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Numerical techniques have been used to study the interaction of nonlinear surface waves with 
Gaussian light beams incident on the surface of the nonlinear medium at grazing angles. For this 
purpose, the stability of the nonlinear surface waves is studied first. Specifically, the wave vector 
regions in which nonlinear surface waves are stable and the regions in which they are unstable are 
found. It is shown that both stable and unstable nonlinear surface waves can be excited by Gaus- 
sian beams with the optimum parameters (with a certain power and a certain width) which strike 
the interface at a given angle. 

1. INTRODUCTION 

There have been several theoretical1-' and experimen- 
ta15 studies of the interaction of Gaussian light beams with 
an interface between a linear medium and a nonlinear medi- 
um. Numerical calculations have yielded some interesting 
new results. In particular bistability in the response of such a 
system to an external field has been studied. It has been 
found that when a light beam is incident on the surface of a 
nonlinear medium the transmitted wave may break up into 
distinct pulses under certain conditions. The most compre- 
hensive treatment of the interaction between a light beam 
and the surface of a nonlinear medium of which we are aware 
is that by Tomlinson et who studied in detail the paths 
traced out by the transmitted and reflected beams. Never- 
theless, a question raised in Ref. 4 remains unanswered: Can 
a light beam incident on a plane interface be used to excite 
the nonlinear surface waves (NSWs) whose existence was 
predicted in Refs. 6-8? The studies in Refs. 3 and 4 essential- 
ly did not answer this question, partially because the NSWs 
themselves have not received much study. In particular, 
there has been no study of the stability of NSWs, although 
this question is crucial to the problem of the excitation of 
NSWs by external sources. 

From the mathematical standpoint the problem re- 
duces to one of finding a certain class of solutions of a nonlin- 
ear Schrodinger equation with coefficients which depend on 
the transverse coordinate z. In this sense, the problem is one 
of general interest. On the one hand, the absence of transla- 
tional symmetry along the z axis leads to the appearance of 
solutions of a new type: solitons localized at inhomogene- 
ities. Nonlinear surface waves are such solitons. As the na- 
ture of the inhomogeneity along z becomes more complex, 
the steady-state solutions also become more complex, and 
they increase in n ~ m b e r . ~  We are interested in both the sta- 
bility of these new formations and their properties with re- 
spect to interactions with moving wave packets. On the oth- 
er hand, the absence of translational symmetry means that 
we cannot use the apparatus of the inverse scattering prob- 
lem in its classical form~lat ion '~ to solve the problem, so 
that our main tool for deriving new results at this stage is 
numerical simulation. Several results obtained by numerical 
simulation are reported in this paper. 

In Section 2 we formulate the problem. In Section 3 we 
use numerical methods for the first study of the stability of 
NSWs. We show that the region of allowed values of the 
NSW wave vectors breaks up into subregions of stable and 
unstable waves. In the same section we show that for the 
NSWs of the unstable branch there exist two decay paths, 
depending on the sign of the initial perturbation: Either (1) 
the NSW is "ejected" into the linear medium as a light beam 
of definite shape (approximately Gaussian), separating from 
the interface at an angle greater than the critical angle for 
total internal reflection, or (2) it decays into an NSW of the 
stable branch and a beam which propagates away from the 
interface into the linear medium. Section 4 reports the re- 
sults of numerical calculations on the excitation of NSWs by 
Gaussian beams. It is found that (in contrast with the conclu- 
sions reached in Ref. 3) light beams incident on the interface 
at grazing angles can excite both unstable and stable NSWs. 
Section 5 summarizes the results. 

2. FORMULATION OF THE PROBLEM 

Studies of the propagation of light beams at small angles 
from an interface usually employ the parabolic equation 
found from the wave formulation of the solution in the form 
of a wave with an amplitude which varies slowly along the 
interface.'+ We denote by z the coordinate running normal 
to the interface, so that the dielectric constant of the medium 
in the region z < 0 is E , ,  while that in the region z > 0 is 
E = + a ( E  1'. We write the solution of the wave equation 
as a wave which is polarized along they axis and propagating 
along the x axis: 

E,(x, z )  =al"A (x, z )  exp (inx-iot) . 

