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The simultaneous emission of two photons by an atom in a resonant radiation field (a "dressed" 
atom) is analyzed. Calculations are carried out for a two-level system in the resonant approxima- 
tion incorporating intensity effects. The time-varying regime (in which the observation time t is 
shorter than the lifetime of the excited level, y-') and the steady-state regime (tBy-') are ana- 
lyzed. Calculations are carried out to find the probabilities (under the condition tBy-l) and the 
spectral correlation functions of the fields and the numbers of photons (in the steady state) for the 
coherent simultaneous emission of two photons by a dressed atom. The frequencies of the emitted 
photons, w,,, , are shown to be symmetric with respect to the frequency of the pump field, w. The 
probabilities and correlation functions have peaks as functions of w ,,, near the frequencies w and 
w + 0 ,  where f2 is the frequency at which the atom oscillates in the field. The peak widths are 
calculated for the steady state and found to be equal to the widths for resonant fluorescence. The 
heights of the peaks are expressed in terms of their widths and in terms of the steady-state 
populations of the levels of the dressed atom. The relationship between the coherent two-photon 
emission at a dressed atom and parametric effects in the medium is determined. Probabilities for 
the incoherent emission of two photons are also derived. These probabilities are shown to have a 
two-peak structure. The frequencies of the emitted photons are related by w, + w, = 2w f f2 for 
transitions involving the excitation and the decay, respectively, of the atom. The scattering of 
photons by a dressed atom is also studied. 

1. INTRODUCTION 

The parametric effects which occur as intense optical 
radiation (the pump field) propagates through a medium 
have been the object of extensive research for the past 20 yr. 
The results of this research have been summarized in some 
well-known  monograph^.'^^ The elementary events underly- 
ing these parametric effects-events in which the pump 
field interacts with the individual atoms of the medium-have 
not been studied adequately (more on this below). 

In this paper we consider all possible processes in which 
one, two, or three pump photons are converted into two oth- 
er photons in an interaction with a two-level atom. The 
pump field is assumed to be intense and is taken in the reso- 
nant approximation. The field of the other photons is weak. 

In Sections 2 and 3 we examine these processes at times 
tsy-I, where y-' is the time for the spontaneous decay of 
the excited state of the atom. This time interval is of much 
practical interest because of the development of experimen- 
tal techniques with picosecond and subpicosecond pump 
pulses. The problem is solved in the representation of sta- 
tionary states of the composite system consisting ofthe atom 
and the photons of the pump field (the "dressed" atom). The 
interaction of a dressed atom with the weak radiation field 
causes transitions between the states of the dressed atom. 
These transitions result in a conversion of the photons of the 
pump field into photons at other frequencies. Over short 
time intervals these transitions can be treated by perturba- 
tion theory. Processes which are of first order in the weak 
radiation field have been studied quite thoroughly (see Refs. 
4 and 17, for example). In the present paper we are dealing 

instead with second-order processes, which determine the 
parametric effects in a medium. These are processes involv- 
ing the simultaneous emission (or absorption) of two photons 
by a dressed atom and processes involving the scattering of 
the weak radiation field by a dressed atom. In Section 2 we 
examine the coherent emission and scattering, while in Sec- 
tion 3 we consider the incoherent processes. In Section 4 we 
derive the relationship between these elementary processes 
and parametric effects. 

In Sections 5-7 the problem is solved for times t sy- '  
(the steady state) by a density-matrix method in the represen- 
tation in terms of quasienergy states of the composite system 
consisting of the atom and the classical pump field. In the 
steady state, it is not sufficient to analyze the processes 
which are second order in the weak field by perturbation 
theory; it becomes necessary to consider the many-photon 
spontaneous emission and absorption in transitions between 
quasienergy states in all orders of a perturbation theory in 
the weak radiation field. These processes, like the spontane- 
ous widths of the atomic levels, can be taken into account 
most comprehensively for a strong field by calculating the 
correlation functions5 of the radiation field scattered by the 
atom." In Section 5 we derive general expressions for the 
spectral correlation functions of the field amplitudes and the 
numbers of photons. In Section 6 we derive a correlation 
function for the radiation fields for a two-level system for the 
case in which the frequency of the oscillations of an atomic 
electron in the strong field, 0 ,  is considerably higher than 
the width of the atomic transition (0(y). In Section 7 we 
calculate the correlation function for the photon numbers in 
the same case. 
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2. COHERENT PROCESSES 

