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Stimulated Raman scattering (SRS) of light pulses interacting coherently in a resonant three-level 
medium is studied numerically and analytically. The Stokes wave is trapped nonlinearly in the 
pulse interaction region for a wide range of parameters, which results in a high coherent SRS 
efficiency. Soliton solutions describing 100% conversion of energy into the Stokes wave are 
derived by the inverse scattering method. 

1. INTRODUCTION 

Interest has increased recently in stimulated Raman 
scattering (SRS) in resonant media, because such scattering 
may be accompanied by effective frequency conversion and 
substantial shortening of light pulses. For example, frequen- 
cy conversion and pulse shortening were achieved experi- 
mentally in Refs. 1, 2, where excimer lasers with ~ 5 0 %  
efficiency and various metal vapors were used. There are two 
reasons for the special interest in coherent transformation of 
resonance radiation. First, intense short pulses can propa- 
gate without losses in resonant absorbing  material^^.^; sec- 
ond, the resonant interaction of light pulses under these con- 
ditions is highly nonlinear. According to Ref. 5, the 
efficiency of three-frequency parametric interaction among 
ultrashort radiation pulses can reach 100% in resonant me- 
dia if the oscillator strengths for the resonant transitions sa- 
tisfy certain conditions. Frequency conversion occurs over a 
distance of a few light pulse lengths in the medium. 

It was pointed out in Ref. 6 that coherent interaction 
with the Stokes wave can substantially shorten radiation 
pulses in resonant three-level media when the ratio of the 
oscillator strengths is large. Because the interacting light 
pulses travel at widely different velocities in the three-level 
medium, the conversion efficiency (defined as usual6 as the 
total amplification along the pulse interaction length) must 
be low if the oscillator strengths are comparable. 

In the paper we discuss a new effect which involves non- 
linear trapping of a Stokes wave during coherent SRS in a 
resonant medium. We show that in addition to the amplifica- 
tion, the dispersion of the Stokes wave also plays an impor- 
tant role and causes the pulses to be coupled. The nonlinear 
trapping can increase the efficiency to nearly 100%. 

2. FUNDAMENTAL EQUATIONS AND LINEAR ANALYSIS 

We will analyze the interaction among coherent light 
pulses in a resonant three-level medium for the A-configura- 
tion discussed in Ref. 6. For pulse lengths less than the relax- 
ation times of the medium, the equations 

da, i 
-=- 
dt  2ii ( P ~ E ~ ' ~ ~ + P ~ ~ ~ * ~ ~ ) ,  

govern the amplitudes for the level population and the 
smooth envelopes E,, E, of the pump and Stokes waves, re- 
spectively. 

Here N is the number density of the resonant particles; 
p w and n ,,, are the dipole moments, frequencies, and 
nonresonant refractive indices for transitions 1-3 and 2-3. 
We will assume throughout that only level one is populated 
initially: lal[ = 1, la,[ = la,/ = 0. Two pulses are input to 
the medium-an intense pumping pulse, and a weak radi- 
ation pulse resonant with the 2-3 transition. 

We consider the initial stage of the amplification of the 
weak Stokes signal during interaction with a pump pulse 
whose propagation velocity is independent of time. Al- 
though a linear analysis of the signal gain at the frequency w, 
will not enable us to find how much of the energy is trans- 
ferred to the Stokes wave, it will permit us to determine the 
principal features of pulse interaction during coherent reso- 
nant SRS. In the absence of the Stokes wave, the pump pulse 
travels in a resonantly absorbing two-level medium. As the 
input signal evolves in time, it splits into separate compo- 
nents which travel at different velocities without attenu- 
ation. In the limit of large separation, these component 
pulses have area equal to 2~ (i.e., they are 2 ~ - p u l s e s ~ * ~ )  

