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Three-dimensional photodynamics with a quadratic Wess-Zumino term is discussed. The theory 
has one degree of freedom, which corresponds to a massive photon. However, the interaction of 
external currents contains a nondispersional pole at zero momentum, describing an instantan- 
eous long-range interaction of Aharonov-Bohm type. This pole appears on the Hamiltonian 
quantization of the theory with sources from a massless excitation of the unconstrained theory. 
There is a deep analogy between this theory and the problem of the motion of a charged particle in 
a constant magnetic field. In this analogy, the massless degree of freedom corresponds to the drift 
of the Landau orbits across the magnetic field. 

INTRODUCTION 

Deser, Jackiw, and Templeton' noted some time ago 
that the addition of a Wess-Zumino (WS) term to the La- 
grangian of three-dimensional (2 + 1) gauge theory can lead 
to the appearance of a photon with a gauge-invariant mass 
(gluon). The possibility of introducing into a Lagrangian ex- 
pressions that are implicitly invariant with respect to sym- 
metry transformations-being changed by a total derivative, 
which does not affect the action or the equations of motion- 
was discussed for the first time by Wess and Zumino2 in the 
four-dimensional chiral model. Since then, WS terms have 
appeared in the most varied places, beginning with fermion 
 determinant^^-^ and ending with supergravity theories6 In 
odd-dimensional Yang-Mills theory, WS terms can be con- 
structed on the basis of topological charge in a space with 
dimension greater by unity. For example, for d = 3 the WS 
term has the form 

and is related to the four-dimensional topological charge 

The WS term is equal to the integral over d 3x of the zeroth 
component of the vector K, . WS terms have an interesting 
topological and field-theory interpretation; in particular, the 
hierarchy of anomalies in spaces of different dimensions is 
related to them.' 

In this paper, we discuss the physical significance of WS 
terms and their effect on the structure of a theory for the 
simplest but still fairly nontrivial example, namely, Abelian 
(2 + 1) photodynamics. In doing this, we also obtain impor- 
tant information about (2 + 1) electrodynamics with fer- 
mions. For, as noted in Refs. 4 and 5, the effective action 
obtained after integration over the Dirac fermions in an odd 
number of dimensions contains not only a renormalization 
of the coupling constant in front of the bare Lagrangian F:, 
and higher terms of the type F:,, but also the WS term (1). 
This contribution is nonzero at energies exceeding the fer- 
mion mass and is related to the need for regularization of the 
theory. In essence it is anomalous and in many ways is analo- 

gous to the term m2(A i)' that arises in the same manner in 
two-dimensional Schwinger electrodynamics (for more de- 
tails, see Ref. 8). The coefficient H in front of the WS term 
[see (3)] has the dimensions of mass and is proportional to the 
square e2 of the fermion charge (the dimension of e is equal to 
(4 - d )/2 in the d-dimensional theory). In contrast to the 
usual terms in the effective action which are polynomial in 
F,, , the appearance of the WS term significantly changes the 
properties of the theory. Therefore, we believe it is worth 
considering the model 

which we shall call (2 + 1) photodynamics. This theory is 
quadratic and can be solved exactly, but this does not pre- 
vent it having somewhat unusual and surprising properties 
[which are also present in the more realistic (2 + 1) electro- 
dynamics]. 

Among these properties, we include the fact that de- 
spite the presence of the photon's gauge-invariant mass the 
theory (3) has one degree of freedom. Here it should be re- 
called that in an even number of dimensions we are accus- 
tomed to a gauge-invariant massless photon having d - 2 
degrees of freedom, the 2 arising from the gauge arbitrari- 
ness and the constraint condition. An ordinary massive pho- 
ton is not gauge invariant, but the constraint condition for it 
remains, so that there are d - 1 degrees of freedom. On the 
other hand, for the gauge-invariant massive photon in 
Schwinger's electrodynamics there is no constraint condi- 
tion, so that it also has d - 1 = 1 degree of freedom. Not so 
in the theory (3), since both the gauge invariance and the 
constraint remain, so that the photon has d - 2 degrees of 
freedom. 