We are accordingly restricting the solution to the two-di- 
mensional problem. The equation for the slowly varying am- 
plitude A (x,z) is then 

where y2(z) = n2  - ~ ( z ) ,  the coordinates x and z are normal- 
ized with respect to R / 2 ~ ,  where R is the wavelength of the 
light in vacuum, and 
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& ( 2 )  = 
G I  for z<O 0 for z<O 

4 for z>0 
. (2)  

In what follows we are assuming that the nonlinear medium 
is self-focusing (a > 0). Equation (1) has integrals of motion; 
we will write out only one of them here: 

m 

For arbitrary solutions of Eq. (1) we thus have dI/dx = 0. 
We have solved Eq. (1) numerically on an SM4A com- 

puter. For the difference approximation of Eq. (1) we select- 
ed the Cranck-Nicholson scheme; the system of nonlinear 
equations was solved on the successive steps in x by New- 
ton's method combined with a matrix tridiagonal inversion 
alongz. This difference scheme makes it possible to conserve 
the integral (3) on the grid. For a discrete representation of 
the solution of the complex function A (x,z) we used 600 
points with 300 on each side of the z = 0 boundary. At the 
boundaries of the grid at z = + L we set the field equal to 
zero. Until the field decreases to small values toward these 
borders, the boundary conditions which we select have no 
effect on the solution of the problem. In cases in which the 
beams reach thez = _+ L boundaries, they are reflected, and 
in the next step along x we equate the field of this beam to 
zero, assuming that the beam has gone off to infinity. The 
interface between the two media (z = 0) was placed symme- 
trically between points of the grid. The difference approxi- 
mation in the points nearest this interface was chosen to be 
the same as for points in the interior of the medium. This 
approach implies continuity of the function A (x,z) and of its 
first derivative at the interface. As the initial field distribu- 
tion at x = 0 we selected either a steady-state solution of Eq. 
(1) to study its stability or a Gaussian beam incident on the 
interface at a small angle. 

3. NONLINEAR SURFACE WAVES AND THEIR STABILITY 

At the interface between the two media, z = 0, under 
the condition cI > co, there exists a solution of Eq. (1) which 
is stationary alongx and which is called a "nonlinear surface 
~ a v e ' ' ~ - ~ :  

Ao(z)= { L.2 (8, - & a )  1'" exp ( X Z )  for z<O 

2 ' 9  ch-' y (2-z,) for z>0 ' 
(4) 

where 

For the steady-state solution (4), the integral in (3) becomes 

Figure 1 shows this integral as a function of n for the pair of 
values co = 2.647, cI = 2.674, corresponding to CS, and a 
particular optical glass. The integral I has a minimum at a 
certain n,, , which can easily be calculated from (5): 

FIG. 1. The integral I (the upper curve) and the square of the instability 
growth rate, 8, versus n. 

Here we haveI(n,,) = 3[3(c1 - E ~ ) ] " ~ .  The numerical value 
of n,, for the case above is - 1.638. 

To determine the stability criterion for NSWs we nu- 
merically stimulated the solution of parabolic equation (I), 
specifying at x = 0 the steady-state solution (4) with a small 
additive perturbation: 

The perturbation modes f (x,z) are found from the linearized 
equation which is obtained by substituting (6) into our origi- 
nal nonlinear equation, (1): 

For the complex function f (x,z) = u(x,z) + iv(x,z), Eq. (7) re- 
duces to a system of two partial differential equations, 

au/dx=-Lov/2n, 
d v/dx=L,u/2n, 

(8) 

where the operators are 
L,=d2/dz2-y2 ( 2 )  + P  ( z )  A02 ( z ) ,  Li=Lu+2P (z)A,2 ( z ) .  