2 A  t-xlu 
El= - sech - , 

Pi'G Z 

whose velocity u  and duration T are related by 

In the linear approximation, Eqs. (la), ( lb)  imply the equa- 
tion 

t 

for the amplification of a weak Stokes signal pumped by a 
2~-pulse. In this case, a, = sech[(t - x/u).r-'1 gives the de- 
pendence of a, on x and t .  
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It would appear that the amplification of the Stokes 
wave during interaction with the 2~ pumping pulse could 
readily be found by the following simple reasoning. The re- 
gion where the population a, is high acts as an amplifying 
medium for the field E2; the diameter of the region where 

1 is comparable in order of magnitude to the length 
L = VT of the 2~-pulse in the medium. If the duration T, of 
the Stokes pulse is much less than T, we can roughly approxi- 
mate the right-hand side of (3), which describes the amplifi- 
cation, by the expression 2~Np:w,~~E,/n,fi. The interac- 
tion length Lint is equal to v~c/(c - v) and the gain parameter 
in the exponential is given by 

2 n N p z 2 ~ z ~ s  ~ 1 2 ~ 0 2 ~ ~  

L in t -  - 
nz%c p 1 2 0 i ~  

This rough analysis leads to the result 

(compare with Ref. 6) .  In this approach we completely ne- 
glect the influence of the pumping pulse on the velocity of 
the Stokes signal; the above estimate is certainly incorrect if 
the Stokes pulse is retarded or trapped. 

We next estimate the parameters of the medium for 
which the Stokes wave can be trapped in the pulse interac- 
tion region. With respect to a coordinate system moving 
with the pumping pulse, the escape of amplified radiation 
from the interaction region is described by the expression 

(c ln-v )  (aE21dx) - (c ln-v )  ( E , / ~ T ) ,  

which by (2) is of order ( 2 7 7 ~ ~ :  w,/n ,A)TE,, and the amplifi- 
cation is -(2?rNp:w2/n2fi)~E2. The Stokes wave will be 
trapped if the gain in the interaction region exceeds the field 
losses in the moving coordinate system, i.e., if p: w, > p: w ,. 
We will show below that this estimate agrees in order of 
magnitude with the result found by solving (3) exactly. 

If we use the dimensionless variables f = ( t  - X/V)/T 

and z = xn,/cr and make the change of variable 

we can rewrite Eq. (3) in a coordinate system moving at ve- 
locity v in the form 

If we assume a solution of (4) of the form u -exp(yz), the 
standard change of variables Y = (1 + tanhf )/2 reduces (4) 
to the hypergeometric equation 

d2u l - v  d u  
~ ( l - Y )  -+(,-  d Y 2  Y ) - + x 2 u = 0 .  dY 

Here we have written 

The solution of (5) satisfying the boundary condition u 4  
for f- - w is7s8 

1 +v 
u= y 0 + ~ ' / 2 ~ ( - ~ +  - - - ; )  l f v  3 f v  (6)  2  2 

In this case the condition that the field be bounded for 
f- f co is equivalent to 

[ Y ( I - Y ) ]  '" (duldY)  <const for Y+O; 1 .  

If we use the connection formula for the hypergeometric 
function when the argument Y is replaced by 1 - Y (cf. Refs. 
7, 8), we find the asymptotic expressions 

for the fields. Here D is an arbitrary constant. 
Equation (7) and the conditions that E, be bounded for 

g- + co imply that for x < 1/2 there exist two solutions in 
the continuous spectrum (Y =  AT, I d  = 0 ,  where A is the 
displacement of the Stokes signal frequency from resonance 
for the 2-3 transition). These solutions describe the amplifi- 
cation of a continuous signal and behave asymptotically as 
E2 - exp[iA (t - x/c)] for f- + co , which corresponds to ra- 
diation of frequency w, + A .  The gain of the weak wave can 
be calculated from the ratio of the signal amplitudes for 
5-2 co: 

IEz ~ , t ( ~  ch2 ( n A ~ / 2 )  
g ( A )  = ----- = 

I E2 in 1 a ch2 (nAd2) - sin2 n x  
' (8)  