We denote by u,,, the coordinate part of the wave func- 
tions of a two-level atom in its ground state (with energy El) 
and in its excited state (E,), respectively (the "bare" atom). In 
a quantized pump field (in photons of frequency w; n s l )  
which is nearly at resonance with the frequency of the atom- 
ic transition, w, = (E, - E,)/fi (i.e., under the condition 
that the frequency deviation from the resonance, 
A = w, - w, is small: lA I(w), dressed-atom states form. 
These dressed-atom states have been used by many investi- 
gators (see, for example, Refs. 10,4, 11, and 17). We denote 
these states by I@ ,,, (n)). The corresponding energies are 

ta 
E,,,(n) =E,,,+nRm * - (A-Q) ,  

2 (2.1) 

where 0 = (A + 41 v I2)lf2, while 

V=-i (ed)  (2nonlhu) "=-i (edlh) ( 2 x 1 1 ~ ) ' ~  

in the frequency of the interaction of the atom with the pump 
field (e is the polarization vector of the pump photon, 
d = (u,ld/u,) is the matrix element of the dipole moment of 
the atomic transition, u is the normalization volume, and 
I = cnfiw/v is the intensity of the pump field). If the pump 
field is turned off adiabatically ( V 4 ) ,  states I@ ,,, (n) con- 
vert (if A >O) into the states ulln) and u,ln), respectively. 
The term fi(A - 0 ) / 2  in expressions (2. I), which determines 
the "binding energy" between the atom and the pump field, 
also vanishes. 

The interaction of the dressed atom with the radiation 
field causes transitions between the states of the composite 
system consisting of the dressed atom and the radiation 
field.,' We denote these states by 
l@i,~(n)) l [ni  ~ ) ) ~ l @ l , ~ ( n ) ) l  {ni I ) ,  where 
I{ni 1)-In,)In2) ... ,andni  isthenumberofphotonsoffre- 
quency mi in the radiation field (ni En,$,). The energies of 
the states I @ ,,, (n, ini 1)) are obviously equal to E ,,, (n) 
+ B k i n i .  

The coherent emission of two photons of frequencies w, 
andw, occurs when a transition from a state I@i(n,n,,n2, ...)) 
to state I@; (n - 2, n, + 1, n, + I,...)) (i = 1,2) takes place as 
a result of an interaction with weak radiation field. A calcu- 
lation in second-order perturbation theory leads to the fol- 
lowing expression for the probability per unit time of the 
spontaneous (n, = n, = 0) emission of two photons in this 
transition: 

where el,, are the polarization vectors of the emitted pho- 
tons, w , ,  = w f 0 ,  p and q are vector indices, and the fre- 
quency of the second emitted photon is determined by ener- 
gy conservation: w, = 2w - w,. The infinitesimal imaginary 
increments in the denominators in (2.2) result from the adia- 
batic switching on of the interaction with the weak radiation 
field at t+ - cc . The contribution of the poles in expression 

(2.2) for the tensor a,, (w,) corresponds to stepped two-pho- 
ton processes, i.e., processes such that energy conservation 
also holds in intermediate states. In this case the probability 
for the process can be broken up into the product of probabi- 
lities for two first-order processes (with a factor t ). This con- 
tribution, however, is considerably smaller than the prob- 
ability for the first-order processes at the same frequencies, 
w, w f 0 ,  because of the condition t W"'(1. 

Expression (2.2) obviously depends nonlinearly on the 
pump field intensity. If I V 1 ( lA 1, an expansion of these ex- 
pressions in the parameter I V l/A I is equivalent to a pertur- 
bation theory in the pump field.3' The opposite limit, 

I V 1 %  lA 1, corresponds to a saturation effect. 
Working from (2.2) in the usual way, we can go over to 

equations for stimulated-stimulated (n, #O, n, # 0), or spon- 
taneous-stimulated (n, .f 0, n, # 0) emission of two photons. 
The stimulated-stimulated emission is accompanied by an 
absorption process with the same probability. The emission 
of two photons is thus primarily a spontaneous-stimulated 
emission, for which the probability is 

where I,, = cfiw,n,/u is the intensity of the weak stimulat- 
ing field at the frequency w,. Expression (2.3) is written for 
regions far from the poles; i.e., it ignores stepwise processes. 

Exactly the same result can be derived by using a semi- 
classical method to calculate the emission of a photon w, 
caused by two fields, E, and El (Section 4). 

