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The interaction of optically absorbing particles with light puts these particles in a nonequilibrium 
distribution among magnetic sublevels. The effect of this deviation from equilibrium on the 
macroscopic rotation of an absorbing gas with respect to a buffer gas is analyzed. Particles illumi- 
nated by circularly polarized light acquire a magnetic dipole moment, which gives rise to a force 
which rotates the gas. This force is analogous to the Magnus force in classical hydrodynamics. 
Linearly polarized light gives the particles a magnetic quadropole moment with an alignment axis 
perpendicular to the axis of the light beam. As a result, the aligned particles experience an 
anisotropic friction force with a nonzero curl. A system of four vortices arises in the plane perpen- 
dicular to the axis of the light beam. The vortices and the nonequilibrium increment in the density 
of absorbing particles decay in a power-law fashion outside the light beam. 

51. INTRODUCTION 

The absorption of light results in an exchange of angu- 
lar momentum between the photon and the gas particle, and 
the distribution of particles among magnetic sublevels devi- 
ates from equilibrium. The absorption of circularly polar- 
ized light, for example, gives the particles a magnetic dipole 
moment,' a magnetic quadrupole moment, and higher mul- 
tipole  moment^.^.^ We are naturally interested in how the 
field-induced microscopic moment of the particles is related 
to the macroscopic angular momentum of the gas. It is clear 
from conservation of angular momentum that the internal 
moment of the particles must act through collisions to cause 
a macroscopic rotation of the gas.4 We know, however, that 
this effect is not described by the Boltzmann collision inte- 
gral S. Kagan and Mak~imov'.~ have shown that a correla- 
tion arises between the microscopic and macroscopic mo- 
ments only when the nonlocal nature of the collision integral 
is taken into account. The reason is that the local collision 
integral S conserves the macroscopic angular momentum of 
the gas. From momentum conservation we find that the 
macroscopic angular momentum is conserved: 

Sp ( [ r p l S )  =[r, SP ( P S )  I ,  (1.1) 

where Sp denotes a trace over the quantum numbers of the 
particles together with an integral over the momenta p. The 
effects which stem from the nonlocal nature of the collision 
integral are small quantities which are smaller by an addi- 
tional factor on the order of the "gaseousness" parameter d / 
I ,  where d is the interaction range, and I is the mean free path 
of the particles. Accordingly, if we assume that the light 
rotates the gas only by virtue of the nonlocal nature of the 
collision integral we find that the rotation of the gas is ex- 
tremely weak. Specifically, the typical macroscopic rotation 
velocity u will be small in comparison wih the average ther- 
mal velocity of the gas absorbing the light6: 

u-GdlR, (1.2) 
since the ratio of d to the macroscopic scale radius R > I is 
small (this macroscopic radius might be, for example, the 
cross-sectional radius of the light beam). 

A two-component gas, consisting of a component 
which absorbs light and one which does not interact with 

light (a buffer gas), has a property which distinguishes it 
qualitatively from a single-component gas: By virtue of (1. 1), 
when the momentum of the mixture is zero the macroscopic 
angular momentum of the mixture will also be zero. How- 
ever, the macroscopic angular momenta of the individual 
components may be nonzero, since, according to (1. I), 

Sp ( [ r p l & ) = [ r ,  Sp ( p S , ) I = - [ r ,  Sp ( p S Z )  I ,  (1.3) 

if the momenta of the individual components are not zero, as 
is the case, for example, in photoinduced diffusion7 or pho- 
toinduced drift.8 Here S = S, + Sz, where Si is the Boltz- 
mann collision integral for mixture component i. We see 
from (1.3) that, in contrast with the rotation of the gas as a 
whole, a rotation of the individual components arises even in 
first order in the gas parameter d /I, and the corresponding 
rotation velocity is greater by a factor of I /d  than the rota- 
tion velocity of the mixture as a whole, (1.2). In this paper we 
analyze the vortex motions of the components of a gas mix- 
ture which are excited by light which is resonant with one 
component of the mixture. 

92. DIFFUSION OF PARTICLES WITH AN EQUILIBRIUM 
DISTRIBUTION AMONG MAGNETIC SUBLEVELS 

The macroscopic behavior of the light-absorbing gas is 
described by the equations 

wherep(r) and j are the mass density and mass flux density of 
the absorbing particles, and (1/2)EZp(r) is the pressure. The 
buffer gas, which does not interact with the light, exerts a 
friction force on the absorbing particles, given by 

Here m is the mass of the absorbing particle, and Si is the 
collision integral of an absorbing particle in the state i = m,n 
for collisions with the buffer particles. 