A second remarkable property is that although the 
physical photon is massive not all the Green's functions de- 
crease exponentially. In the momentum representation, the 
interaction of the sources contains a pole term l/p2. In its 
origin, it is analogous to the ordinary Coulomb pole or Vene- 
ziano ghost in four-dimensional theories. For conserved 
sources, the pole is nondispersive-the singularity does not 
in fact exist for p2 = 0 (pg = p2) but only for p, = 0 
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(p, = p = 0). This means that the pole is not associated with 
the propagation of any physical massless particle. An un- 
doubted advantage of (2 + 1) photodynamics is that in it the 
nondispersive poles are not masked by the presence in the 
spectrum of real massless particles, which, as in four-dimen- 
sional theories, also give rise to singularities in the ampli- 
tudes when p, = 0. As a result, it becomes completely ob- 
vious that the presence of only massive particles in the 
spectrum of a gauge theory does not in general mean that 
there is no long-range interaction at all. Indeed, in gauge 
theory there is a set of disconnected sectors, i.e., states that 
are not carried into each other as the system evolves. In pho- 
todynamics, these sectors differ in the number of longitudi- 
nal (or scalar) photons-massless "particles" that do not in- 
teract with the physical transverse photons. On the 
gauge-theory states the constraint is imposed, which speci- 
fies the sector in which there are no unphysical photons. It is 
important that the Hamiltonian of a theory with sources 
(even when they are conserved) does not commute with such 
a constraint and couples the different sectors of such a the- 
ory. The states singled out by the new constraint do contain 
unphysical (nondispersive) photons, and this leads to an in- 

while allowance for the constraings causes the massless 
mode to disappear from the physical spectrum but intro- 
duces an instantaneous long-range interaction of the exter- 
nal sources. 

To end the Introduction, we should like to note that we 
know of only two papers, Refs. 10 and 11, in which there has 
been a detailed discussion of the physical properties of the 
theory (3). In these, an expression is given for the propagator 
[see Eq. (8)], and the existence of a pole at p, = 0 is noted; 
however, the analysis is not complete. We hope that our pa- 
per will clarify some questions that remained somewhat obs- 
cure after Refs. 10 and 1 1. 

1. GENERAL PROPERTIES OF (2 + 1) PHOTODYNAMICS 

From the action (3) there follow the equations of motion 

8,F,,f ' I ~ H E ~ ~ A F , ~ = O .  (4) 

The left-hand side is a total derivative, and (4) is equivalent to 

F,h+H~pvAAv=~, ,v~c . , .  

The curl of the vector c, is required to vanish: E,, a,,, = 0, 
and as a result it can be eliminated by a gauge transformation 

staitaneous Coulomb interaction. At the same time, nondis- 1 
persive poles appear in the T correlation functions of the A,.-A. + - 8 .  I c. dr'. 

H 
kxternalsourcisT In (2 + 1) photodynamics, the transverse 
photon acquires a mass by virtue of the WS term, but the 
longitudinal photon remains massless, and therefore the sin- 
gularities of the amplitudes atp, = 0 are entirely due to this 
degree of freedom. We note that in the Higgs effect the longi- 
tudinal photon becomes massive at the same time as the 
transfverse, this being a consequence of the "swallowing" of 
one degree of freedom from the scalar sector. 

The paper is arranged as follows. In Sec. 1, we discuss a 
solution of plane-wave type and show that it corresponds to 
one degree of freedom. In addition, we show that the nondis- 
persive pole really does exist if e2/Hr is not equal to an in- 
teger. It is shown that this instantaneous interaction literally 
describes an Aharanov-Bohm effect9 [in a (2 + 1)-dimen- 
sional world, this is possible for point objects]. It is for this 
reason that at discrete values of H -' (corresponding to the 
magnetic flux in the Aharanov-Bohm effect) the effect of the 
long-range interaction becomes unobservable. Unfortunate- 
ly, we have not yet succeeded in finding reasons that prohibit 
a WS term for arbitrary H. (We note that Deser, Jackiw, and 
Templeton1' concluded that all Green's functions are well 
defined at all H.) If arguments for H being discrete neverthe- 
less exist, this would be tantamount to the existence of a new 
charge quantization principle in an Abelian theory. 