Coherent (unshifted) scattering of photons occurs in the 
transitions l@i(n,nl,O ,... ))+1Qi(n,n1 - 1,1,,, ... )) ( i=  1,2); 
a photon of frequency w, is absorbed, a photon of frequency 
w, = o, is emitted, and the number of photons of the pump 
field remains unchanged. The probability for this process is 

where o,,, (a,) is the scattering tensor in the presence of the 
pump field. In the limit of a perturbation theory in the pump 
field, expression (2.4) corresponds to the Kramers-Heisen- 
berg formula for the case of unshifted scattering by a two- 
level atom1, near resonance. 

3. INCOHERENT PROCESSES 

Incoherent processes-emission, absorption, and scat- 
tering-occurin transitions I@ ,,, (...))+I @,,, (...)), i.e., tran- 
sitions involving a change in atomic state. In this case the 
probability amplitude for the process depends on the arbi- 
trary phases of the wave functions u,,, . As a result, the pro- 
babilities for processes in the set of the various atoms will not 
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contain interference terms from the different atoms after an 
average is taken over the arbitrary phases. Such processes 
are sometimes called "combinational processes," in contrast 
with the parametric processes discussed in Section 2, for 
which the phase relations are important. 

The transition l@l(n,nl,n2,...)) 
+ I  @,(n - 3,n1 + 14,  + 1)) leads to the emission of two 
photons, w, and w,, related by w, + w, = 2w - O. Theprob- 
ability for an emission which is spontaneous in both photons 
(n, = n, = 0) in this case is 

0 1 ~ 0 2 '  
d w ~ ~ ' ~ ,  = --- do, doz do,  1 (el*dS) (ez*d0) 1 

8n3RZc6 

An expression for the probability for emission which is sti- 
mulated with respect to both photons can be found from (3.1) 
by the standard procedure. At the same transition the system 
will absorb two photons w, and w,, related by the conserva- 
tion law w, + w2 = 2w + 0. In this case (in contrast with 
coherent emission processes) the emission which is stimulat- 
ed with respect to both photons will not compensate for sti- 
mulated absorption processes, since they occur at different 
frequencies. 

In the transition 1@2(n9n~,n2,...)) 
-+/@,(n - l,n, + l,n, + I,...)), photons are emitted with 
frequencies related by w, + w, = 2w + O. In this case the 
spontaneous emission is described by expression (3.1) with 
0- - 0. In the same transition, photons related by 
w, + w, = 2w - 0 are absorbed. The probability for the ab- 
sorption of two photons in the transition 

ICD,(n, nl, n2, . . . )>-+lCD2(n+1, n,-1, nz-1)) 

is obviously equal to the probability for the stimulated emis- 
sion of two photons in the transition 

and the probability for the two-photon absorption 
I@,(n,n,,n, ,... ))+l@,(n + 3,n, - l,n, - 1)) is accordingly 
equal to the probability for the stimulated emission 
I@,(n,nl,n2 ,... 1)-/@,(n - 3,n1 + l,n2 + 1 ,... 1); i.e., it is de- 
scribed by expression (3.1) if we switch to stimulated emis- 
sion in this expression in the usual fashion. In the weak 
pump field limit ( I  V I ( /A I), expression (3.1) is a small quanti- 
ty of order I V/A 16. The probability for the emission 

I @,(...))+I @,( ...)) in this case is obviously of order I V / A  1,. 
An incoherent (combinational) scattering of a weak 

field occurs in the transitions 
l@l(n,nl,O ,... ))+I@,(n - l,n, - 1,1w2 ,... )) and 
@2(n,nl,0,... ) ) @ l ( n + l , n l - l , l w 2 , . . . ) ) .  Calculations 
lead to the following expression for the scattering probabil- 
ity in the transition I@,(...))+(@,(...)): 

In the transition 1 @,(...))+I GI(...)), the emission fre- 

quency is w+ + 0, and the scattering probability is found 
from (3.2) by changing the sign of a. 

Incoherent processes do not contain a contribution 
from stepwise processes, since stepwise processes going 
through different intermediate states cancel each other out. 

