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Phase modulation of rf oscillations in a Josephson interferometer with hysteresis is described 
theoretically outside the plateau in the voltage-current characteristic. A generalized phenomeno- 
logical model is developed for the magnetic flux quantum jumps in interferometers which treats 
the phase change produced by external perturbations and fluctuations. The forced oscillations 
become unstable when the coupling between the interferometer loop and the pumping channel 
reaches a certain value. The application of this instability to maximizing the sensitivity of quan- 
tum rf interferometers (so that the sensitivity is limited only by the constraints imposed by fluctu- 
ations in the Josephson contact) is discussed. 

Superconducting quantum interferometers (or Squids) 
are superconducting loops with one or more Josephson junc- 
tions. They are employed in experimental physics as sensi- 
tive recording elements for measuring weak currents, vol- 
tages, electromagnetic fields and gradients, etc.' Because 
they permit relatively easy measurements of unprecedented 
sensitivity, Squids have found use in fundamental physical 
experiments concerned with searching for magnetic mono- 
poles,2 measuring the electric dipole moment of the elec- 
t r ~ n , ~  designing antennas to detect gravitational radi- 
a t i ~ n , ~ , ~  verifying the equivalence pr in~ip le ,~  building a 
"relativistic gyroscope,'" etc. 

Most of the experiments done so far (including the ones 
described above) employ single-contact rf Squids with hys- 
teresis, which are the type most commonly found in the labo- 
ratory (however, other types such as anhysteretic Squids and 
constant-current Squids are available8). The single-Joseph- 
son-junction interferometer is controlled by an oscillating 
circuit which contains a pump generator. When the ampli- 
tude of the forced oscillations exceeds a critical value, jumps 
between neighboring quantum states occur in the interfer- 
ometer and the magnetic flux changes discontinuously. The 
hysteresis losses associated with the magnetic flux reversal 
decrease the rate of forced oscillation buildup as the pump 
increases, so that the rf voltage-current (V-I ) characteristic 
of the Squid contains a plateau; two-quantum jumps in the 
magnetic field give rise to a second plateau, etc. The operat- 
ing point of the Squid lies on the plateaus; here the external 
signal (a magnetic flux in the interferometer ring which var- 
ies slowly compared to the pumping signal) modulates the 
amplitude of the forced oscillations of the circuit by an 
amount which can be measured (if there is a mismatch, the 
phase is also modulated). The physics of the processes occur- 
ring in this conventional type of hysteresis Squid have been 
studied in detaiL8 In principle, only the thermal noise and 
the thermal fluctuations of the normal component of the 
current across the contact resistance should limit the peak 
sensitivity of this and other types of Squids. In practice, how- 
ever, the sensitivity is determined by the noise in the coupled 
electronic circuits and by the difficulties in matching them to 
the interfer~meter.~ 

A new type of hysteresic Squid behavior was recently 
discovered experimentally in Ref. 10-the phase of the 
forced oscillations is modulated by an amount proportional 
to the external signal when the pump amplitude lies between 
adjacent plateaus. The sensitivity measured in Ref. 10 under 
these conditions was somewhat higher than for the same 
Squid with conventional amplitude modulation on a plateau. 
The useful signal also increased as the coupling between the 
interferometer and the circuit increased. 

The purpose of the present work is to find a theoretical 
explanation for the observed behavior. In order to do this, we 
generalized the phenomenological magnetic flux jump mod- 
el developed previously in Ref. 4, in which the jump prob- 
ability is a function of the measurable external flux (field), by 
allowing for variations in the time at which the jumps occur. 
This generalization enabled us to completely describe the 
Squid behavior, both on and away from the plateaus. The 
physical interpretation is that even though the average num- 
ber of hysteresis cycles per unit time is conserved (apart from 
fluctuations) between the plateaus, the external field can 
shift the time (phase) of the jump by as much as a circuit 
oscillation period and thereby modulate the phase of the cir- 
cuit oscillations. The same mechanism also occurs on a pla- 
teau; here, however, it is secondary in importance to the 
strong modulation of the average number of jumps by the 
external signal. This mechanism thus becomes important 
only away from the plateaus. 