In Sec. 2, we consider a quantum-mechanical analog of 
(2 + 1) photodynamics-the problem of a charge in a homo- 
geneous magnetic field-and we elucidate the origin of the 
nondispersive pole, which is associated in this case with the 
possibility of drift of the Landau orbits across the magnetic 
field. (It is because of this analogy that we have denoted the 
coefficient in front of the WS term by H.) 

In Sec. 3, we discuss the Hamiltonian quantization of 
the (2 + 1) theory and show that without the constraints it is 
entirely analogous to the quantum-mechanical problem, 

In other words, for every solution of Eq. (4) there exists a 
solution gauge-equivalent to it of the equation 

F , , = H E , ~ X .  (6) 

Note that for a theory without a WS term it is impossible to 
arrive at Eq. (6) ,  since when H = 0 the gauge transformation 
(5) is not defined. However, the explicit plane-wave type so- 
lution given below does admit continuous passage to the lim- 
it H = 0 and goes over into an ordinary plane wave. From (6) 
the transversality condition aAAL = 0 follows directly as a 
consequence of the Bianchi identities E,, d, F,, = 0. 

Equation (6) recalls a duality equation; at least it is of 
first order and, in contrast to non-Abelian theories, all solu- 
tions of the equations of motion (4) are here determined by 
the first-order equation (6) up to gauge transformations. 

The plane-wave solution has the form 

The field (7) is transverse: oA, - p . A = 0. Note that this 
solution describes one degree of freedom-for given p,  and 
p,, the solution is completely determined. Using the gauge 
invariance, we can reduce the solution (7) to the form A, = 0 
or diAi = 0; however, it is not possible to achieve both when 
H +O. This means that ifA, = 0 then the physical photon is 
not transverse, but if it is then there is always a scalar pho- 
ton. Such behavior is due to the specific nature of the con- 
straint in the Hamiltonian description of the theory and will 
be discussed in more detail in Sec. 3. Note the presence of the 
factors of i in (7). They indicate that for true real solutions 
A :) = ReA, and A = ImA, there is a phase shift between 
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the different components, which becomes equal to n-/2 in the 
limit p,<p2, p-+O. This rotation of the polarization vector 
corresponds to the picture of the motion of a charge on a 
plane in a homogeneous magnetic field. In the following sec- 
tions, we shall see that precisely this picture corresponds to 
the quantum description of (2 + 1) photodynamics. 

We now consider the propagator. The action (3) is gauge 
invariant, and therefore to find the propagator it is necessary 
to fix the gauge, which can be done, for example, by adding 
to the Lagrangian the term (,,A, )2/2a. Then 

II,, (p) =-i d'x elp"( TAP (2) A, (0) > J- 

The first question that must be clarified is the extent of the 
gauge freedom in the expression (8) and whether anything 
"survives" apart from the massive pole after elimination of 
this freedom. To answer this question, we calculate the con- 
traction J, (p)II,, Jv ( - p) for conserved sources J, 
(p, J, = 0). The manifestly noninvariant final term in (8) 
drops out immediately, but the axial structure ~,,,,p, can be 
only partly eliminated. We note first that 

since the interchange of J, and J, is accompanied by a 
change in the sign ofp, . It must now be borne in mind that 
not all components of the conserved current J, are indepen- 
dent. For example, let us express Jo in terms of J, : 

Then 

Further, we represent J, as the sum of transverse and longi- 
tudinal currents: 

The adjectives longitudinal and transverse refer only to the 
spatial components of the momentum, p, and have the same 
meaning as the adjectives longitudinal and transverse for the 
photon. We now can rewrite (9) as 

If p#O, then the "pole" at w = 0 can be readily eliminated 
by expressingJ1I in t e r m s o f ~ ~ i n  the form JII = wJo//p 1 ;  then 
instead of (lo), we obtain 

It can be seen from these arguments that the correlation 
function of conserved currents does not have a pole at 
p2 = u 2  - p2 = 0; however, the singularity at w = p = 0 is 

FIG. 1. 

not associated with the gauge freedom and is absolutely real 
and cannot be eliminated. The situation here is exactly the 
same as in the case of the Coulomb pole. Therefore, we can 
be sure that here too we have some "instantaneous long- 
range interaction." 

