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The conditions under which a temporal instability (generation) can occur during stimulated 
Brillouin scattering are derived by a new approach. These conditions differ from the customary 
Kroll-Bobroff conditions. The requirements which would be imposed on an experiment carried 
out to observe the generation regime are quite stringent. 

It is generally believed that stimulated Brillouin scat- 
tering (or "stimulated Mandel'shtam-Brillouin scattering") 
in a sample without a resonator can occur in two regimes: 
amplification or generation. This conclusion was reached in 
theoretical work by Kroll' and BobrofP and is reflected, for 
example, in the review by Starunov and FabelinskiL3 In a 
real experimental situation it is frequently necessary to take 
into account the depletion of the incident light wave. A dis- 
tinction should be made between steady-state and time-vary- 
ing regimes. In the present paper we wish to draw a general 
picture of the process. It turns out that the generation regime 
is possible only if the experimental conditions meet some 
stringent requirements. 

In the generation regime the amplitude of the scattered 
light and of the sound increase without bound and do not 
reach steady-state levels. This process is stopped only be- 
cause of the depletion of the incident light wave. We wish to 
determine the implications of the generation regime in a 
study of how the scattered light intensity I ,  depends on the 
incident intensity I,. In the amplification regime, I, reaches 
a steady-state value after a long time, and it increases expon- 
entially with increasing I,. When the generation threshold is 
reached, I, should increase abruptly to a level on the order of 
10. 

When depletion of the incident wave is taken into ac- 
count, a deviation from an exponential dependence of I, on 
I, also occurs in the amplification regime.4 We will show 
that it is possible to arrange a situation in which this process 
becomes important at intensities I,  below the generation 
threshold. Consequently, the generation threshold derived 
in Refs. 1 and 2 without allowance for the depletion does not 
apply in this situation. Since Tang4 considered only the 
steady-state situation, we have checked the temporal stabil- 
ity of the solutions of Ref. 4 with respect to small perturba- 
tions. It is found that perturbations which are introduced 
decay over time regardless of the value of I,, i.e., no new 
thresholds of any sort arise in the theory incorporating de- 
pletion of the incident light. 

The complete system of equations is3 

(0'2) =a07 El (L,  t )  =O, Eo ((), t )  =*. 
u ( x ,  0 )  =UO, Ei (2 '0 )  =0, (4) 

We consider the case of backscattering, in which the scat- 
tered light wave emerges from the sample in the direction 
opposite that of the incident wave. We denote by E, (x, t ) and 
El (x, t ) the electric field amplitudes in the incident and scat- 
tered light waves; u (x ,  t ) is the displacement amplitude in 
the sound wave; E is the dielectric constant; p is the photoe- 
lastic constant; p is the density; w is the sound velocity; c is 
the velocity of light; q is the sound wave vector; and a ,  and 
a, are the light and sound damping rates. We assume a,)a,. 
We do not distinguish between the frequencies of the inci- 
dent and scattered light, denoting both by w. We have dis- 
carded some time derivatives in Eqs. (1) and (2) which are 
small in terms of the parameter L(c t ,  where L is the length 
of the sample, and t is the time scale of the problem. 

The point x = 0 is at the input end of the sample. Since 
the scattered light is produced in the sample and emerges 
from the sample in the direction opposite that of the incident 
light, we have E, = 0 at the rear of the sample. The quantity 
u, is determined by the thermal noise level in the sample. 
Our boundary conditions, which we believe correspond to 
the experimental situation, are not the same as those in Refs. 
1 and 2. Since a change in these conditions changes the solu- 
tion, our first step here is to construct a solution under con- 
ditions (4) and to determine the generation threshold in the 
absence of depletion of the incident wave, i.e., under the con- 
dition E f < g2.  We do not consider Eq. (1) in this step. 

The term a,u, is not usually written in Eq. (3). This 
modification of Eq. (3) cannot change the rate of the expo- 
nential growth of the amplitudes above the threshold for 
stimulated Brillouin scattering (the amplification thresh- 
old). In the absence of a pump E,, the modified version of Eq. 
(3) leaves u at the thermal noise level u,, in agreement with 
conditions (4). 

Laplace time transforms are convenient for solving sys- 
tem (2)-(4). After transforms are taken, Eqs. (2) and (3) be- 
come a system of ordinary differential equations. The solu- 
tion of this system after the transforms are inverted consists 
to two parts: a steady-state part and an unsteady, time-vary- 
ing part. The known steady-state part cannot be identified in 
the transient solutions of Refs. 1 and 2, apparently because 
of the initial and boundary conditions adopted there. Above 
the amplification threshold, abE: > a,a,, we find the famil- 
iar result for the steady-state part: 
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Expression (5) is written for the case a: >abE z, so that the 
expression for the displacement can be simplified. In the La- 
place transform of the solution, the steady-state contribu- 
tion corresponds to a pole s = 0, where s is the parameter of 
the Laplace time transforms. The time-varying part corre- 
sponds to poles of s on the negative part of the real axis. If a 
pole goes into the regions > 0 at some pump energy, then the 
decay of the time-varying part of the solution gives way to an 
increase, implying a transition to the generation regime. 