For a weak signal of arbitrary form, the amplification 
depends on the ratio of the lengths of the 2~ and Stokes 
pulses. If 7, >T, the gain is given by g = 1 + tan2(n-x); if T, <T, 

g is considerably smal1er:g = 1 + ( ~ J ~ ) a x t a n ( r x ) .  The gain 
for radiation at frequency w, becomes infinite for x = 1/2, 
which corresponds to the first discrete eigenvalue for which 
the solution for E, is localized near the 2n--pulse. In dimen- 
sionless quantities, this condition is equivalent to 
p;w2 = pi w1/4, which is similar to the estimate found 
above. The number n of discrete states for x > 1/2 is equal to 
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the integral part of 2x, and the corresponding eigenvalues 
arev(k ) = 2% - k fork = 1,2,. . . ,n. Forlargedistances, the 
localized solutions (x > 1/2) have the following limiting be- 
havior in terms of dimensional quantities: 

The Stokes wave is compressed if v >  1, i.e., if p;w, 
>,u:o,. If the ratio of the resonant transition oscillator 
strengths is large, the rise time of the amplified signal is sub- 
stantially less than the pump pulse length. The length of the 
rising and falling edges of the Stokes signal depends on the 
velocity of the pumping 2n--pulse, which in turn depends on 
the pulse length (2). The falling edge is shorter than the rising 
edge if c / u > ~ v / ( v  + 1). If the ratio of the oscillator 
strengths is large (,u;o,gp~w,), the rising edge of the Stokes 
pulse is shorter than the falling edge if and only if v < c/2. 

In order to calculate the efficiency of coherent SRS we 
must analyze the nonlinear stage of the pulse interaction. We 
did this in the general case by solving system (1) numerically; 
however, the nonlinear analysis can be carried out analyti- 
cally if the oscillator strengths are equal. 

3. SOME EXACT SOLUTIONS 

Inverse scattering methods were used in Ref. 5 to study 
the interaction of radiation of two frequencies with a three- 
level system with a common lower level (the V-configura- 
tion) and equal oscillator strengths. This method can also be 
applied to the A-configuration under the same conditions 
n, =n,, x2 = p ~ 0 2 / p ~ o I  = 1. We consider two matrix 
 equation^^,'^ 

with the property that their consistency condition is equiva- 
lent to (1): 

aA/dl;+aB/a~=i [A,  B] . (12) 

In terms of the dimensionless variables 

we can choose the matrices A and B to be 
-h 0 E i '  

1 
(13) 

whereA is the spectral parameter, J i s  a diagonal matrix with 
constant elements, and the fields of both of the pulses appear 
as the elements of the "potential" matrix U; p is the density 
matrix of the medium: pv = aiaRf. 

The potential U (r,C ) is expressible in terms of a matrix 
function $(r,f,A ) associated with the solution of (lo), (1 1) 
(Ref. 9): 

U =  lim h[J,g]. 
I=.I-+" 

The number of zeros of the function $(A ) in its domain of 
analyticity is equal to the number of solitons into which the 
potential U (r,g = 0) splits [U (r,c = 0) is specified in terms of 
the pulse fields E , ,  at the entrance to the medium]. The soli- 
ton parameters depend on the location of the zeros in the A 
plane, which in turn is determined by U (r,f = 0). If there are 
N zeros A,, A,, . . . , A,, we can write $(A ) in the form 

1P 

wherep, = ARf and the elements of the matrices D, are given 

by 

Like the zeros 4, the vectors mj(0) are determined by the 
potential at the input, and the dependence m,(f ) can be cal- 
culated using Eq. (1 l). We can find the vectors X, by solving 
the equations 

Equations ( 14)-( 16) yield the expression 
N N 

1 - 2  M i  X 3 2 ( M i )  2 ( 3  (18) 
I 

for the N-soliton solution. 
In what follows we will need the scattering matrix S (A ), 

which is defined by the expression 

where q * are two distinct fundamental matrices of solu- 
tions of Eq. (10); they are uniquely determined if we impose 
the asymptotic conditions e, *-+exp(i/ZJr) as r+ + w . S (A ) 
can be factored as 

where S + and S - are upper and lower triangular matrices 
whose diagonal element are the principal minors of S (A ): 