Before we clarify the form of this interaction, let us at- 
tempt to dispel any doubts about the reality of the pole at 
p, = 0 that the reader may still have. There may be a fear 
that the current conservation condition does not eliminate 
all the spurious poles (although we do not know of such ex- 
amples, and it would be strange if they existed). To dot the 
i's, we have calculated the real scattering amplitude of two 
different massive fermions interacting with the field A,. The 
corresponding diagram is shown in Fig. 1. There is no sec- 
ond (annihilation) diagram, since the fermions are not identi- 
cal. The result for the cross section is proportional to 
[(k,k2)' - k f k ] / k g  + terms that are finite asp-0, and 
the cross section is indeed singular at p = 0. (In the deriva- 
tion, the kinematic relation k g  = - k g  =p2/2 must be 
used.) 

Having shown that there is a long-range interaction, we 
now consider its structure. For this, we consider the field 
produced by a source J, : 

In the propagator (8), we are interested only in the term 
H - l~,,,,pl /p2. The remaining terms describe an interaction 
that decreases exponentially with the distance. Thus, 

For a conserved current, the strength of this field is 

it vanishes outside the sources: 

In other words, outside the sources the field (13) is a pure 
gauge: A, ( x )  = 8,~. Suppose for simplicity the current J, 
describes a charge at rest at the origin: Jo(x) = Qs2(x), J = 0. 
The static field of this charge has the form 
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Here 

The anglep determines the direction of the radius vector x in 
the plane. The function x is well defined in any simply con- 
nected domain that does not contain the origin, but it is not 
single valued in the complete plane, so that globally the field 
A, is not a pure gauge field. The integral JAdx around any 
contour that circles theoriginn timesis (2Q /H )n. IfQ /His a 
multiple of n-, then exp(i$Adx) is single valued, and the field 
(15) is unobservable. This then is the charge quantization in 
Abelian theory mentioned in the Introduction. 

We also make a technical remark. We consider what the 
consequence is in the momentum representation o fx  (x) be- 
ing multiply valued. The expressions (15) become 

Q Pz A t  ( p )  = ----22 = Pixi, 
H pi + P Z  

and two different functions x (p) are determined: 

On the other hand, it is not difficult to calculate the Fourier 
transform o fx  (x) directly: 

Calculating the integral over x ,  by parts, we find 

But if we calculate the integral over x, by parts, we obtain 

Q 
x z ( P ) = F [ -  Pi 

P Z ( P ~ ~ + P Z ~ )  

1 X l  r2= Co 

+ - exp ( i p Z x z )  .I tan-'- erp ( i p l z i )  dz, I I. ZPz xi x1=-m 

It is readily seen that interchange of the limits of integration 
changes the values of the integrals in the expressions forx 
by Q/Hp,p2, as must be in accordance with (16). 

It is readily seen that these expressions describe the 
Aharanov-Bohm effect, which is well known in ordinary 
four-dimensional  electrodynamic^.^ In the original effect, 
there is a field produced by an infinitely long thin solenoid. 
The magnetic field is entirely within the solenoid, and out- 

side remains only a vector potential that is locally but not 
globally a pure gauge. Nevertheless, particles that pass the 
solenoid on different sides acquire a relative phase shift, and 
this can lead to interference between them, so that the parti- 
cles interact with the field of the solenoid despite the fact 
that for the entire time they remain in a region with zero field 
strength. In three-dimensional space-time, a point charge 
can play the part of the solenoid, as we have seen above. 

We now show how it is that the phase shift between 
trajectories that pass on different sides of the origin leads to a 
pole in the scattering amplitude. The point is that the plane 
wave for which the scattering amplitude is calculated in ac- 
cordance with the Feynman rules is distributed over the 
complete space, and half of it passes on one side of the origin 
and half on the other. Suppose the wave propagates along the 
x, axis. If in the limit x2+ - w it has the form exp(ipx,), 
then in the limit x,+ + w it is transformed into 

exp ( i p x 2 )  [ I f  O ( x l )  e i a ] ,  a=2Q/H, 

i.e., it changes by 

a0 ( x i )  exp ( i p x , )  +O (a2). 