System (8) has a solution in the form of exponential func- 
tions, 

u (x ,  Z )  =U ( z )  exp 6x, v (x ,  z )  =v ( z )  exp 6 x ,  (9) 
or trigonometric functions, 

u ( x ,  Z) =U ( 2 )  cos px, v ( x ,  z )  =v ( 2 )  sin px, ( 10) 
where real 6 and p. The functions u(z) and v(z) in (9) must 
satisfy a system of second-order ordinary differential equa- 
tions: 

This system of equations can have a set of solutions (a set of 
perturbation modes) with different values of 6, and in this 
case it is difficult to find the perturbation mode which has 
the maximum growth rate by numerical methods. We ac- 
cordingly seek the perturbation modes through a direct nu- 
merical solution of system of equations (8). If the system 
allows solutions of the form in (9), then an arbitrary nonzero 
boundary condition at x = 0 should give rise to the mode 
with the largest growth rate in the course of the evolution. In 
the calculations, we find exponential solutions only for val- 
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FIG. 2. Real and imaginary parts of the perturbation mode f (2) with the 
largest growth rate for n = 1.636, normalized to a unit maximum of the 
imaginary part. 

ues ofn in the interval E:'~ < n < n,, . At n > n,, system (8) has 
only oscillatory solutions. 

As an example we show in Fig. 2 an exponentially grow- 
ing mode u(z), u(z) in the case n = 1.636. The growth rate 
here is S - - .00412... . Figure 1 shows a plot of the square 
of the growth rate versus n; we see that n-n,, the quantity 
S * approaches zero. 

Substituting the perturbation modes found by the meth- 
od above into (6) with a small parameter p ,  we trace the 
subsequent evolution of the solution of our original nonlin- 
ear equation, (1). For a selected sign off (z) in (6), we would be 
equally justified in assigning either sign to the parameter p. 
By virtue of the asymmetry of the problem with respect to 
the sign ofp, these two choices lead to different final results 
for a given initial perturbation mode f (z). If we choose a 
negative sign forp, we find that after an initial stage of expo- 
nential growth of the perturbation mode the NSW is ejected 
into the linear medium as a result of the subsequent evolu- 
tion. It propagates away from the surface in the form of a 
beam at an angle greater than the critical angle for total 
internal reflection. The process is illustrated in Fig..3a. We 
note, however, that all of the energy of the NSW is converted 
into the energy of the beam. As the beam leaves the nonlinear 
medium, a small fraction of it is reflected backward, as can 
be seen clearly from curve in Fig. 3a. The energy (the part of 
the integral I) of the beam reflected into the nonlinear medi- 
um is -2-3% of the total energy. 

When we choose the positive sign for p ,  the growth of 
the perturbation leads to a shift of the field energy into the 
interior of the nonlinear medium, followed by the excitation 
of an NSW of the stable branch; simultaneously, a small 
fraction (-- 3-5%) of the energy is split off into the energy of 
a beam which moves away from the interface into the nonlin- 
ear medium. This process is illustrated in Fig. 3b. On curve 2 
we can see part of the beam which is initially split off into the 
linear medium. The stable NSW is excited with a perturba- 
tion which oscillates along the x axis. As the NSW propa- 
gates along the interface, a small fraction of the energy splits 
off into a beam moving away from the interface during each 
oscillation. On curve 3 in Fig. 3b we can see a sequence of 
two such beams. After a splitting off, the amplitude of the 
oscillations of the perturbation decreases, and the energy of 
the next beam which splits off turns out to be substantially 
smaller. Accordingly, as a result of the development of a 
perturbation with a positive p ,  and NSW of the unstable 
branch is transformed into an NSW of the stable branch. The 

FIG. 3. Decay of an NSW of the unstable branch (n = 1.636) for different 
signs of the initial perturbation. a:,u < 0. 1-x = 0; 2-900; 3-1200; 4- 
1400; 5-1600. b:p >O. I-x = 0; 2-1600; 3-3300. 

process is shown schematically by the arrow in Fig. 1. 
For an arbitrary initial perturbation, after some tran- 

sients, the mode with the largest growth rate forms, and the 
decay of the NSW of the unstable branch proceeds in one of 
the two manners described above. 