4. RELATIONSHIP WITH PARAMETRIC EFFECTS 

In this section of the paper we find the relationship 
between the probabilities of the elementary processes calcu- 
lated above and the nonlinear susceptibilities. For this pur- 
pose we will derive the average dipole moment of an atom in 
a strong classical pump field of amplitude E, and in a weak 
probe field of amplitude El and frequency w, in the linear 
approximation in the latter field. In this case, it is convenient 
to use the well-known quasienergy I@ ,,, (t )) in- 
stead of the states of the dressed atom. 

Under the assumption that the system is in the state 
I @,( t  )) when the interaction with the weak field is turned on 
at t-t - w , we find the following expression for the average 
dipole moment: 

where 

1 ( A )  ' (IfAM) ' - 
m1-mP+ie 

The first term in expression (4.1) does not contain the weak 
field; it leads to the ordinary Rayleigh scattering of the pump 
field with saturation effects.17 As can be seen from a com- 
parison of (4.2) and (2.4), the polarizability tensorx, (0,) is 
the same as the scattering tensor fip,(wl) far from reson- 
a n c e ~ . ~ '  The obvious explanation for the disagreement of 
these expressions near resonances (the signs of the imaginary 
increments are different) is that the width of the atomic- 
transition line has been ignored in this analysis. The same 
situation arises in the absence of a pump field.', When the 
width of the excited level is taken into account by adding a 
finite imaginary part to its enegy, the polarizability becomes 
equal to the scattering tensor over the entire frequency 
range. In the presence of a pump field, however, expressions 
(2.4) and (4.2) may not be the same over the entire frequency 
range, even if the width of the transition line taken into ac- 
count, because expression (4.2) has no contribution from co- 
herent Rayleigh scattering. 

The third term in (4. I), which describes oscillations of 
the dipole moment at the frequency 20, - w,, results from 
the coherent emission of two photons, since the polarizabili- 
ty (4.3) is the same as the tensor a,, (wl) in expression (2.2), 
with the same reservations as in the case of expression (4.2). 

Let us examine the propagation of a probe field at the 
frequency w, through a resonant medium in a pump field. 
Using dipole moment (4.1) in the truncated Maxwell's equa- 
tions for the fields at the frequencies w, and 2w - w ,, adopt- 
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ing the one-dimensional approximation along the propaga- 
tion direction of the waves in the medium (the x axis), and 
expanding the amplitudes of the weak fields in powers of the 
distance x in the medium in these equations, we find the 
following results, which hold to within terms proportional to 
x2 (we are assuming that only the amplitude of the weak field 
at the frequency w, is nonzero at x = 0): 

We wish to call attention to the fact that the parametric 
coherent process is proportional to the square of the atomic 
number density N. It can be seen from (4.4) that the appear- 
ance of a field at the "mirror-image'' frequency is deter- 
mined by a two-photon emission which is stimulated at the 
frequency w, and spontaneous with respect to 2u - w,; the 
probability for this emission is given by (2.3). Experiments 
on transmission over short distances can therefore yield in- 
formation on the elementary processes. First-order incoher- 
ent processes determine (4.2). 

Second-order incoherent processes do not contribute to 
propagation effects in an analysis of the propagation of radi- 
ation in the problem as formulated above. 

5. GENERAL EXPRESSIONS FOR THE SPECTRAL 
CORRELATION FUNCTIONS 

We turn now to two-photon processes for times exceed- 
ing the lifetime of the excited level (t)y- '). To calculate the 
correlation functions we use the standard apparatus of quan- 
tum electrodynamics with a classical pump field (the Furry 
representation1,). 

A state of the composite system consisting of the atom, 
the pump field, and the radiation field, I $i (t )), is expressed in 
terms of a state of the system which does not interact with 
the radiation field in the limit T-+ - oc, by means of a time 
evolution matrix S ( t  )-S(t, - oc,) in the representation of 
quasienergy states (see Ref. 25, for example): 

I $i ( t )  )=S ( t )  I mi, 0) - (5.1) 

Here 1 Gi ,0) = 1 @, ) 10) (i = 1,2), where 1 Qi ) are the quasien- 
ergy states, and 10) is the vacuum state of the radiation field. 

The spectral correlation functions of the field ampli- 
tudes and of the numbers of photons in which we are inter- 
ested can be written in terms of this S matrix as follows: 

g'" ( I ,  2) =(c,+ ( t )  c,+ ( t )  C, ( t )  C2  ( t )  ) 

=<@,, OIS+ ( t )  c,+c,+c,c2S(t) I @1, O), 

where c , , ,  and c;f2 are the annihilation and creation opera- 
tors for photons with momenta k,,, and polarizations A ,,, . 

