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The emission of electromagnetic waves by a two-dimensional electron plasma in the system 
consisting of a metal diffraction grating on a metal-insulator-semiconductor structure (an open- 
resonator system) is analyzed. [ The effect has been observed experimentally by Tsui et al. [Solid 
State Commun. 35,875 (1980)l and Hopfel etal. [Surf. Sci. 113, 118 (1982)l.l A model is proposed 
which allows an approximate solution while retaining the basic features of the actual experimen- 
tal situation (the diffraction problem cannot be solved exactly). The radiative width of the plasma 
resonance and the corrections to the dispersion law for two-dimensional plasmons are calculated. 

Experiments on the resonant absorption of electromag- 
netic radiation by two-dimensional plasmons are being car- 
ried out in open-resonator systems.' A periodic array of met- 
al stripes (a diffraction grating) on the field electrode of a 
metal-insulator-semiconductor system modulates the trans- 
parency of this electrode with respect to the incident electro- 
magnetic wave. The modulation period determines the mo- 
mentum of the plasmon which is excited. 

Once the plasma wave has been excited, the same peri- 
odic array of electrodes acts as a transmitting antenna; i.e., 
the plasma waves in a structure of this type experience an 
additional damping from radiative decay. This effect has 
been seen directly2 as emission at the plasma frequency dur- 
ing the heating of electrons. Heitman et u I . ~  have noted that 
the width of the plasma resonance is greater than would fol- 
low from estimates of the electron collision time, and they 
wondered whether this effect might be linked to radiative 
decay of the plasmons. 

Since the earliest experiments on two-dimensional plas- 
mons, the literature has remained silent on an important 
question: Why does the observed dispersion law for the plas- 
ma waves agree well with the law for a closed resonator (i.e., 
for a system with a solid metal electrode)? It would appear 
that there is no small parameter in this problem. The length 
of the plasma wave is exactly equal to the period of the dif- 
fraction grating, and the dimensions of the transparent and 
opaque regions of the grating are not very different (in the 
earliest experiments, they were nearly equal to each other). 
We are thus dealing with waves in a periodic structure in a 
situation in which the wave vector is equal to the reciprocal- 
lattice vector, so that the continuum approximation is com- 
pletely inapplicable. 

We show below, for the particular case of a system with 
a weak spatial modulation, that distortions in the dispersion 
law for plasma waves have an additional small parameter, 
which is unrelated to the weakness of the modulation. This 
"extra" small parameter is determined by the ratio of the 
surface electron densities in the plasma layer and in the opa- 
que parts of the diffraction grating. This parameter evidently 

remains small in the real situation, in which the modulation 
depth is not small, and thus resolved the contradiction. 

We will calculate the radiative damping of plasmons 
which results from their conversion into electromagnetic ra- 
diation, and we will show that the conversion coefficient 
contains only a kinematic small parameter, the ratio of the 
phase velocity of the plasmon to the velocity of light. In this 
system the imaginary increment in the frequency is thus far 
larger than the corrections to the real part of the frequency. 
This circumstance is crucial to an understanding of the ex- 
periments of Tsui et al .  and Hopfel eta/.' on the electromag- 
netic emission from a two-dimensional plasma. 

Figure 1 shows the model of the system. There is a tmo- 
dimensional plasma (e.g., the inversion layer of a metal-insu- 
lator-semiconductor structure) in plane P (z = A ), and there 
is a periodic structure of metal electrodes in plane M (z = 0). 
We may assume that there is also a two-dimensional plasma 
in plane M, with an equilibrium density N ( y) which is a peri- 
odic function, N ( y + a )  = N ( y). Here E~ and E, are the di- 
electric constants of the insulator and the semiconductor, 
respectively. 

A more natural approach, of course, would be to con- 
sider a diffraction problem, with appropriate boundary con- 
ditions imposed on the fields at the system of metal stripes. 
In that approach, however, even the simpler, purely electro- 

FIG. 1. 

75 Sov. Phys. JETP 61 (1), January 1985 0038-5646/85/010075-03$04.00 @ 1985 American Institute of Physics 75 



magnetic, problem of the diffraction of a plane wave by the 
periodic array of stripes can be solved only in the case t / 
a = 1/2, where t is the width of the transparent regions of the 
~ t ruc tu re .~  (Experimentally, an effort is made to keep t / a  
small-usually about 0.15 + 0.2-in order to increase the 
amplitudes of the spatial harmonics of the field which excites 
the plasma.) The model which we are using allows us to con- 
struct an approximate solution, while retaining the basic fea- 
tures of the actual experimental situation. 

We must solve the system of Maxwell's equations and 
the equation of motion of the plasma. A distinctive feature of 
this problem is that the spectrum of plasma waves and the 
spectrum of the external force acting on the plasma are 
strictly related, since the two spectra are determined by the 
same periodic function, N ( y). The spatial Fourier harmonics 
of the external force are nonzero only for wave numbers 
277-n/a (n = 0, 1, 2, . . . ), and the gaps in the plasma- 
wave spectrum evidently lie at plasmon quasimomenta n r /  
a. It follows that plasmons with frequencies near band gaps 
of even index are observed in experiments on the resonant 
absorption of electromagnetic waves. In a reduced-band 
model they would correspond to the center of the Brillouin 
zone. We should thus seek solutions of Maxwell's equations 
in which the fields are periodic functions ofy with a period a. 