It is now necessary to find the Fourier transform of this 
expression: 

this is precisely the pole that arises from the propagator (8). 
We discuss briefly the connection between the Ahar- 

anov-Bohm effect and topology. We have seen that the pole 
in the scattering amplitude arises when the correction to the 
plane wave is expanded in powers of the phase shift a = 2Q / 
H. To obtain the total phase factor exp(ia), it is necessary to 
sum the infinite number of diagrams that describe the inter- 
action between the particle and the external field in all or- 
ders. This summation is conveniently done directly in the 
effective action for the sources whose interaction we study. 
This effective action is the generating functional of the qua- 
dratic theory and can be readily found. The structure in 
which we are interested, J , E , , ~ ~ ,  J,, /Hp2, occurs in the gen- 
erating functional in the form 

dSx d3y + . . ] . (17) = exp [;J 

FIG. 2. 
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Here, S [A ] is the action (3). The ellipsis represents the contri- 
butions associated with exchange of the massive photon; 
these decrease rapidly at large distances. If the sources de- 
scribe closed trajectories (Fig. 2), i.e., they correspond to 
particles moving along closed trajectories, then 

After this, (1 7) becomes 

The integral in the exponential is a topological invariant; it is 
called the Gauss integral and is equal to the winding index of 
the two curves, i.e., it measures the number of times the one 
closed curve passes round the other.' It has the same mean- 
ing if one of the curves begins and ends at infinity, as would 
be the case if we were to consider the motion of a test particle 
in the field of a charge at rest. 

We should like to end this section with a fairly general 
assertion, namely, that the propagator of any local gauge 
theory is singular atp, = 0. This result can be readily under- 
stood by noting that the Lagrangian of any local gauge the- 
ory is invariant under a shift A,-+A, + c, with constant 
vector c, . Strictly speaking, this is not a gauge transforma- 
tion, since it does not decrease at infinity. For example, 
Schwinger's two-dimensional electrodynamics is gauge in- 
variant but does not have this symmetry, which is broken by 
the nonlocal mass term 

m2 (A~ ,2=rnz~ .  (a,. . 

A second example is a theory with the Higgs effect; under the 
shift A, +A, + c, , it is necessary to rotate the scalar, 
@+exp(icx)@, which changes its vacuum expectation. How- 
ever, if a theory has this shift symmetry, the action does not 
depend on constant fields A, @ = O), and therefore the inte- 
gral over the fields in the generating functional is not sup- 
pressed by an exponential, and the contribution of constant 
fields is, unless zero for some other special reasons, infinite. 
It is obvious that the action (3) has this symmetry, and there- 
fore a pole atp, = 0 must be present. However, this explana- 
tion seems to us too general, and we wish to give below a 
more detailed analysis of the appearance of the pole in a 
consistent quantum theory. 

2. QUANTUM-MECHANICAL ANALOGY: PARTICLE IN A 
HOMOGENEOUS MAGNETIC FIELD 

A direct (0 + 1) analog of (3) does not exist, since there is 
no one-dimensional gauge theory even without the WS term. 
Therefore, a quantum-mechanical analogy must be sought 
elsewhere. In (3) we set A,  = 0, and we regard the fields A ,,, 
as constant in space and varying only in time. Then instead 
of (3) we obtain 

This is the action of a two-dimensional particle (nor a field!) 

on the plane A,A, in a magnetic field H at right angles to this 
plane. The Hamiltonian of the particle is 

After canonical quantization, vi = i6'/6'Ai, the Lagrangian 

is associated with the different Hamiltonian 

but the equations of motion are the same in the cases (19) and 
(21): 

Ai+HeljAj=O. (23) 

Accordingly, the propagators (24) (see below) are also identi- 
cal. Clearly, the Hamiltonians (20) and (22) must be related 
by a unitary transformation: 

We shall say that such transformations are quasigauge, since 
they describe the possibility of choosing in different ways the 
vector potential di corresponding to the given magnetic 
field H: H = .ziidi dj. In the Hamiltonian (20), the vector 
potential is chosen in the form d,  = - 1/2H&,,Aj; in (22), 
in the form Bi = - HA,, d, = 0. The spectrum does not 
depend on the choice of the vector potential; all that change 
are the wave functions of the states. The name quasigauge 
transformation recalls the fact that the freedom in the choice 
of the vector potential di has nothing to do with the gauge 
transformations of the theory (3). The quasigauge transfor- 
mations are linear mappings of the Hilbert space of the phys- 
ical states into itself, whereas the gauge transformations 
cause this space itself to change. In particular, the correla- 
tion functions [for example, (24)] change under gauge but not 
under quasigauge transformations. 