Before we take up the effects resulting from the creation 
of a nonequilibrium distribution of particles among their 
magnetic sublevels M by the light, we wish to recall the 
structure of the frictional force for the case of an equilibrium 
distribution in M (Ref. 7). As the particles absorb light, they 
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go from the ground state n  to the excited state m. The ab- 
sorbing particles are thus a mixture of particles of two spe- 
cies: n  and m. We restrict the present discussion to the case of 
exact resonance between the light frequency w and the fre- 
quency w,, of the m-n transition (w = w,,). We also as- 
sume that the medium is optically thin and that the lifetime 
(2/r, ) of the excited state is considerably shorter than the 
time spent by an absorbing particle in the light beam. The 
latter assumption means that excited particles are present 
only in the light beam. On the other hand, there are fewer 
unexcited particles in the beam than outside it. We know 
that spatial inhomogeneity of the density gives rise to diffu- 
sion fluxes. In this case, therefore, two oppositely directed 
fluxes arise: a flux (j,) of excited particles away from the 
beam and a flux (j, ) of unexcited particles into the beam. The 
absorbing particles experience a friction force7 

Fo=-vmjm-vnjn=- (vm-vn) jm-v,j. (2.2) 

Here vi is the rate at which the particles of species i = m, n 
collide with the buffer particles [expression (A.l) from the 
Appendix], and j = j, + j, is the total mass flux density of 
the absorbing particles. If r, (v, , the flux density of excit- 
ed particles in the approximation linear in the light intensity 
is7 

among magnetic sublevels caused by the light affects the 
density of the frictional force F. 

§3. DIFFUSION OF ORIENTED PARTICLES; THE MAGNUS 
EFFECT 

As particles absorb circularly polarized light, they ac- 
quire a magnetic dipole moment, characterized by the orien- 
tation vector p (Refs. 2, 3, and 9). Like the excited particles, 
the magnetically oriented particles are present only in the 
light beam under the conditions specified above. By analogy 
with (2.3), their flux density is proportional to Vx, and their 
density to x. The oriented particles thus diffuse out of the 
field region at a velocity u given approximately by 

u=- (VZ/2v) v 1n x. (3.1) 

We know from hydrodynamics, however, that if a cylinder 
which is rotating at an angular velocity f l  moves through a 
gas at a velocity u it will experience a Magnus force a [ufl]. 
There is an analogy here between the diffusing magnetically 
oriented particles and a rotating cylinder which is moving at 
a velocity u. According to this analogy, the absorbing parti- 
cles should experience a friction force in addition to that 
given by (2.4): 

Vzn 
jm=- - V X ,  X =  ' I (2.3) GF,=v, [UP] =- viVZEip - rot (, k X )  

4vm (a~+i)rr, ~ V X  

where p is the equilibrium density of absorbing particles, 
which we assume to be small in comparison with the density 
of buffer particles; x is the saturation parameter for the tran- 
sition between the two degenerate levels m and n  with identi- 
cal spins J, = J, = 4 G, = E, (mild ( ( n ) / 2 f i f i  E, is the 
component of the electromagnetic field; (mild [In) is the re- 
duced matrix element of the dipole moment of the transition 
m-n; r is the homogeneous width of the absorption line, 
which we assume to be large in comparison with the Doppler 
width ki?; and k is the light wave vector. To streamline the 
notation we assume that the difference in collision rates 
v, - Y, is small in comparison with v, . We will according- 
ly retain the index of the quantum state (i) on the collision 
rate vi only in the difference v, - v, . We then find from 
(2.2) and (2.3) 

The first term in the expression for Fo is the potential func- 
tion. The steady-state solution of Eqs. (2.1) with the force 
F = Fo is accordingly irrotational: 

It describes a diffusive attraction of particles into the light 
beam (v, > Y, ) or repulsion from the light beam (Y, < v, ).' 
Herep, is the mass density of the absorbing particles outside 
the light beam. This effect stems from the difference between 
the rates at which the fluxes of excited and unexcited parti- 
cles are slowed (v, # Y, ). 