The zeros of S * determine the soliton parameters.9.10 
Moreover, the vectors mj(0) span the kernel of the matrices 
S * (A,), which are singular for A = A,: 

[by the definition of the operator kernel, S * (A,)mj = 01. Be- 
cause of (22), Eq. (1 1) and the limiting behavior ofthe matrix 
B as r+ w determine the dependence of m, on f :  
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mj(g) =exp [-iB, (A,) b ]  mj(0), B,=B ('c-0"). (23) 
m,=ker S+ (1%) = 

We first consider the one-soliton solutions. Let the zero 

where the aj are the components of the vector m(0). We find 
from Eqs. (17), (18) that 

A, = iv, where 7 is real. (The case of arbitrary A,, 
Re A, = Aw # 0, corresponds to off-resonance coherent 
SRS. The solutions in this case are similar to the ones derived 
below, except that the dependence of the pump pulse veloc- 
ity on the pulse length is different.) We will assume that the 
medium was in the ground state fort+ - co and that all the 
particles were in level 1. Then in the general case we have 

In terms of dimensional variables, 

of the matrices S + lie on the imaginary axis in the A plane: 
P3  

M ( T ,  5)=  

Here both pulses are of length T = (217fl ) - I ,  the velocity u l  of 
pulse E l  is related to T by c/vl = 1 + f l  '?, u, = c, and the 
constants p,,, determine the soliton coordinate and depend 
on which fields enter the medium: p 1 ,  = ln(a,/a,,,). Solu- 
tion (26) shows that for x+ - co all of the soliton energy is 
concentrated in the pumping 2r-pulse, 

at 
az 
a3 

2F, t-xlv 
El + - sech (2 -(P,) , &+o, 

PiZ Z 

PI  
P2 , mz=ker S+(L,)  = 

as exp (q't-f12q) 
a2 exp q r  

as exp(-q~) 

When x+ + co , the energy of pulse El is completely trans- 
ferred to the pulse E,, which travels at v, = c without attenu- 
ation and is also of are 277, i.e., 

(30) 

7 (24) 

2ti t-xlvz 
E1+O, E, + - sech( --- -(P,) , x++w. (28) 

P 7- 7 

The characteristic energy transfer length 

is comparable to the length of pulse El and 100% conversion 
occurs over a distance x, = 2L ln(al/a2). For a, #0, a, = 0 
and a, #O, a, = 0, (25) specializes to solutions which de- 
scribe the propagation of the single-frequency 2r-pulses El 
and E,, respectively. 

To construct the two-soliton solutions, we must specify 
the two zeros A,, A, or S * in the complex A plane (we take 
them to lie on the imaginary A axis, so that the fields are in 
exact resonance with the corresponding transitions) and the 
two vectors 

The solution is readily found from (17), (18), and (30). If all 
the components of m,, m, are nonzero, the solution de- 
scribes 100% transfer of energy from the two pumping 2r -  
pulses to the Stokes wave. 

We will omit the elaborate expression for the exact solu- 
tion, which is the two-soliton analog of (26). The behavior of 
the two-soliton solutions is very different if some of the com- 
ponents a,,,, Dl,, of the vectors (30) vanish (a,#O, 0, = 0). 
For example, if a, = 0, = 0 then the two-soliton solution 
describes a collision between two 2 r  pumping pulses in a 
two-level medium and is given by the expression in Ref. 9. If 
a, =Dl  = 0, the solution describes two Stokes signal pulses 
traveling at the speed of light in a transparent medium (i.e., 
without attenuation). If one of a, or p, vanishes, the two- 
soliton solution describes partial energy transfer to the 
Stokes signal and is a superposition of the two 2 r  pumping 
pulses for t+ - co and a superposition of the Stokes signal 
and pumping pulse (both of area 2 r  for t- + CO.  