To conclude this section we point out that a stability 
criterion of the type dI /dn > 0 has been derived previously 
by K o l o k ~ l o v ~ ~  for self-focused solutions in an unbounded 
nonlinear medium. Our numerical results for Eq. (1) with 
discontinuous coefficients yields the same stability criterion. 
As was shown in Ref. 11 for solutions in an unbounded medi- 
um, however, the derivative d I  /dn does not change sign in 
the region of allowed values of n, and a soliton is always 
stable in the two-dimensional self-focusing problem. For 
surface waves, we see that the derivative changes sign at the 
point n = n,, , and the region of allowed values of n breaks up 
into subregions of stable and unstable waves. This conclu- 
sion plays a decisive role in the problem of the excitation of 
NSWs by light beams incident on an interface at grazing 
angles, since the NSWs may decay again or may exist for an 
unbounded time, depending on the excitation conditions. 

4. EXCITATION OF SURFACE WAVES BY LIGHT BEAMS 

Our study of the stability of NSWs yields an interesting 
conclusion: If the wavefront is inverted, A-tA *, at x = 1600 
in Fig. 3a (curve S), the beam will propagate in the opposite 
direction. This means that a surface wave of the unstable 
branch can in principle be excited by a light beam of opti- 
mum shape and given density which is incident on the 
boundary of the nonlinear medium at a certain angle greater 
than the critical angle for total internal reflection. To prove 
this assertion, we need to discard at the same time the part of 
the beam which is split off into the nonlinear medium upon 
the wavefront inversion (phase conjugation). Our numerical 
simulations in fact confirm that if the field in the nonlinear 
medium is set equal to zero to invert the wavefront, and if the 
beam amplitude is increased by a factor of 1.05 for all z < 0 in 
order to conserve the integral I ,  then the beam produced in 
this manner excites NSWs of the unstable branch as it strikes 
the interface. After propagating some distance through the 

64 Sov. Phys. JETP 61 (I), January 1985 Akhmediev eta/ 64 



FIG. 4. Evolution of the transverse field distribution during the 
incidence of a Gaussian light beam with the following param- 
eters on an interface: I = 1.03, a = 25, to = 0, x, = - 2000, 
0 = 2.57". The dashed line in thex,z plane shows the path traced 
out by the maximum value of the field. 

nonlinear medium, it is ejected back into the linear medium 
because of an instability of the NSW which is excited. 

During the wavefront inversion, however, the beam 
which is formed has a certain shape which, although approx- 
imately Gaussian, cannot be described analytically. To 
study the possibility of exciting NSWs by real beams, we use 
a Gaussian model for the incident beam: 

where w2 = a2 + 2i(x - x,)/n, cos6, a is the width of the 
beam at its narrowest point, 6 is the angle of incidence, mea- 
sured in this case from the interface, n, = &:I2, (x,,~,) are the 
coordinates of the focus, and the beam amplitude A, is relat- 
ed to the integral I by 

The parameters of the Gaussian beam are chosen so that the 
z distribution of the field is, for all x, as close as possible to 
the field distribution of the beam leaving the nonlinear medi- 
um, shown in Fig. 3a, at the corresponding values of x. The 
parameters which we found for the Gaussian beam by this 
fitting procedure are listed in the Fig. 4 caption. Figure 4 
itself shows the evolution of a beam with these parameters as 
it interacts with the interface. We see that the Gaussian beam 
does in fact excite NSWs of the unstable branch, with the 
field distribution exponentially approaching the steady-state 
solution. However, the unavoidable error in the simulation 
of the beam in Fig. 3a by a Gaussian beam has the conse- 
quence that near the steady-state solution Ao(z) the perturba- 
tion does not decay to zero but is instead represented by a 
linear combination of positive and negative exponential 
functions or, equivalently, a linear combination of hyperbo- 
lic functions with the two parameters p, and p,: 