In addition to providing an interpretation of the experi- 
mentally observed hysteresis Squid behavior between adja- 
cent plateaus, the theory predicts destabilization of the 
forced oscillations between plateaus for certain mismatches 
and interferometer-circuit coupling factors. We can show 
that for an underexcited but regenerative Squid, the self- 
fluctuations in the interferometer may dominate the other 
types of noise, and in this case the sensitivity of the Squid to 
magnetic fields will approach the maximum theoretical val- 
ue. 

This paper is organized as follows. We first derive trun- 
cated equations for a hysteresis Squid which describe the 
Squid behavior both on and away from the first plateau (Sec. 
1). We then discuss an improved semiphenomenological 
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FIG. 1 .  Equivalent circuit o f  the rf  interferometer; I =  I,,sin w ,  
+ I f ,  I f  = Im + IfA , where I f ,  is the thermal resistance current; If,, EfA 

are the extraneous fluctuations in the measuring device. 

model for the quantum jumps in the magnetic flux in the 
interferometer (Sec. 2); this will enable us to close the funda- 
mental system of equations. We then analyze the dynamic 
processes between the first and second plateaus in the V-I 
characteristic in order to find the mismatches and coupling 
factors for which the Squid parameters are unstable (Sec. 3). 
Finally, in Sec. 4 we predict and compare the peak sensitivi- 
ties of hysteresis Squids under various conditions (including 
the regenerative regime). The analysis is based on the experi- 
mental system shown in Fig. 1: L, R,  C are the inductance, 
resistance, and capacitance of the circuit; Mis the coefficient 
of mutual induction between the circuit and the supercon- 
ducting ring closed by the Josephson junction; the ring in- 
ductance L, is >(@,/2.rr)I; ': T2 is the noise temperature of 
the sensor; I, = I,, sin(wt ) is the pumping current. Figure 2 
shows a conventional V-I characteristic for a Squid in a fixed 
external magnetic flux. An operating point on the horizontal 
portion of the characteristic corresponds to the standard 
mode of "plateau" operation; the new "off-plateau" regen- 
erative regime occurs when the operating point lies between 
adjacent plateaus. 

1. TRUNCATED EQUATIONS FOR A HYSTERESIS SQUID 

If the circuit and the superconducting loop are weakly 
coupled: k = M 2/LL, < 1, the physical processes in the cir- 
cuit in Fig. 1 are described by the equations 

( ~ ~ ' + ( ~ ~ = - Q - ~ p ~ + 2 A c p ~ +  ea sin ~ - l c ~ l i , ' + ~ ~  (T), ( lc)  

cpv=pCf eia ( 1 4  

The notation here is standard: p = 271@ /@,is the inter- 
nal magnetic flux in the interferometer, divided by the flux 
quantum @,; pc = 2n-@,/@, is the rf flux from the circuit; 
p, = 271@,/Q0 is the external flux to be measured (it is a 
linear superposition of the dc bias flux p, and the weak, 
slowly varying signal flux @,). The circuit voltage U is pro- 
portional to p, : 

U=ycpc, y= (cDo/2n) (wlk) (LIL,)"'. 

The remaining symbols are defined by 

,I= (O-O,)/L~), Q=wUC, (I),= (LC) -%, 

I A I K1, r=ut,  ~ ~ = p Z ~ ~ y - l ,  

The fluctuations in the system are generated by: 1) the 
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FIG. 2. Change in the voltage-current characteristic between plateaus (the 
dashed curve gives the characteristic with allowance for fluctuations). 

thermal noise If, in the Squid loop (if, = If,/Io); 2) noise in 
the circuit, including the noise current of the preamplifier 
used to measure the circuit voltage 8,. = PI,. (E,. = pIf/y); 3) 
the thermal emf Ef, of the preamplifier (ef, = EfA/y). 

We seek a solution of Eqs. (1. I), (1.3) for 1% 1 in the form 

cp,--a sin ( ~ + 8 )  =-a sin $, 1 a a  0 < 4, (2a) 

cp- (cp,+a cos $)/lt-q (T) . (2b) 

The first term in (2b) describes anhysteretic processes, while 
the second term ~ ( 7 )  corresponds to the jump-like changes in 
p during transitions between neighboring quantum states. 
We will specify the form of 7 in Sec. 3. 

If we substitute (2b) into ( lc)  for I> 1, we get the simpli- 
fied system of equations 

aft-6 (a, cp,) a- i /Z~O sin 0+%=0, 

~6 '4 -A  (a, cp,) U-'/~E, cos 6 -~*=0.  