The case Dl = a, = 0 is of interest with regard to the 
interaction of radiation with a three-level medium in the A- 
configuration. The two-soliton solution in this case has the 
form 

t-xlv, 
~ e x p  ( - --- +(pl exp ---- 

'ti ( t-:ivz 9 )  , 

This solution is completely analogous to the two-soliton 
solution for a V-medium.' It describes the passage of a 2 r -  
pulse E, through a 2r-pulse E, in such a way that the ampli- 
tude, form, and velocity of both pulses are unchanged: the 
only change is that the pulse phases are shifted by 
4 = ln[(r, + T2)/(T1 - T,)] relative to one another. The pulse 
E, moves in a transparent medium apart from the region of 
interaction with pulse E,, where it is amplified by the medi- 
um. If r1 ZT,, the pulse interaction length and phase shifts 
increase logarithmically because the competing effects of 
amplification, dispersion, and drift become comparable. The 
passage of the Stokes 2r-pulse through a 2 r  pumping pulse 
without any transfer of energy has a simple explanation if 
T, (7. I t  is known4 that when a 2~-pulse crosses a resonant 
medium (absorbing or amplifying), it leaves the medium in 
its initial state. When the Stokes pulse travels near the 277 
pumping pulse, the leading edge of the Stokes pulse takes the 
particle from state 3 to state 2, after which the trailing edge 
returns the particle to state 3. The trailing edge of the pump- 
ing pulse puts the entire system into the initial state, for 
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which la, I = 1. The net result of this interaction is that there 
is no change in the upper level populations and hence no 
energy transfer from one pulse to the other. 

In practice, the form of the input pulses generally 
differs from the soliton solutions for all x and t .  From a 
practical viewpoint it is therefore of interest to consider the 
time evolution of the Stokes wave and pump pulses when the 
pulse shapes at the entrance to the medium are specified. The 
pulse shapes will be described by soliton solutions for suffi- 
ciently large distances. Some of these soliton solutions de- 
scribe 100% transfer from the pumping pulse to the Stokes 
signal, others describe partial transfer, while still others de- 
scribe pulse interaction with no energy transfer. 

In order to ascertain which case actually occurs, we will 
systematically examine what happens when two square- 
wave pulses enter the medium simultaneously, 

We factor the scattering matrix S and note that only the 
zeros of the element S,, in (2 1) are relevant as far as solitons 
are concerned. All three components al,2,3 of the vector m(0) 
spanning ker S +(A 0) are in general nonzero, so that we have 
two nonvanishing fields [cf. Eq. (25)l. However, if$,, # 0 
andS,,S,, = SZ3S3,, the condition S+(A,)m(O) = 0 automat- 
ically yields a, = 0, i.e., El = E, = 0. We will therefore con- 
sider only the case S,, = 0. The matrix S + (A 0) is then given 
by 

u1 
i - exp (ihozl) sin 771 

where y = (A + lull2 + 1 ~ ~ 1 ~ ) ' ~ ~ .  The value A, is deter- 
mined by the equation 

U z  
i  - exp (ihoz1) sin yzi 

cos YT,+ i(ho/y)sin ~ T , = O .  (34) 

, (33) 

The threshold condition for a single zero A, = iv to ap- 
pear in Eq. (34) is 

Although this condition coincides with the threshold for for- 
mation of simultons (two-frequency pulses which propagate 
together in a V-medi~m),~," the nature of the solution is 
completely different. Indeed, if we solve S +m = 0 for u, # 0, 
we get 

al=O, u2=-iu3 
I U ~ I ~ + I U Z ~ ~  

~ e x p  (-112,) sin yzl .  (35) 
7 uz' 

The asymptotic form of the resulting pulse can be found by 
substituting a,,,,, from (35) into the solution (25). We find 
that a single Stokes wave is formed for arbitrarily small input 
fields u,, i.e., all of the energy in the pumping field is trans- 
ferred to the Stokes signal. The conversion length diverges 
logarithmically as u2--to. 

The number of solutions of Eq. (34) increases with the 
pumping field amplitude (energy per pumping pulse). For 
3n < (8 : + 8 :)'/' < 5n the matrixS +(A ) has two zeros, and 
the pulses which are produced subject to the initial condi- 
tions (32) are given asymptotically by 

whereAIs2 are the roots of Eq.(34) and t,,, = T, The 
solution (36) describes energy transfer from the pump field to 
the Stokes pulse, which has two peaks and travels at the 
speed of light. The first peak is shorter than the second, and 
in each case the energies are proportional to the durations. 
The form of the solutions is analogous for high pump pulse 
energies at the input-all the energy is transferred to the 
Stokes signal, which has N peaks, where N is the number of 
roots of Eq. (36). 