A (x, z)=du(z)-t(p, ch 6 x + p r  sh Gx) f (z), (13) 
where f (z) is the perturbation mode with the highest growth 
rate. For simplicity we are assuming that no other modes are 
excited. Their presence does complicate the picture, but it 
does not change the fundamental conclusions of this study. 
It can be seen from (13) that in the excitation of NSWs of the 
unstable branch by Gaussian beams with an approximately 
optimum shape there are two possible ways in which the 

steady-state solution can be approached. The situation is 
governed by the relation between the two parameters. The 
solution in Fig. 4 corresponds to the situation with p ,  >p,. 
In this case the sign of the perturbation in (13) does not 
change at any time during the process. After an asymptoti- 
cally exponential approach to the steady-state solution, the 
perturbation again grows, with the same sign, and the field is 
ultimately ejected into the linear medium in the form of a 
beam. This beam may be regarded as a reflected beam, since 
it contains most of the beam energy. The dashed line in Fig. 4 
shows the path traced out in the (x,z) plane by the maximum 
value of the beam field during this process. We see from this 
figure that the light beam emerges from the nonlinear medi- 
um at a distance from the entry point several times greater 
than the width of the beam itself. This displacement of the 
reflected beam is an analog of the Goos-Haenchen effect for 
the case of an interface between linear and nonlinear media. 
We see that this displacement may be many orders of magni- 
tude greater than a linear displacement; i.e., we are dealing 
with a huge effect in this case. The effect is observed even 
when the parameters of the Gaussian beam differ slightly 
from those given above. The values of the integral I ,  of the 
angle of incidence, and of the beam width, on the other hand, 
can differ by no more than 3-5% from the optimum values 
listed in the Fig. 4 caption. The value of x, must be chosen 
such that most of the field energy (up to 98%) is initially in 
the linear medium. In this case the result is of course inde- 
pendent of x,. The values given here for the parameters are 
the optimum values for E ,  and E , ,  chosen previously: 2.647 
and 2.674, respectively. For other values of the dielectric 
constant, the optimum parameters will be different. A more 
accurate fit of the parameters would seem to be possible; a 
more accurate fit would lead to smaller values of p, and p2 
and thus an even greater Goos-Haenchen effect. 

If the opposite relation holds, p, <p2, the sign of the 
perturbation in (13) will change as the beam evolves after a 
steady-state unstable solution A (z) = A,(z) is reached, so that 
the subsequent process will lead to the excitation of NSWs of 
the stable branch, as in the casep > 0 in a study of the stabil- 
ity. An NSW of the stable branchis ultimately excited by the 
Gaussian beam. At relatively large values ofp ,  and p2, for 
which the parameters of the Gaussian beam are significantly 
different from the optimum values, or when other perturba- 
tion modes are also excited and must be taken into account in 
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FIG. 5. The same as in Fig. 4 for the beam parameters I = 
a = 35, z, = 0, x, = - 2000, and B = 3". 

(13), the excitation stage for an NSW of the unstable branch 
may be extremely brief or missing altogether. In the latter 
case as a result of the interaction of the Gaussian beam with 
the interface the beam decays directly into an NSW of the 
stable branch and a beam which moves away from the inter- 
face. Figure 5 shows an example of the excitation of an NSW 
of the stable branch by a Gaussian beam. The parameters of 
the initial beam are listed in the figure caption. A necessary 
condition for the excitation of an NSW of the stable branch is 
an integral larger than in the preceding case. The energy of 
the initial beam must be sufficient for both the NSW and the 
new beam. The angle of incidence must still be near the opti- 
mum value found above. The dashed line in Fig. 5 shows the 
path traced out by the field maximum. We see that beyond 
the value x = 2000 the value of z,,, corresponding to the 
field maximum stabilizes. We pursued the calculations up to 
x = 6000, successively equating to zero the field of the re- 
flected beam which reach the z = - L boundary. Up to 
these values of x the excited wave remains stable; the values 
ofz,,, and of the part of the integral I which remains in the 
NSW corresponds to a stationary solution with the value 
n =: 1.6382 ..., i.e., to the stable branch of the NSWs. 