The physical states of the system (19) are extermely well 
known-they are Landau levels (see, for example, Ref. 12). 
The propagator, defined in the usual way as the Green's 
function of the equations of motion (33), has the form 

and is completely analogous to the propagator (8). In it, there 
are also two poles: a massive one at w = Hand a massless one 
at w = 0, the latter being present only in the nondiagonal 
correlation function. With what states are these poles asso- 
ciated? 

To answer this question, we turn to the Hamiltonian 
quantum description. The choice of the basis states for a 
strongly degenerate system such as a charge in a magnetic 
field is rather arbitrary. We use an axial basis in which the 
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operators of the angular momentum L and the energy 
E = (N + ;)Hare diagonal. In what follows, we shall consid- 
er the excitation energy after subtraction of the zero-point 
fluctuations (in field theory, it is only this energy that is 
meaningful), i.e., E = NH. The true parameter of the wave 
functions in this basis is not N but n = N - ;(IL I - L ). At 
the same time, 

yn, ~ = e x p  ( i L ~ ) $ n ,  ~ ( r ) ,  P5) 

and the radial functions can be expressed in terms of La- 
guerre polynomials: 

HrZ HrZ 
$,,L ( r )  =cWL exp (- r ~ 1  9.lLi (T), (26) 

where C,,, is a H-dependent gauge constant, A, = r cos p,  
A, = r sinp, and 

En, == [n+'12 ( I  LI - L )  I H. 

Despite the cumbersome form of the wave functions 
(25), calculations with them are very simple if one uses the 
generating function of the Laguerre polynomials: 

Any matrix element A, and A, reduces to the product of an 
angular and a radial element. We choose some ground state, 
for example, 

The operators A, and A,, which are proportional to ex- 
p (ip ) & exp ( - ip ), can only have transitions in which L 
changes by unity. The radial part of the matrix elements 
(n,L = f 1 /A ,,, j0,O) is determined by the integral 

which, as is readily seen by means of (27), is nonvanishing 
only for n = 0. Thus, only the intermediate states with n = 0 
and L = f 1 contribute to the propagator ofA. The first of 
these has zero energy, and the second H. 

It remains to show why the massless pole is absent in the 
diagonal correlation function. The reason is trivial, although 
somewhat unusual. We write down a spectral representation 
for the correlation function (in quantum field theory, this is 
the Ka11Cn-Lehmann representation): 

It is clear that the pole w = 0 is absent in the first term, since 
the residue is proportional to En,  but is present in the sec- 
ond. For the diagonal correlation function we have i = j, and 
the term with the imaginary part is simply absent; hence, the 
pole l/w2 is absent in it too. In general, the pole l/w2 is 
present in the nondiagonal correlation function, and it is 
necessarily imaginary (in Minkowski space); the propagator 
(24) is constructed in just this manner. Moreover, using the 
normalized wave functions 

I n=O, L=*I> = --- r exp ( - - Hl) exp(* ip ) .  
2n'" 

we can readily verify by a simple calculation that 

after which the propagator (24) is directly recovered from 
(28). 

From this analysis it is clear that transitions between 
energy-degenerate states are responsible for the l/w2 pole. 
In the semiclassical description, it is precisely these transi- 
tions that cause the drift of the Landau orbits in the plane 
perpendicular to the magnetic field. We recall that the semi- 
classical picture of the motion is that of revolution in one 
direction in a circle. This corresponds to the motion of the 
polarization vector for the plane wave discussed in Sec. 1. 