We turn now to the basic problem of our study: deter- 
mining how the deviation from an equilibrium distribution 

The proportionality factor v, in (3.2) has the meaning of a 
collision rate [see expression (A.2)]. The pseudoscalar 
<, = pk/pk a x is proportional to the ratio of the density of 
the oriented particles to the total density of absorbing parti- 
cles. When the direction of the circular polarization is re- 
versed, <, changes sign. For linearly polarized light we have 
6, = 0. Solving Eqs. (2.1) with the frictional force 
F = Fo + SF, in the steady state, we find a distribution of the 
density of absorbing particles which is the same as (2.5). 
Since SF, is not a potential force, however, the total flux 
density j is nonzero: 

This solution describes a diffusion rotation of the absorbing 
gas in the plane perpendicular to k. Momentum conserva- 
tion requires that the buffer gas rotate in the opposite direc- 
tion. 

54. DIFFUSION OF ALIGNED PARTICLES 

How does the magnetic quadrupole moment of the par- 
ticles affect the motion of the gas? To eliminate the Magnus 
effect, discussed above, we assume that the light is linearly 
polarized. In the field of linearly polarized light, particles 
with degenerate levels acquire a magnetic quadrupole mo- 
ment or alignment.2.3.9 From the standpoint of collisions, 
aligned particles behave as ellipsoids with a major axis paral- 
lel to n = E/E. The particles aligned in the light beam dif- 
fuse out of the field region at the velocity (3. I), experiencing 
friction with the buffer particles in the process. The motion 
of these oriented ellipsoids is similar to the motion of a sail- 
boat whose keel is collinear with n and whose sail is perpen- 
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dicular to the wind direction. In our case, the wind direction 
is given by the velocity u in (3.1). In the frictional force F, the 
term collinear with Vx, in (2.4), is thus accompanied by a 
term 

vaE,zplIZ 
GF2=v2~2pn (nu) =- - 

2vx n(nVx), 

where <,or x is roughly equal to the ratio of the density of 
aligned particles to the total density of absorbing particles. 
The proportionality factor v, has the dimensionality of a 
collision rate [see (A.3)]. It can be shown that the force in 
(4.1) vanishes for circularly polarized light. 

The density of the frictional force in (4. I), in contrast 
with (3.2), has a potential part as well as a rotational part. 
The rotational part of (4.1) describes a steady-state rota- 
tional flux of particles, while the potential part gives the an- 
isotropic increment 6p(r) in solution (2.5) and also a small (in 
the limit /6F2 (/IF, ( < 1 isotropic contribution to p(r). Let us 
examine the steady-state solution of Eqs. (2.1) with the fric- 
tional force F = F, + SF,. The quantity Sp(r) obeys the fol- 
lowing equation in a cylindrical coordinate system with z 
axis parallel to the axis of the axisymmetric light beam: 

6~ (r)  =n (r) cos (29), 

where r is the distance from the axis of the light beam to the 
observation point, and the angle p is measured from the di- 
rection of n. Assuming that the cross-sectional radius (R ) of 
the cell holding the gas is large in comparison with the radius 
(a) of the light beam, and noting that the flux density of the 
particles vanishes at the cell boundaries, we find the follow- 
ing solution of Eq. (4.2) for a Gaussian beam, 
~ ( r )  = x(0) exp ( - ?/a2): 

n (r) = 
V Z E , Z P ~  (0) , G-2 

2vx 
(4.3) 

It can be seen from this expression that in the limit r -+ 0 the 
quantity 6p(r) tends toward zero in proportion to ?, while at 
r)a it has the behavior r-2; i.e., outside the light beam, Sp(r) 
decays by a power law (not exponentially!). This behavior of 
Sp(r) is qualitatively different from solution (2.5), which re- 
produces the transverse distribution of the light intensity. 

The existence of an anisotropic, weakly damped incre- 
ment Sp(r) stems from the diffusive rotational fluxes which 
carry particles out of the light beam. These fluxes appear 
because of the frictional force 6F2 in (4.1), which is generated 
by the light and which acts on the absorbing particles. Sub- 
stitutingSp(r) from (4.2) and (4.3) into the second equation in 
(2. l), we find expressions for the radial (j, ) and angular ( j, ) 
components of the total flux j: 

Outside the light beam, the flux in (4.4) behaves as r-3. As 

FIG. 1. Current lines. The x axis funs parallel to n. c2v2 > 0. 1-<, = 0.2; 
2-4, = 0.4; 3-<,, = 0.6; 4--[, = 0.8; 5-c,, = 1. 

the axis of the light beam is approached (r -+ O), the flux 
tends toward zero in proportion to r. We can construct cur- 
rent lines for (4.4): 

dr/jr=rdy/jv. 