Here 

- - 
q , = ~ + q a = < q l  cos $>, rl*=qt++qa=(q' sin $), 

and (...) denotes an average over the forced oscillation peri- 
od; i j , ,  is the statistical average taken over an ensemble of 
jumps, 

X,=~,+k2q,(a, q.), xs=ee+k%?ft (a, qe), 
( 5 )  

sin $), ee=<ef cos 9). 

If we linearize (3) with respect to the deviations from the 
steady-state values a,, Do, p, , we find the system 

for the deviations ii and 8 (we use the symbolic notation 
p = d /d r ) ;  here 
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6,=6 (a,, cp,) , Ao=A (a,, cp.4, 6,= [a6 (a, cpe)alaalo, 

[ -  . . l o = [ .  . . l m , ~ ~ ,  x a o = ( ~ f  cos ( ~ + f + ~ )  )+k2qo(a,, cp,), 

xeoa(et sin (~+f+,) )+k24e (a,, cp,) . 

Together with Eqs. (4)-(7), system (3) clarifies how the 
external perturbation $, reaches the output of the Squid. 
The circuit in Fig. 1 is equivalent to a parametric oscillating 
loop in which the damping and mismatch vary with $,; the 
transfer coefficients C, and C, describe the transfer of the 
perturbation 3, associated with variations in the damping 
and mismatch, respectively. 

According to the linearized system (6),  the amplitude 
and phase variations 2 and 8 of the loop are given by the 
general expressions 

Det (p) a=-a, { [ (p+Go) C,+AoCeI %+ (p+So) x.0- Aoxeo), 

(8) 
Det (p)8={[A1Ca-(p+6,) CB] ~,+A,X,O+ (P+ ~ I ) x ~ o } ,  

where 

~ e , t  (p) =ao{p2+ (6i+So)p+6i60+AoAl) (9) 

Equations (8) can be used in principle to estimate the 
"signal" and the "noise" responses of the Squid, and also to 
analyze the stability of the circuit in Fig. 1 for a specific 
choice of the quantities in (7). Before we can do this, how- 
ever, we must specify the function T(T) which describes the 
transitions between neighboring discrete states of the inter- 
ferometer. 

2. MODIFIED MAGNETIC FLUX JUMP MODEL 

Equation (2.2) splits the dynamic processes in the inter- 
ferometer into smooth "hysteresisless" and impulsive com- 
ponents. The latter component can be expressed phenom- 
enologically as a random sequence of pulses 

Here a, is a discrete random variable which takes the value 
a, = 1 if a complete hysteresis cycle has occurred (an up- 
ward and a downward jump in p),  and a, = 0 if there are no 
jumps; t9 ($) is the unit step function; E,+, EL are the phase 
shifts, which determine when the jumps occur relative to the 
timing interval ( T ~  = 277): 

The random mutually independent parameters 
A ,+, A ; characterize the instability of the leading and 
trailing edges of the hysteresis pulse associated with thermal 

noise in the Josephson junction. The present jump model 
differs from the ones previously suggested in Refs. 4, 8, and 
1 1 (where E,+ = E"- = 0) by including the phase shifts E: , 
EL, which contain both a regular and a random component. 
This ensures a more accurate description both on and be- 
yond the plateau in the rf V-I characteristic. The probability 
P \a, = 1 )  for a complete hysteresis cycle is readily ex- 
pressed in terms of the probability P,, calculated by Kurki- 
jarvi and Webb in Ref. 12; indeed, 

In replacing the product of probabilities in (12) by a single 
probability, we have used the fact that the probabilities for 
upward and downward jumps are not symmetric-if the 
constant bias flux p, is negative (to the left of the point p, 
= T) and the flux p,(r) is quasiharmonic, an upward jump 

will automatically be followed by a downward jump, 

The single parameter 

Aa=l (2nxT/Zo~o)"'  

in the Kurkijarvi-Webb distribution determines the nonzero 
slope of the plateau in the rf V-I characteristic of the Squid (K 

is Boltzmann's constant). 
If we recall some standard properties of the delta-func- 

tion and use (4), (lo), we find the expressions 

for the stochastic functions defined in (4); here 

Z (A) = (I-A') '". 