The correlation functions are conveniently written in 
terms of the density matrix of the quasienergy  state^,^^-^^ 
which define by25 

where i is the unit operator in the space of photon states. 

Evaluating the commutators [S (t ), c , , , ] ,  we find the fol- 
lowing expressions for the correlation functions in the reso- 
nant approximation in the frequencies w ,,, : 

- 2n 
-- o,"zo,"rIp'e2; dt ,  dt, 0(t,-t,)exp[i(o,t,+w,t,) ] 

Av - m 

x ( @ , ,  01 D$-' ( t , )  D:-' ( t , )  I mi,  O )  )+ (01,  e1) * ( 0 2 7  ez) (5.3) 

=(:)' ~ l u h e , p e , ~ e 2 . e 2 . ~ ~  dt ,  dtz dt3 dt ,  expl io ,  ( k t , )  1 
-OD 

Xexp[iwt (t2-t,) ] (@,, 01 T + [ D ~ + '  ( t 3 )  D!+' ( t , )  ] 

A A 

where the operators T and T + perform a chronological or- 
dering and a chronological antiordering, respectively. 

The operators D(* '( t )  in (5.3) and (5.4) are given by 

where db* '(t ) are the positive- and negative-frequency parts 
of the matrix element of the dipole moment between qua- 
sienergy wave functions. 

The case t(y-', discussed in the preceding sections, 
correspondsin this approach to the approximationS (t ) z 1 in 
expressions (5.2)-(5.5). We can therefore ignore those transi- 
tions between quasienergy states which are of higher order in 
the radiation field. In this case, the quantity lg'1'12 given by 
(5.3) describes the coherent emission of two photons in sec- 
ond-order perturbation theory. In the same approximation, 
the quantity g'2' reduces to the sum of probabilities for the 
spontaneous coherent and incoherent two-photon emission 
from the initial state I @,) over the time t. 

We turn now to the limiting case t)y-' (the steady- 
state regime) under the condition 0)y .  

6. THE CORRELATION FUNCTION$'' IN THE STEADY-STATE 
REGIME 

The calculation of the function (5.3) reduces to the cal- 
culation of expectation values of the type 

Olpij(ti)pk~(tz) I @ i l O ) ,  (6.1) 

which is carried out by a method analogous to that used in 
Ref. 23. This method is based on the assertion that in the 
resonant approximation the quantities in (6.1) satisfy at 
t, > t, the same equations as are satisfied by the expectation 
values ( 0  ( t )  0 = ( t ) )  (the regression 
theorem). These equations can be written as follows to with- 
in terms of order y/0: 

( p , ,  ( t )  )+(pzz( t)  )=I ,  ( p 2 1  ( t )  ) = ( p i ,  ( t )  )*, 
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where 

ri2= (112) ( 1 + 2 ( v 1 ~ / ~ 2 ~ ) ,  r = ( ~ / 2 )  (1+A2/Q2), (6.3) 

and the width (y) of the atomic transition is y = 4w:Id 1 2 /  
3+ic3. 

Using (6.2), we find the following equations for the 
quantities in (6.1) which we are seeking: 

<pit  ( t i )  pu ( tz)  )=6ik(piI (t2) )er(t'-t"+~li(pM ( h )  ) [ i -er( iz-L1)l  3 

(pi2(ti)pAl ( t 2 )  )=6m(piI  ( t 2 )  )eru('rtl) (k, 1=1, 2). 
(6.4) 

From (5.3), using expressions (6.4) in the steady-state limit, 
we find5' 

g(') ( 1 , 2 )  

where quantities 

pii=(p~i  ( t )  ),,,I= (1+A/Q)  '12 (1+A2/Q2),  

pzz=<p,z ( t )  >, t , i=  ( ~ - A / Q ) Z / 2 ( l + A 2 / S 2 2 )  

are the steady-state value of the populations of the quasien- 
ergy states I @,) and I@,) at 0) y. 

The first term in this expression is the product of the 
amplitudes for unshifted Rayleigh scattering in the steady- 
state regime, 

c;,; =(cis ,  ( t )  )T*>i 

and describes a stepwise process. The contribution of this 
processin the case I V I )A I disappears in this approximation, 
i.e., with an accuracy - y/l V I .  The resulting correlation 
function has a three-peak structure (0, w,, w,); the peak 
widths (6.3) agree with the known widths of the peaks in the 
spectral intensity of resonant fluorescence. 