The solution of this equation is 

sin2~=@(Co)/@(%), 

@ ( ~ ) - ~ - Y I - ( I + % " ~ X ~ ( - < ~ )  1. (4.5) 

The integration constant go represents the minimum dis- 
tance from the axis of the light beam to the current line. 
Current lines corresponding to Eq. (4.5) are shown in Fig. 1. 
The centers of the vortices are the points at which the mini- 
mum and maximum distances from the axis of the light beam 
to the current line are the same. These central points lie on 
the bisectors of the four quadrants, at distances lo= 1.339 
from the axis of the light beam. 

CONCLUSION 

We have examined two mechanisms for the macroscop- 
ic rotation of a gas by light. In the first, the rotation of the 
gas, caused by a magnetic orientation of the particles in- 
duced by the light, reaches a maximum for circularly polar- 
ized light and does not occur in the case of linearly polarized 
light. The rotation of the gas due to the magnetic quadrupole 
moment of the particles, in contrast, is absent in the case of 
circularly polarized light and maximal for linearly polarized 
light. 

To detect both effects, one could observe the motion of 
macroscopic particles (dust particles) entrained in the vortex 
flow of a gas. The absorbing and buffer gases, rotating in 
opposite directions, would exert a pressure 

(the subscript b specifies the buffer gas) on dust particles with 
dimensions smaller than or comparable to the mean free 
path (1 = Zv). We find the velocity (u,) of a dust particle from 
the condition P =  0, using momentum conservation, 
j = j, = 0: 
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Withp-p, and Im - mb I -m we then find ~ ~ h - v , ~ ~  I /  
va (a = 1,2) from (3.3) and (4.4). For an atomic vapor, the 
degree of orientation of alignment of the particles, 6,, may 
be quite large. For our estimates we use the value 6, - lop2, 
which is by no means a record value. Also assuming v,/ 
v- lop2, wefind(for~-  105cm/s,v- lo's-', anda-lo- '  
cm) 1 - lop2 cm and uo- 1 cm/s. In the case of the Magnus 
effect, the dust particles would reverse direction when right- 
hand circularly polarized light was replaced by left-hand cir- 
cularly polarized light. 

The vortex motions caused by the alignment of the par- 
ticles (Fig. 1) could also be observed indirectly, by optically 
detecting the spatial distributions of the density of the ab- 
sorbing particles, as has recently been done, for example, in 
an experiment with sodium vapor,10 where diffusive extrac- 
tion was first observed.' If a highly anisotropic [see (4.2)], 
weakly damped [see (4.3)] tail is observed on the transverse 
distribution of the density of the absorbing particles in such 
an experiment, it would also be proof of the occurrence of the 
effect. 

We thank A. M. Shalagin for uselful critical comments. 

APPENDIX 

A rigorous solution of the kinetic equations incorporat- 
ing degeneracy of the particle levels3 leads to the following 
expressions for the collision rates: 

V,=L sin80 Ima(OOu,lIlu), ( A 4  

Y~=L[(I-cos 8)o(00ui120u)+li~sin 00(00u1(21u)], 

(A.3) 
where 

N, is the density of buffer particles, dCl = 277 sin Ode, 8 is 
the angle between u and u,, W, (u) is the Maxwellian distri- 
bution for particles of mass p,J; (MuIM1ul) is the amplitude 
for the scattering of an absorbing particle in state i by a struc- 
tureless buffer particle accompanied by a change in both the 
direction of the relative velocity u and the projection M of 
the moment of the absorbing particle, and the angle brackets 
specify the coefficients of a vector addition. In (A. 1)-(A.3),J; 
is to be understood as the scattering amplitude in a coordi- 
nate system with z axis parallel to u and with x axis lying in 
the uu, plane. In this paper we have assumed that (v, - v, )/ 
v,, vl/v,, and v2/v, are all small. We have accordingly 
omitted the index specifying the quantum state (i) from the 
cross sections a in the expressions for v, and v,. 
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