For this geometry of the system (Fig. l), the nonvanish- 
ing field components are the electric components Ey and E, 
and the magnetic component H, . For the latter we have 

H:" = E D, exp ( iqyn+x. lz) ,  z<o;  

Hiz'= ( A .  exp (x . , z )  +B. exp ( - x n Z z )  ) exp ( i q y n ) ,  

H:" = E C. exp(iqyn-x. ,z ) ,  z>A.  
n 

(1) 
Here 

q--2n/a, xn j -  (q2nz-ejkZ)' (j=f, 2, 3)) 

k = W/C, w is the frequency, and c is the velocity of light in 
vacuum. 

The tangential component of the electric field is given 
by 

( j ) -  ic 8 ~ 2 )  
E, --- 

oe j  dz 

The boundary conditions at z = 0 are 

ieZN ( y )  j .  = --- E,, (3) 
m o  

and those at z = A are 

4n i e W S  
E,'~' =Ei3)  , H ( ~ )  - H ( ' )  - 

c m'o  E,. (3') 

The surface current densities in (3) and (3') are written in the 
a cold collisionless plasma approximation; N, is the equilib- 
rium density of the two-dimensional plasma in the plane 

z = A; e is the electron charge; and m and m* are the effec- 
tive masses of the carriers in the metal and the inversion 
channel, respectively. 

Using (1) and (2), we can derive an equation for the coef- 
ficients D, from system (3), (3'). The existence of three spa- 
tial regions with different dielectric constants makes this 
equation extremely complicated in general, but it can be sim- 
plified substantially by making use of the two obvious small 
parameters k /q( 1 and kA 1 (typical experimental values 
are k/q < and kA - lop3). We then have 

Here the N, are the Fourier components of Ny ; 

where w, and Z, are the frequencies of the two-dimensional 
plasmons with momentum q(n ( in a system without a metal 
electrode and in a system with an ideally conducting solid 
electrode, respectively: 

Assuming that the modulation of N (y )  is relatively 
weak (N, , , N,, , . . .(No), we solve system (4) by the weak- 
coupling method. As mentioned above, the fundamental 
plasma resonance corresponds to a plasmon momentum of 
+ 277-/a; i.e., the coefficients D, and D-, are important in 

system (4). The relationship between them is determined by 
the Fourier components N,, . Since we wish to retain effects 
involving the emission of electromagnetic waves, we must 
also retain the coefficient Do, since only x,, among all the 
quantities x , ,  is purely imaginary and thus corresponds to 
radiation. The relationship between Do and D,, is deter- 
mined by the Fourier components N,, and has the addi- 
tional small parameter k /q = aw/277-c (which does not figure 
in the relationship Dl-D- ,). Three equations thus remain 
from system (4) and lead to the dispersion relation 

We first ignore the radiative loss; i.e., we omit from (6)  
the terms with the factor k = w/c. Furthermore, we assume 
No,Ns, in accordance with the experimental situation. The 
roots of the dispersion relation in which we are interested are 
thus close to the zeros of M I ,  and we find two values of the 
plasmon frequency corresponding to the momentum 277-/a: 
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The size of the gap in the plasmon frequency spectrum 
is 

(8) 

We see from (8) that the relative size ("smallness") of 
this gap results from not only the weak-coupling parameter 
N2/No but also the ratio Ns/No. Here No is the average sur- 
face density of. electrons in the metal diffraction grating on 
the field electrode of the metal-insulator-semiconductor 
structure. For the typical values N, - 1012-1013 cm-2 the 
ratio N, /No would be no greater than 10W3. For the case of a 
square modulation of the transparency of the field electrode 
we would have 

N,INo=a sin ( n n t j a )  lnn (a- t )  , 

and if tga we would have N,/No - t /a. 
This analysis thus shows why the dispersion law found 

in experiments carried out to observe plasmons corresponds 
quite accurately to the situation with a solid, ideally con- 
ducting electrode (w = on ) despite the presence of a diffrac- 
tion grating. 

To find the radiative decay of the plasmons, 
rR = - Imw, we now assume for simplicity that the func- 
tion N ( y) is symmetric with respect to the center of a metal 
stripe of the grating. The upper branch w + then damps ac- 
cording to 

In the region qAgl  the radiative loss naturally in- 
creases with decreasing A: 

Expression (10) states that radiative damping makes an 
extremely small contribution to the overall width of the plas- 
ma resonance. 

For the experimental conditions of Ref. 3 (A - 5-  
~ m , a - 5 . 1 0 - ~  cm, t/a-0.25, andk = 2a.102 cmW1)wefind 
r, /w -0.3. lop3, which is two orders of magnitude smaller 
than the collisional damping. The additional broadening of 
the resonance observed in Ref. 3 was evidently caused by 
other factors. 

In the opposite case, qA% 1, the damping becomes ex- 
ponentially small: TR aexp( - 2qA ). This result follows 
from (5) and (9): The difference o: - i5: approaches zero, so 
that the field of the first harmonic of the plasma wave falls 
off exponentially with increasing distance between the inver- 
sion layer and the grating. 

The solution corresponding to the lower edge of the 
gap, w = w -, does not experience a radiative damping in the 
present case of a symmetric function N ( y). This result is un- 
derstood easily by considering the spatial distribution of the 
field Ey . In the first case (w = w,) the field Ey has an anti- 
node at the center of a metal stripe, while in the second case 
(w = w - )  it has a node there. 

Expressions (7) and (9) give the frequency and intensity, 
respectively, of the spontaneous emission by a two-dimen- 
sional plasma which was observed in Refs. 2. The quantity 
2 r R  is the fraction of the energy of the given plasma mode 
(q,w) which is radiated per unit time. Interestingly, under the 
usual condition qA g 1 [expression (lo)] this quantity does 
not depend on the geometric parameters of the structure (a 
and A ) and is determined exclusively by the surface density 
N, and the modulation depth: 

This functional dependence could be tested easily in experi- 
ments with metal-insulator-semiconductor structures. 
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