These arguments may occasion a certain disbelief: Are 
we saying that the l/w2 pole is altogether impossible in diag- 
onal correlation functions? The critical point here is that in 
the example discussed above the Hamiltonian does not have 
a continuum near the origin (or indeed anywhere), i.e., the 
states with zero energy are separated from the others by a 
mass gap. If this is not the case, a pole can arise in a diagonal 
correlation function on account of the singular behavior of 
the matrix element (O(A, In) as En -0, as occurs, for exam- 
ple, in the case of the free theory. The Hamiltonian is 
J(# + ~ ) ,  and the matrix element ((Ai Ip) a Sf@). At the 
same time, 

1 
= - J dt exp (imt) En k 

i 0 ~ n ~ -  m2-En s d 2 k [ ~ ' ( k ) ] 2  0 2  - - k" 

x [ e ( t )  ( 0 1  p , ( t ) ~ , ( o )  lo)+o(-t) < O / A , ( O ) A ~ ( ~ )  1 o ) ]  4 
k2 

a- 
1 

=A ~ ~ d t [ ~ ( t ) e x p ( i ( o E . ) t ) < O ~ A . ~ n ) t n ~ A , ~ O ) ]  
n 

+ 1 z 5 dt[O (- t )  ( i  ( m + ~ , , )  t )  ( 0  1 a, 1 h )  ( n  1 ai 1 0 )  1 Ofcourse, this pole is obtained from the massive l/(02 - H ') 
n one as H-0, and in this limit the matrix elements (29) are, of 

course, singular. 
We have discussed this well-known example here in 
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such detail because it is a direct analog of the (2 + 1) photo- 
dynamics in which we are interested. In the following sec- 
tion, we shall obtain a consistent Hamiltonian formulation 
of this theory and show that without allowance for the con- 
straints it completely parallels the example analyzed above. 

3. HAMlLTONlAN QUANTIZATION 

To obtain the Hamiltonian, it is necessary to find the 
canonical momenta .rr, = SY/SA,. The Lagrangian from 
which we find the Hamiltonian is determined by the Lagran- 
gian (3) together with the contribution of the sources that 
interact with the field A,. Therefore, 

From (30), we can readily find the canonical momenta 

The fact that .rr, = 0 means that the field component A,  is not 
a dynamical variable. Knowing the canonical momenta ri , 
we can express A; in terms of them and functions of fields 
that do not contain time derivatives, after which we obtain 
the Hamiltonian density 

Variation of A? with respect to A, leads to the constraint 

Note that the constraint (33) is gauge invariant and is simply 
the zeroth component of the equations of motion; however, 
in Hamiltonian quantization it must be regarded, not as an 
equation of motion for the operators, but as a condition on 
the physical states (for more detail about the Hamiltonian 
quantization of systems with constraints, see Ref. 13). In 
order to work in a physical state space without constraints, 
we can, using (33), express one of the momenta ri in terms of 
the other and the fields A;. In addition, using Eq. (3 I), we can 
eliminate one of the fields (to eliminate the field does not 
mean to annihilate it but to express it in terms of the remain- 
ing dynamical variables and sources) and remove the other 
by a gauge transformation. As a result, from the three fields 
and two momenta we are left with one field and one momen- 
tum, i.e., one degree of freedom. 

But before we discuss correct quantization with 
allowance for the constraint (33), let us forget the constraint 
for a moment and regard the Hamiltonian (32) as a system 
with two degrees of freedom. For this, we ignore the term 
with the constraint (since it vanishes anyway on physical 
states) and the contribution of the sources. This means that 
we artificially "revive" one spurious degree of freedom. 
After we have found what this extra degree of freedom 
means, we shall show that imposing the constraint that 
drives this degree of freedom out of the spectrum leads to an 
instantaneous interaction of the sources, which behaves as if 
it proceeded through the intermediate states corresponding 
to this extra degree of freedom. Note that in removing the 
constraint from the Hamiltonian we simultaneously re- 
moved A,, i.e., we essentially chose the gauge A, = 0. The 
Hamiltonian has (in the momentum representation) the form 

In this representation, the Hamiltonian is diagonal with re- 
spect to the 2-vector p, which parametrizes the canonical 
momenta ri and the fields Ai . Therefore, all the wave func- 
tions of the system factor and have the form 

where I P,, ) are the wave functions of the Hamiltonian den- 
sity (34) for given p. Clearly, states with different p are or- 
thogonal, this being simply a consequence of momentum 
conservation-the eigenfunctions of the Hamiltonian can 
also be eigenfunctions of the momentum operator. 