Using the standard technique for analyzing periodic time- 
dependent processes,'' we find from (13) that 

- b+-b-f An+-An- 2% 
qo(a, cpe) a n  =-&,,, a a (14) 

The averaging in (14) is over the Kurkijarvi-Webb dis- 
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tribution function (12). If we substitute (14) into (4) and write 
,$ =2Q (A - k '/2), we get 

2 kzQ 
6 (a ,  cp.) 1 ( 2 4 )  -'{ 1 + (b'-b-) an 

We now show that Eq. (8) together with (15) correctly 
describes the behavior of a conventional rf Squid with oper- 
ating point (pump amplitude) on the plateau of the rf V-I 
characteristic. Indeed, we have a z b + z I b - 1 ) 1, Z 4  1 on 
the plateau and the influence of the shift mechanism on the 
circuit oscillations is negligible compared to the effects of the 
variation in the number of hysteresis pulses. Equations (15) 
therefore simplify to 

4k2Q a- b+ 
[S (a. 9.1 l P l m  ( ~ Q ) - ' { I  +-PKW a (r)}, 

[A (a,  c p e )  I ,,=(2Q)-'E 
(16) 

and yield the estimates 

for the equivalent Squid parameters (7). (The zero subscript 
in these equations indicates quantities evaluated at the 
steady-state values a = a,, p, = p, .) 

If the mismatch vanishes (6 = O), the only effect of the 
weak external perturbation I$, will be to vary the amplitude 
of the circuit oscillations, 

I f6 # 0, a phase shift 88 also occurs and reaches a maxi- 
mum for some value [ = lo,, (Refs. 12-14): 

Equations (1 8a), (18b) are in agreement with the usual theory 
for conventional on-plateau Sq~ids.4,8,"3'3,'4 

At the same time, Eqs. (8) and (15) satisfactorily de- 
scribe the steady-state behavior of a Squid, which corre- 
sponds to the portion of the characteristic between the first 
and second plateaus. In this case the frequency of the hyster- 
esis pulses is conserved (up to fluctuations), and the principal 
effect of the external perturbation 4, is to change their posi- 
tions in time; Eqs. (15) take the form 

for the dynamic Squid parameters (7), we have 

outside the plateau. Equations (8) with (20) imply that if 
A ,  = = 0, the only direct effect of the external perturba- 
tion 4, will be to modulate the phase of the circuit oscilla- 
tions; if the final mismatch 6 is # O  then the amplitude will 
also be indirectly modulated. The above model thus explains 
the experimental results in Ref. 10 at least qualitatively. 
Allowance for the fluctuations enables us to estimate the 
sensitivity, i.e., the smallest recordable signal (@,),, . As a 
preliminary we will first investigate the dynamic behavior of 
the Squid outside the plateau. 

3. DYNAMIC INSTABILITY OF STEADY STATES OUTSIDE THE 
PLATEAU 

We can readily find the steady-state amplitude and 
phase from Eqs. (3)  by omitting the time derivatives and fluc- 
tuations, 

The effective damping S and mismatch A are given by Eqs. 
(15). We can apply the Routh-Hurwitz criterion to the lin- 
earized equations (6) to analyze the stability of the steady- 
state values (a,, 29,). The necessary and sufficient condition 
for stability is that 

We can formally find the zones of instability (i.e., the admis- 
sible values of the coupling k and mismatch 6 )by calculating 
the parameters appearing in (22); however, in order to facili- 
tate the interpretation of the processes involved it is helpful 
to analyze the evolution of the radio-frequency V-I charac- 
teristic ao=f (E") in more detail. 

In general, numerical methods are needed to calculate 
the functions in (21). However, the curve a, = f (E,) can be 
analyzed qualitatively under some simplifying assumptions. 
We can do this by approximating the Kurkijarvi-Webb func- 
tion by a Z-characteristic (no fluctuations, Aa = 0), i.e., 

It is also helpful to choose constant biases p, = a, so 
that b + = + p, and Eqs. (15) become 

Equation (21) for the steady-state amplitude splits into two 

81 Sov. Phys. JETP 61 (1). January 1985 A. V. Gusev and V. N. Rudenko 81 



equations: 
ao( l+EZ)" ,  ao<ph= (1'-I)'" 

COQ = { ( a o z ( i + ~ ' )  +8k2Q[ph+2  (k2Q)'+E (a2-p, ' )"]J* 
' (24) 

a,>ph. 