The position of the pole under the condition abE; 
L 2 < l i s  

where y is a nonzero solution of the transcendental equation 

Under the condition abE CL > 1 we have 

The pole in (6) corresponds to a solution which decays ex- 
ponentially over time, while in (8) we could have a situation 
with s > 0, corresponding to exponential growth. A neces- 
sary condition here is 

abE02> [ (a,+a2) /2]  '+ y2/L2. ( 10) 
The generation condition from Refs. 1 and 2 differs from (10) 
in that it lacks the second term on the right side. 

At which amplitudes Eo can the pump wave be assumed 
given? In other words, at which amplitudes can the depletion 
of the pump wave be ignored? According to (5), this is possi- 
ble if 

abEo2L/a2< 1. (11) 

In the opposite case, the amplitudes u and, correspondingly, 
E, begin to grow exponentially. On the other hand, a viola- 
tion of condition (1 1) is not sufficient for growth of the inten- 
sity of the sound wave from a low thermal-noise level to the 
levels determined by the nonlinear solution4 of system (1)- 
(3). A necessary condition for this growth is 

abEo2L/az>R, (12) 

where the number R is on the order of 15-30. This number 
can be described parametrically as ln(a2/auo). 

Comparing conditions (10) and (12), we first consider 
the case a2L > 1; this case corresponds to the usual experi- 
mental situation. In this case, only the first term on the right 
side of (lo) is important. A comparison shows that under the 
conditions 

the depletion of the incident wave becomes important at am- 
plitudes at which temporal generation has not yet begun. In 

this situation it is not correct to derive the condition for the 
generation threshold on the basis of a given amplitude of the 
incident wave. Under the condition 

a generation regime is possible. A comparison of (lo) and (12) 
in the case a2L < 1 leads to two analogous situations. 

It should be noted that a separate analysis of the ampli- 
fication and generation regimes is meaningful if 

where Tis the length ofthe laser pulse. Condition (15) means 
that in the amplification regime, before and end of the light 
pulse, the stimulated Brillouin scattering reaches a steady- 
state limit. In the opposite case of a time-varying stimulated 
Brillouin scattering, the process evolves over time until the 
end of the laser pulse, and the distinction between amplifica- 
tion and generation regimes is not meaningful. In this case it 
would be meaningless to single out a temporal asymptotic 
part of the solution, (5). 

Observation of the generation regime will thus require 
the simultaneous satisfaction of the several conditions dis- 
cussed above: 

and condition (15). These conditions impose stringent re- 
quirements on such as experiment. 

Several analogous conditions arise in the case a2L < 1: 

Here y is a root of Eq. (9). Again, an important point is that 
these conditions must be compatible with condition (15). 

We now ask whether a temporal instability occurs at 
any value of $ in the solution of the complete system of 
equations for the stimulated Brillouin scattering, (1)-(4), for 
the situation (13), in which the depletion of the incident wave 
sets in before the temporal instability in a system with a given 
pump. To answer this question, we examine the temporal 
stability of the steady-state solution of Eqs. (1)-(3) derived by 
Tang.4 Here it is convenient to introduce the new function 

I 

cp=a u (sf, t )  dsr. (18) 
0 

System (1)-(3) then reduces to the nonlinear equation 

Comparing the first and third terms of Eq. (19) over dis- 
tances on the order of L, we can discard the second deriva- 
tive with respect to the coordinate which is of order a,L> 1. 
This simplification is not legitimate in a small neighborhood 
x 5 l /a2 of the input end of the sample. In this neighborhood 
the sound grows sharply from the thermal-noise level to lev- 
els determined by the nonlinear solution of the system of 
equations. This neighborhood makes only a small contribu- 
tion to the interaction of the light and the sound. We wish to 
stress that the solution in the region x,l/a2, i.e., in the 
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greater part of the sample, is determined by the growth in the 
intensity of the scattered light as it propagates away from the 
rear of the sample to the front, and the region x 5 l /a2 is 
actually the region in which this solution is joined with the 
boundary condition at x = 0. 

Let us examine the nonlinear solution and temporal sta- 
bility of the simplified version of Eq. (19). It is simple to find 
a steady-state solution of this equation: 

where the constants are to be determined from the boundary 
conditions. It can be shown that substitution of (21) into (20) 
leads to the solution derived by Tang.4 

To analyze the stability of the solution of Eq. (19), we 
linearize it with respect to a small deviation Sp(x, t ) from 
solution (21). After taking Laplace transforms in variable t ,  
we can write the linearized equation in the form 

2abCD + cth- 
az dx 

1 (22) 

where ~ ( x )  = Sp(x, t = 0). A solution of the first-order equa- 
tion (22) can be written. When inverse Laplace transforms 
are taken, it is found that the entire solution is proportional 
to exp( - wa2t ), and the remainder of the time dependence is 
weaker. 

In summary, solution (21) is stable with respect to small 
deviations regardless of the amplitude of the incident light 
wave. Consequently, a generation regime cannot occur at all 
under conditions (1 3). 

We wish to thank V. L. Gurevich and V. V. Lemanov 
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