,86,, 3--0.$6,, 4--0.46,, 5--0.26,, -b1.076, (b = 0.09). 
b: 6 = 0.76,. 1-6 > 1; 2-b = 2.6; 3-b = 0.5; 4--b = 0. 

FIG. 4. Stable distributions of the order parameter versus the parameter 
q ,  a measure of the deviation from equilibrium, in the limit T--r T, 
(q-B). a-Homogeneous case (b, = 0); b--inhomogeneous distribu- 
tions (b, > 1). 8, = 0.205,8, = 0.1, 8, = 0 (equilibrium). 

arbitrary values of the constants 8, in (38) [for any boundary 
conditions of the type in (3)], and estimate (22) applies. 

Let us construct the p dependence of A(x) in the limit 
T -+ T, , using the following results for thin films': 

76 (3) 60' 0.661 ( ~ = b l ; ~ ,  a=--= 
4n2TC2 

T-T, 
fj= - 

Tc -t 2bf2, fi-1. 
The results are shown in Fig. 4 (T/Tc = 0.6, ci = I ) .  Also 
shown in this figure, for clarity, is the P dependence of A in 
the homogeneous case (described by the equation dU/  
dA = 0). 

As can be seen from Figs. 3 and 4, the typical distance 
over which the order parameter changes, I,, increases sub- 
stantially as the phase transition is approached (6 -t So). 
Whereas with /3 = 0 and at equilibrium (p = 0) we have 
I, = l ( T ) ,  in the limitP -t Do (S -+ So) and at b ) 1 we have 

For T/T, = 0.6, a = 0.66, and P z p  = 0.205 (6/Soz0.7), 
for example, we have I, z 5<(T) (see Figs. 4; P = B,). 

The change in the order parameter thus occurs over 
distances much greater than the coherence length. 

We turn now to the resistance component which arises 
from the inhomogeneity of the order parameter in the steady 
state. 

We consider a superconducting thin film under non- 
equilibrium conditions, through which a small direct cur- 
rent j is flowing. Taking the approach of Ref. 19, we find an 
equation for the electrostatic potential @, taking into ac- 
count the fact that the order parameter varies slowly over the 
coherence lengtho: 

d2D A (x) x 
&L=- Dl x=-* 

dx2 Ag Eo 
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where D is the quasiparticle diffusion coefficient, A is the 
constant of thezlectron-phonon interaction, w, is the De- 
bye frequency, A, = A3(A,/0.71) [see (2)], and E(T) is the en- 
ergy scale over which the quasiparticle distribution function 
varies at the point of the phase transition (A = 0): 

Equation (41) is the same as the corresponding equation 
in Ref. 19 in the limit T -+ T,. To solve (41), we substitute 
A(x) from (35) in the limit 6 -+ 6, in the form (6 <So, b ) 1) 

To simplify the calculations below, we set I, = S; "' . 
Using E = - d@/dx, we find, to lowest order in 1 - 6/ 

80, 
L 1 1, x + y << l,, 

E (x) = E N  '5 (44) 
L 

where 

Here a, is the conductivity in the normal state. The contri- 
bution of the superconducting film to the resistance is thus a 
linear function of I ,  : 

where L is the length of the film. 
The deviation from equilibrium thus leads to an in- 

crease in the resistance in the steady state. In principle, there 
could be a continuous transition in terms of the resistance to 
the normal state. This result apparently explains the resis- 
tance observed in the steady state in Refs. 9-1 1. 

6. DISCUSSION OF RESULTS 

The stability of inhomogenous distributions of the or- 
der parameter, studied above, is confirmed by energy consid- 
erations. Specifically, if we use the expression 

L / 2  

for the functional (a variation of this expression yields an 
equation for A), we can show that stable distributions (35) 
achieve an absolute minimum of the functional in the case 
S <So or a local minimum in the case S > 6, (we recall that if 
S >  6, there is an absolute minimum, which is reached at 
A = 0). 

The quantity I is the difference between the free ener- 
gies of the inhomogeneous superconducting state and the 
normal state (cf. the homogeneous case2' and the equilibri- 
um 

How does the behavior of the superconducting film de- 
pend on the boundary conditions? We recall that we are 

dealing with the static case, i.e., that in which the time scale 
(r8 ) for a change in the pump power is much longer than the 
relaxation time (rA ) of the order parameter. 

If the film is homogeneous, i.e., if there is no nucleating 
region of a normal phase a t 8  > 0, then we observe the follow- 
ing: When the pump is turned on slowly, a stable, inhomo- 
geneous state (35) exists up to 6 = So. Under the condition 
maxi b * ] >b,, (So), there is transition to the normal state at 
S = 6,. If, on the other hand, we have O<b, < b,, (S,), then 
at S > 6, we again have a distribution as in (35) (in the metas- 
table state now), and now the transition to the normal state 
occurs at S = S,, (So < S,, gSi ), which is the root of the equa- 
tion max[ b + ) = b,, (a,,). In the latter case we observe hys- - 

teresis: As the pump power is lowered, the system remains at 
the absolute minimum of the energy (A = 0) down to S = So 
(which is lower than S,, ), and at this point the inverse transi- 
tion to the superconducting state (35) occurs. - , , 

It there is a nucleating region of the normal phase, a 
time-varying homogeneous state' will arise in which the lay- 
er solution separates super-conducting and normal phases. 
At 6 >So, the interface moves at a velocity proportional to 
S - So, and the film goes into the normal state. At S <So, the 
interface moves toward the normal phase (increasing the size 
of the super-conducting region), and the final state of the 
system is that described by inhomogeneous distribution (35). 
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