This function is shown in Fig. 2; its behavior between 
the first and second plateaus is fundamentally different for 

> 0 and for { < 0. For { > 0 (A, > k 2/2), a, depends mono- 
tonically on E,, which corresponds to the completely stable 
regime d a / d ~  > 0. For negative mismatch 6 < 0, the depen- 
dence is nonmonotonic and the rf V-I characteristic contains 
a region of decreasing slope with d a / d ~  < 0; in this case the 
steady-state amplitude becomes unstable and a jump will 
occur to the upper part of the curve. The extremal point (the 
boundary value for unstable amplitudes) is given by 

a,= [cphZ-4k2QE/ (l+gz) ] "*. 
The singular points disappear and the curve becomes 
smooth when fluctuations are allowed for (cf. the dashed 
curves in Fig. 2). This type of instability is attributable to a 
violation of the second Routh-Hurwitz condition in (22) (the 
first condition S, + S,>O is always satisfied). A direct calcu- 
lation leads from inequality (22) to an equation for determin- 
ing the extremal point x, and the zone of instability, 
a, >p, . In general if the bias is not specially chosen, so that 
p, #T and b + # I b - 1, we can find the unstable zone by for- 
mally introducing a regeneration coefficient G< 1, so that 

6,61+A,A1= (2Q) - ' (1 -G) ' .  (25) 
Iftheinterferometer is strongly coupled to thecircuit: 4k ,Q / 
I = 8% 1 and G=: 1 then the bound 

on the mismatches corresponding to instability is easily 
found from (25), where 

For typical experimental values 1~277- and Aaz1/2, we 
h a v e Z ~ ' z 2 . 5  and IP .  

Returning to the physical interpretation of the instabil- 
ity, we should probably point out that the effects of the su- 
perconducting interferometer are equivalent to adding a 
negative resistance to the circuit. According to (25), the non- 
linear damping S (a, p,) decreases as the amplitude grows. 
For constant hysteresis losses -I,@, beyond the first pla- 
teau, an increase in the amplitude is equivalent to a decrease 
in the dissipative forces. A similar situation occurs for oscil- 
lating systems excited by instantaneous forces (such systems 
were studied in detail in Ref. 15). 

4. INFLUENCE OF OSCILLATIONS OF THE SENSITIVITY OF A 
HYSTERESIS SQUID 

In principle, the parametric instability of the steady- 
state oscillations outside the plateau described above can be 
used in practice to improve the sensitivity of hysteresis 
Squids to magnetic fields so that the sensitivity approaches 
the maximum possible (i.e., is limited only by fluctuations in 
the Josephson contact itself). This assertion is in fact suggest- 
ed by the general theory of fluctuations in arbitrary linear 
dynamic systems.16 If we consider the combination of the rf 

Squid and measuring instrument (including the preamplifier 
stage) as an rf circuit consisting of two noisy four-ports, we 
have the following expression for the equivalent noise tem- 
perature of the entire circuit: 

Here TI and T2 are the equivalent noise temperatures of the 
Squid and measuring instrument, respectively, and K,, is 
the transfer coefficient of the Squid (the output signal divid- 
ed by the input signal at the rated power). For conventional 
quantum interferometers operating on the plateau, the feed- 
back reaching the oscillating circuit is negative because K,, 
is always < 0, and the noise in the measuring device there- 
fore plays the key role in determining the Squid sensitivity. 
The dynamic instability associated with off-plateau oper- 
ation tends to increase the transfer coefficient K,, abruptly; 
for a highly regenerative Squid with G-1 and K,, 
~ ( 1  - G)-', the Squid sensitivity should be independent of 
the instrument noise and should be limited only by the fluc- 
tuations in the circuit and contact. The contact noise will in 
turn become more important compared to the circuit noise 
as the factor k 2Q increases (under the usual operating condi- 
tions, k , Q z  1 is optimal). The maximum theoretical Squid 
sensitivity can thus be approached in principle. 

We use Eqs. (8) to calculate the sensitivity quantitative- 
ly. It is necessary to calculate the spectral dependences 
\S,(V))~,  jaN(v) l 2  for the case of phase modulation (15, (v)j2, 

lii,(v)1 for amplitude modulation), and then take their ra- 
tio and integrate over the signal frequency spectrum (this 
corresponds to optimum selection of the signal from the 
noise). The smallest recordable signal +, can then be estimat- 
ed by dividing the result of the integration by 277- and equat- 
ing it to unity. 