7. THE CORRELATION FUNCTION 9'2) 

We now consider the spectral correlation function of 
the numbers of photons, which is related in an obvious way 
to the intensity correlation function. 

In calculating this quantity it is convenient to first sin- 
gle out the contribution resulting from stepwise processes. 
This can be done by writing the chronological products in 
(5.4) in the form 

p [ D  ( t i ) D  ( tz)  I = D  ( t i ) D  ( t z )  +0 (tz-ti)  [ D  ( t z ) ,  D ( t i )  I , 
T + [ D  ( t s ) D ( t , )  l = D  ( t d D  ( t 3 )  +e (t,-ts) CD ( t3 ) ,  D ( t , )  I. 

In the steady-state regime, the product of the first terms of 
these expressions leads to the product n,(t )n,(t ) of the aver- 
age numbers of photons of frequencies w, and w,, each of 
which is related to the spectral intensity of resonant fluores- 
cence at yt) 1 by 

We can calculate the remaining part of expression (5.4) 
by replacing the complete set of photon states, 
B ( (n, j ) ( (n, j ( by (0) (01; this approach corresponds to 
considering only two photons in the scattering field. In this 
approximation and under the condition Q)y, expression 
(5.4) contains only terms which grow in time and can be 
written6' 

g(2)  (1 ,  2 )  =ni ( t )  n2 ( t )  + 1 gci)-C,StCzS'(2, (7.2) 

where g"' is given by (6.5). Substituting in this latter expres- 
sion, we find 

g(" ( 1 2 )  =ni ( t )  nz ( t )  

8 n 3 0 i a 2  +- 
R2v2 I eip*ezq'apqst ( a i )  1 't6 ( a l + o z - 2 0 ) .  

(7.3) 
The first term in this expression corresponds to uncorrelated 
frequencies o, and 13,. The second term vanishes outside the 
region of frequencies w ,  + w, = 2u; i.e., it describes an ef- 
fect of the correlation of these frequencies. This correlation 
is taken into account to within terms of the type 
[(a, + w, - 20)' + 1/2Ip1, which do not contain the time 
and which were omitted in the derivation of expression (7.3), 
as we mentioned above. 

The heights of the peaks of the function g"' (1,2) at the 
resonant and three-photon frequencies are identical and pro- 
portional to 1 V I4/n 4r,22, as can be seen from expression 
(6.5) for azq. The height of the peak at the Rayleigh frequen- 
cyisproportionalto(8I V I z p ,  ,p2,/f2 'r)'.Inthecase I V 1-4 lA I 
(which, because of the approximation I V 1 )y being used 
here, is meaningful only if (A I)y), the Rayleigh peak is 
shorter than the two other peaks by a factor of 16(1 V l/0 )8. In 
the opposite case, I V 1 $[A I, the Rayleigh peak is nine times 
as high as the three-photon and resonant peaks. 

We note in conclusion that in the integral of expression 
(7.3) over the final states of the photons of frequency w, the 
basic contribution at yt) 1 comes from the first term of this 
expression, which increases in proportion to t ,: 

The physical meaning of Eq. (7.4) is obvious, since the quan- 
tity n,( t )  represents the probability for resonant fluores- 
cence, the factor ) V )'/(A + 2) V 1 2 )  is thesteady-statepopu- 
lation of the excited atomic state, and yt is the probability for 
decay of the atom. 

"A considerable effort has recently been made to calculate and measure 
the various correlation functions pertinent to resonant f luore~cence .~~  

"During transitions I@,(.-.))+19,(.-)) (i = 1, 2), the phases of the wave 
functions (u,, ,)  of the bare amplitude do not appear in the transition 
probability amplitude; i.e., such transitions are coherent. 

3'The problem of two-photon emission was treated in this limiting case in 
Refs. 13 and 14. 

4'The effects resulting from the nonlinear polarizability x,,(w,) during the 
scattering of a trial field and during its propagation through a medium 
have been studied in several places (see Refs. 18-21, for example). 
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"A general expression forgiii ( 1,2) in a slightly different formulation of the 
problem was derived by a different method in Ref. 26. That expression 
disagrees with (6.5) in the region of parameters in which the different 
expressions can be compared. 

6 ' ~  similar relation was derived in Ref. 27 for space-time correlation func- 
tions. 
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