Another case which can be solved completely occurs 
when the propagating pulses are nonoverlapping square 
waves at the input: 

The matrix S + is then 

where 

~ 1 ~ 2 '  
Slz = -exp[ih, ( T ~ - T ~ - T ~ )  ]sin ri sin r2, 

-ti72 
iui 

8 1 3  = -sin r1 exp ( ihor l ) ,  
71 

Lo S2,= (cos r , f i  - sin I', ) erp ( - ihor i ) ,  
Y 1 

iho 
s33=exp[-ih0(s+.-n) I (  oos r ,  +-sin F,,) 

7 1 
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Pump Stokes 

10 20 30 

FIG. 1. Pulse interaction near the critical point 
x = 0.5: a) x = 0.4; b) x = 0.6. In both cases, the 
27  pumping pulse (of duration T, = 1.2247 and 
velocity u,  = 0.4) enters the medium after a de- 
lay TI  = 6 (cf. the curve with the open circles). 
The weak Stokes seed wave (7, = 1.0, u, = 1.0, 
amplitude a, = 0.05) enters the medium after a 
delay T, = 12 (solid curve). For clarity, the 
propagation of the Stokes wave in the absence of 
interaction is also shown (dashed curve). 

Length, arb. units 

Here TI = ~ 1 7 1 ,  r 2  = ~ ~ ( 7 3  - 72), YI,Z = (A + I u ~ , ~  12)1'2. The above examples of evolving square-wave input 
The threshold condition (26) for a soliton solution to appear pulses show that in general, the electromagnetic field energy 
is seen to coincide with the condition for formation of the 27~- is concentrated in the Stokes signal at asymptotically large 
pulse El. The soliton parameters are determined by the con- distances. This occurs because the soliton solutions which 
stants do not describe energy transfer to the Stokes signal are un- 

ui lu  l 2  stable with respect to decay of the pumping pulses. This as- 
ai=-i - exp (ihori) sin J?,( i - --& sin2 J?,) , sertion was proved above for the special case of a 27~ pump- 

71 72 
(39) ing pulse and has been confirmed in various typical cases by 

uz 
az=-i- exp [iho (r2+r3) ]sin J?,, solving (1) numerically. 

72 
4. NUMERICAL CALCULATIONS 

The exact nonlinear calculations show that in all of the 
Thus for arbitrarily small input fields u,#O, all three corn- cases considered, a significant amount of energy is trans- 
ponents a,,,,, are nonzero, which implies that all of the ener- ferred to the Stokes frequency when pulses interact during 
gy in E, is transferred to E,. The conversion length diverges coherent SRS. However, the following question arises (it is 
logarithmically as the amplitude u, of E2 tends to zero: 

uilri 2 ( ~ s + ~ z - ~ i )  sin 
z.=2~1n(-exp - 

- udyl sin rz 
Pump Stokes 

T=3Y 

Pump Stokes 

Length, arb. units 
Length, arb. units 

FIG. 2. Evolution of the pulses in media with x = 1, 1.5, and 3 at equal 
times, for the same input pulse parameters as in Fig. 1. The amplification, 
pulse shortening, and shift ahead of the Stokes signal are seen to increase 
with x. In addition, for large x there is a prolonged transfer of excitation 
on the trailing edge of the pulses, which results in an elongated weakly 
damped oscillating "tail." The Stokes seed (dashed curve) is shown to 1: 10 
scale (its amplitude a, is equal to 0.05). 