We choose the sector withp, = 0 and somep,. By virtue 
of the rotational symmetry, this does not restrict the genera- 
lity of the arguments. Then 

% ( p l ,  0) ='I, (n,-'l,H~2)2+'l,(n~+'12HAl)~112pl"A,Z. (35) 

Unfortunately, because of the term p:A : the Hamiltonian 
(35) does not separate in the angular variables 

Ai=r  cos cp, A,=r sin (0, 

which we used to discuss the analogous Hamiltonian in Sec. 
2. However, applying to (35) the quasigauge transformation 

which does not change the energy spectrum, we obtain 

%' ( p , ,  0) ='I, (nl-fiA,)2+'l,n,2+1/2pi2A22. (36) 

This is also the Hamiltonian of a charge in a magnetic field, 
but, in addition, there is also an oscillator potential along the 
A,  axis. Recalling Sec. 2, we readily see that the motion along 
the A, axis corresponds to a discrete spectrum of energies, 
except that now the energy of the intermediate (excited 
above the vacuum) state is not H but (p: + H ,)'I2, as it must 
be in a Lorentz-invariant theory. Along the A ,  axis there is 
no potential, and the spectrum is degenerate with respect to 
ri , which can take any value, this being essentially the posi- 
tion of the center of the Landau orbit. Hence, in this case too 
there is a soft mode, which leads to the massless pole l/w2. 
One can directly calculate the correlation function, in the 
same way as was done in Sec. 2 [see (28) and (24)l. In this case, 
the wave functions are determined by Hermite polynomials, 
and the calculations simplify strongly if we use the generat- 
ing function 

H,, (x) tn=exp (Zxt-P) . 

We shall not go into the details of the calculations, since they 
are entirely analogous to the ones made above, and we give 
the result directly for the correlation function: 
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In (37), it is easy to recognize the propagator (9). 
Thus, we have obtained the correct propagator, but the 

theory is not correct, since we did not take into account the 
constraint. If we do, we eliminate the soft mode, but the 
important thing is not the propagator itself but its contrac- 
tion with the conserved external sources. What we wish to 
demonstrate is the occurrence of contact terms, quadratic in 
the sources, corresponding completely to the massless pole 
in (37). 

For this, we continue with the temporarily interrupted 
correct Hamiltonian quantization. It is simplest to use the 
gauge 

a,Ai=div A=O. (38) 

Then from (3 1) it follows that 

d,A,=d,n,+d'A,-'/2H~~,d,A,=0. 

Comparing this with (33), we obtain 

d2A0=H&,,d,A,+Jo. (39) 

Note that even in the absence of sources, J,  = 0, it follows 
from (39) that it is in general impossible to have in this gauge 
A, = 0 (this is possible only in the trivial case H = 0). Simi- 
larly, in the gauge A, = 0 it is not possible to make the pho- 
ton transverse. (This was discussed in the plane-wave exam- 
ple in Sec. 1 .) 

Solving (39) for A,, we obtain 

or, in the momentum representation, 

In the momentum representation, the constraint becomes 

p, ( n i + 1 / 2 H ~ i / l j )  - iJo=O.  

It is convenient to go over to transverse and longitudinal 
components of the fields and sources: 

A,=Ai"+A,I, J,=Ji"+JiL, pAL=pJL=O, (40) 

In accordance with (38), A 1 = 0. 
In these variables, the Hamiltonian density has the 

form 

1 J Z  iH (nL)  ' ( p 2 + P )  ( * L )  '+ JLAL +_I 8=-+ 
2 2 

J,AL. 
:! P =  l e l  

Using current conservation, wJ, = I p 1 Jll , we can rewrite (42) 
as 

(43) 

We see that the first three terms of the Hamiltonians (42) and 
(43) describe a massive single-component photon interacting 
with the transverse source that creates it, while the last two 
terms describe the instantaneous interaction of the sources 
J,  or J I I  and their interaction with the physical photon A' . In 
the case when external photons are absent, it is easy to obtain 
(6)  and (7) from (43) and (42), respectively. 

Thus, the correct quantum description of (2 + 1) photo- 
dynamics does indeed lead to nondispersive massless poles 
responsible for an instantaneous long-range interaction of 
Aharanov-Bohm type. 
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