Since the NSWs of the stable branch are initially excited 
with an oscillatory perturbation, as a rule, small beams may 
split off successively into the linear medium upon each oscil- 
lation, so that the wave reflected from the nonlinear medium 
will have, in addition to the main beam, a tail stretched out 
along the interface. The beam tail in turn breaks up into 
separate pulses (or streams). The splitting off of the second 
reflected beam can be seen clearly in Fig. 5.  The dot-dashed 
lines in the (x,z) plane show the paths traced out by the maxi- 
mum value of the field of the reflected beams. The onset of 
the tail of the reflected wave here is somewhat analogous to 
the side-wave effect in the linear optics of bounded media,'* 
where the reflected beam is followed by a tail of decreasing 
intensity which propagates at the critical angle for total in- 
ternal reflection. In the linear case we know that there is no 
surface wave in the S polarization, and the reason for the 
appearance of a tail in the reflected beam is diffraction back 
into the first medium of the transmitted beam which is graz- 
ing along the surface. In the situation under discussion here, 
the role of this transmitted beam is played by the NSW, and 
the secondary reflected beams arise because of an oscillatory 
relaxation to stationary solution. The "nonlinear side wave" 
is of a pulsating nature, stretching out over substantially 
greater distances along the surface and having an intensity 

higher than that of a linear side wave. 
Let us summarize. The increase in the displacement of 

the reflected beam was observed previously in numerical cal- 
culations in Ref. 3. In that study, however, this effect was not 
explained, primarily because the authors were not familiar 
with the stability properties of NSWs, and they did not study 
this question specifically. In our own analysis we have seen 
that the huge Goos-Haenchen effect can be explained in a 
simple way in terms of the excitation of the unstable branch 
of NSWs. It follows in particular that by optimizing the pa- 
rameters of the Gaussian beam (to satisfy the conditions p ,,, 
p2-+0), one can raise this displacement to very large values. 
Furthermore, one of the basic results of Ref. 3 was that it was 
completely impossible to excite NSWs by means of Gaussian 
beams. Our own analysis shows that this is not true. If the 
energy in a Gaussian beam exceeds the critical value re- 
quired for the excitation of NSWs, the initial beam can decay 
into NSWs and secondary beams move away from the inter- 
face. An important point is that it is possible to excite NSWs 
of both the stable (!) and unstable branches. Figure 5 shows 
only one of the possible realizations of this process, although 
the excitation of NSWs would appear to be possible over a 
rather broad range of parameters of the Gaussian beam. 
Further studies will be required to resolve this question. 

5. CONCLUSION 

These numerical simulations have led to several inter- 
esting new conclusions about the behavior of light beams 
propagating near an interface between linear and nonlinear 
media. 

1) The NSWs which exist at an interface may be either 
stable or unstable, depending on their effective refractive in- 
dex. 

2) There are two ways in which an NSW of the unstable 
branch can decay. In one case, and NSW is ejected into the 
linear medium, and energy propagates in the form of a beam 
which moves away from the interface at an angle greater 
than the critical angle for total internal reflection. The sec- 
ond type of decay results in the conversion of an NSW of the 
unstable branch into an NSW of the stable branch. 

3) Nonlinear surface waves of both the unstable and 
stable branches can be excited by Gaussian light beams 
which are incident on a interface from a linear medium at 
grazing angles. This circumstance is of fundamental impor- 
tances for the planning of experiments, since in this case the 
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excitation of surface waves does not require additional cou- 
pling elements such as frustrated-total-internal-reflection 
prisms or diffraction gratings on the surface. Such elements 
are known to be necessary for the excitation of linear surface 
waves. 

4) The excitation of an NSW of the unstable branch by a 
Gaussian beam can give rise to a hugh Goos-Haenchen ef- 
fect, i.e., a displacement of the reflected beam from the geo- 
metric-reflection line. 

5) During excitation of an NSW of the stable branch by 
a Gaussian beam, the reflected wave may be of a pulsating 
nature; i.e., it may move away from the interface as a train of 
light beams. 

These effects could be tested experimentally at, for ex- 
ample, an interface of an artificial nonlinear medium with a 
large nonlinear coefficient a such as has been used in experi- 
ments carried out to detect bi~tability.~ 
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