FIG. 3. Collision of two 2lr-pulses in a medium with x = 1.0. The Stokes 
pulse (T, = 1.0) enters the medium after a delay T, = 32 and overtakes the 
pumping 2~-pulse (7, = 2.0, u ,  = 0.2, TI = 7). At time T = 42 the field 
pattern corresponds to passage of the Stokes pulse through the pumping 
pulse [cf. Eq. (31)l; however, this solution is unstable, so that all of the 
energy is transferred to the second Stokes pulse. 
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Pump 

'lo[ T = l 5  
Stokes 

13'0 

Length, arb. units 

FIG. 4. Situation for a pump pulse of large area ( 6 ~ ) ;  T, = T, = 2.0, 
T, = T, = 12; a, = 3.0, a, = 0.05. The competition between pumping of 
the Stokes pulse and decomposition of the pump pulse into separate 2a- 
pulses is evident. The final form of the Stokes pulse repeats the form of the 
pumping pulse at the instant the pumping starts to dominate over decom- 
position. The Stokes seed (dashed curves) is not shown to scale. 

associated with the special nature of the case x = 1, which 
can be solved by the inverse scattering method): Is the pump- 
ing of the Stokes signal merely a consequence of a hidden 
symmetry of system (1) for x = 1, or is it a general property 
of coherent SRS valid whenever the trapping condition 
x > 1/2 is satisfied? In order to answer this question we must 
study the nonlinear stage of scattering for x # 1. To this end 
we carried out numerical experiments covering the interval 
0.3gxg3.0. The difference scheme was a modification of the 
one in Ref. 1 1; it was second-order in space and time and was 
fully conservative in the sense that the integrals 

were left invariant (here 1 is the length of the medium). These 
integrals express conservation of the number of quanta in the 
field and in the resonant medium participating in the inter- 
action. We used two methods to test the accuracy of the 
difference scheme. First, we compared the solution found 
numerically for x = 1 with the exact analytic solution; sec- 
ond, we monitored the accuracy for x # 1 by performing test 
calculations with a smaller mesh size. We found that the 
solutions were accurate when a grid spacing equal to one- 
tenth the characteristic pulse length was employed. The er- 
ror in the solution ranged from lop2  to lop3, depending on 
the problem. 

Figure 1 illustrates the markedly different character of 
the interaction for x < 1/2 and x > 1/2. For example, when 
x = 0.4 (Fig. la) the Stokes pulse is not significantly ampli- 
fied; the pumping pulse gives up only a small fraction of its 
energy, and its area remains equal to 277. The duration of the 
Stokes signal also increases appreciably. By contrast, for 
x = 0.6 (Fig. lb), all of the energy of the 27.r pumping pulse is 
transferred to the Stokes wave. The trapping of the trailing 
edge of the Stokes pulse in the interaction region is apparent 
in this case, and the SRS quantum efficiency is 100%. The 
conversion length and the relations between the leading and 
trailing edges of the Stokes signal are in complete agreement 
with the results of the linear analysis. For x > 1, most of the 
energy is converted into the Stokes signal over short dis- 
tances in the medium, and considerable modulation of the 
trailing pulse edges is observed. Figure 2 shows some pulse- 
forms calculated for identical times for three oscillator 
strength ratios x = 1,1.5,3. Figure 3 illustrates a collision 
between two 2~-pulses (a Stokes pulse and a pumping pulse). 
The two pulse shapes at the input were specified so that the 
pulse lengths were much less than the time interval between 
them. To within an exponentially small term, this initial con- 
dition coincides with the asymptotic behavior of the two- 
soliton solution (3 1) for t-+ - CO, which describes a collision 
of pulses without any energy transfer. During the initial 
stage of the collision, the pulses pass through one another as 
described by solution (3 1); however, after the Stokes 27~- 
pulse overtakes the pumping 27.r-pulse, the latter transfers 
energy to the Stokes wave. This occurs because the two-soli- 
ton solution (3 1) becomes unstable, with the result that all of 
the energy is transferred to the Stokes signal if the initial 
conditions differ even very slightly from the exact solution. 
Figure 4 illustrates the coherent SRS process for an input 
pulse of large area (677). In this case, all of the energy is trans- 
ferred to the Stokes signal, which has three peaks. 

We thank A. P. Napartovich and A. M. Dykhne for 
helpful discussions of the above results. 
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