It is helpful to write out the formulas thus obtained for 
the following three extreme cases (cf. also Eq. (25) for phase 
modulation in the regenerative regime outside the plateau, 
@ =  4k2Q/1)1). 

I. The noise in the measuring instrument dominates, 
T, > TI; in dimensional form, we have the expression 

for the duration b of a detectable external signal. 
11. The thermal noise of the circuit dominates: 

T, z T, > T,. Then 

111. Most of the noise is from thermal fluctuations in the 
Josephson contact: 

6@0~:pl--  (0.25-0.5) Aa(o.2)-'" 0,/2n. (274 
We have used the fact that 

[ ( A n + )  (0.25-0.5) Aa. 

in deriving the last formula. 
For comparison, we also note the following formulas4*" 

for the maximum sensitivity for conventional amplitude mo- 
dulation on the plateau of the V-I Squid characteristic 
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6Opi"=[xT L, (Aa )  2 / 2 0 t - k z ~ ] ' " ,  
I11 

(28b) 

6OP1 =0,5Aa(w^t) - ' Iz Qo/2n.  (284 

Equations (28a), (28b) imply that the noise in the measuring 
device dominates on the plateau if T 2  > Tc(Aa/4k 'Q ). This 
condition is almost always satisfied, even for maser ampli- 
fiers with T , z  1 - 3 K, because T, ~ 4 . 2  K, Aa "0.5, 
k 'Q k 1, while T2 is z 100-300 K in most applications. 

The instrument/ circuit noise ratio is different for a re- 
generative Squid operating outside the plateau. Equations 
(27a, b) show that the noise in the measuring instrument can 
beneglectedunless T2> /(1 - G )'ITc, i.e., underthese con- 
ditions there is an equivalent cooling of the instrument noise 
by a factor of/3 (1 - G )-', and this noise is suppressed to the 
level of the thermodynamic fluctuations in the circuit for 
0) 1, G+1. Since these fluctuations are amplified along with 
the signal during the recording process, G does not appear in 
Eq. (27b). Equation (27b) also implies that the only way of 
effectively suppressing the thermal noise in the circuit is to 
increase the factor 8 ;  for 8 > ~ ~ K T L , /  (@,/27~)~ the circuit 
noise is decreased to the noise level in the Josephson contact, 
and the Squid sensitivity approaches the limiting value (27c). 

5. CONCLUSIONS 

Quantum radio-frequency interferometers (Squids) can 
be regarded as circuits with internal feedback. For conven- 
tional Squids operating on the plateau of the V-I characteris- 
tic, the feedback is negative and stabilizes the circuit. In the 
new "off-plateau" regime, the operating point lies between 
adjacent plateaus and the feedback is positive; a negative 
conductivity is introduced into the circuit, and regeneration 
can occur in which the noise temperature of the negative 
resistance is low and depends only on the physical tempera- 
ture of the contact. The specific time-dependent behavior of 
an off-plateau interferometer has much in common with the 
dynamic properties of classical nonlinear systems excited by 
instantaneous forces (e.g., self-excited oscillators with a Z- 
characteristic, the internal mechanisms of clocks, etc.). In 
discussing the limitations of the results derived above, we 
note that the above linearized theory rests on the assumption 
that the variations in the amplitude and phase of the output 
signal are small compared to the steady-state values: 
[ z] 112<a0zI, [a;] 'I2. Using the Wiener-Khinchin 

theorem, we find readily from (8) and (9) that 
P3NIp/ (I-G) 2-KZo@o. (29) 

For the thermal fluctuations in the circuit N ,  = ~ K T / R  we 

If the noise sources in the system are matched (cf. above), 
condition (29) leads to 

Pa[ @JOQ/.Tz]'", (31) 
for noise in the measuring device. If the noise temperature T2 
of the measuring device is specified, we can thus find an 
upper bound for the couplingfl = 4k 'Q /1  from (3  1) and then 
use (30) to get a rough upper bound for the regeneration 
factor G. For the typical values Q z  lo2, Tz4 .2  K, T,=: 100 
K, 1~277,  and I,=: lop4 A, conditions (30), (31) are satisfied 
if 1 - G)0.86 and /3 5 20. 

In conclusion, we express our thanks to V. B. Braginskii 
and V. V. Migulin for a helpful discussion. 
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