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A theory is developed of nonlinear resonant absorption of an RF  electric field by two-level 
systems (TLS) in powdered glass. It is assumed that the RF-field frequency satisfies the condition 
h g k T .  It is shown that in this case the spectral diffusion mechanism plays a significant role in 
the formation of the nonlinear-absorption spectrum. The presence of two TLS in a powder parti- 
cle is considered, one resonant (level spacing e = h) and the other "thermal" (level spacing 
E z k T ) .  Phonon-induced transitions in the thermal TLS produce random changes of the level 
spacing in the resonant TLS, which alternately goes off and into resonance. A diagram technique 
is used to describe the linear absorption in such a situation and leads to results that agree with a 
model in which the transitions of the thermal TLS from one state to another are instantaneous 
(jumpwise). The problem of nonlinear resonant absorption is solved in a model of thermal-TLS 
jump transitions described by the telegraph process. The solution is by the method of stochastic 
differential equations. It is shown that the plot of the absorption vs the intensity in powdered glass 
has two steps. The first is due to the saturation of the resonant TLS in particles that have no 
thermal TLS, or in particles where the frequency of the thermal-TLS transitions is low. The 
second step is due to saturation of those TLS which have a fast enough thermal neighbor. It is 
noted that the results can be used directly to describe nonlinear absorption by a system of para- 
magnetic noncentral ions and the NMR of molecules having a chemical shift. 

1. INTRODUCTION 
Our purpose is to consider nonlinear resonant absorp- 

tion of RF electromagnetic radiation by two-level systems 
(TLS) in dielectric glasses. A dependence of this absorption 
on the intensity was observed in Refs. 1-3 (see also Ref. 4). 
This dependence can be interpreted by positing saturation of 
the TLS by an intense 

The RF radiation frequency is assumed to satisfy the 
condition (fi = 1) 

o<T, (1.1) 

where T is the temperature (in energy units). The resonant 
absorption is due to those TLS in which the level spacing e 
satisfies with sufficient accuracy the condition 

o=e. (1.2) 

The electromagnetic-energy absorption by a resonant 
TLS is determined by the off-diagonal component of its den- 
sity matrix. This component is usually found by solving the 
Bloch  equation^.^.^ These equations contain two character- 
istic times. These are the time T ,  that describes the popula- 
tion relaxation of the resonant width of the resonant-TLS 
and the time T ,  that characterizes the resonant-TLS absorp- 
tion linewidth in the linear approximation. 

The time T ,  is usually determined by the interaction of 
the resonant TLS with phonons. As for the time T,, at suffi- 
ciently high frequencies w 2 T it is also determined by the 
interaction with the phonons. In this (simplest) case 
T2 = 2 ~ ~ . ' '  

The frequencies dealt with in contemporary experi- 
ments, however, are shorter, so that this condition is not 
satisfied and T 2 ( T I .  In this case, as indicated by Hunklinger 

and Arnold6.' and by Joffrin and Levelut,' the time T ,  is 
determined by the interaction of the resonant TLS with the 
neighboring thermal levels, i.e., with TLS having E of the 
order of T. 

The point is that each TLS is surrounded by a strain 
field. This field depends on the state-upper or lower-of 
the given TLS and decreases in inverse proportion to the 
cube of the distance from the ~ystem.~.' 

On the other hand, the distance e between the levels of a 
resonant TLS depends on the strain u, at its location. Thus, 
the neighboring-T~s population fluctuations due to interac- 
tion with thermal phonons cause the TLS in question to al- 
ternate between off-resonance and resonance. This decreases 
the time during which the given TLS is resonant. The vari- 
ation of the level spacing of the resonant TLS is random. 
This phenomenon was designated spectral diffusion. Al- 
though this designation is not quite appropriate, we retain it 
in this article. 

We shall consider a simplified approach to the role of 
spectral diffusion in nonlinear absorption. We shall assume 
in fact that adjacent to the resonant TLS there is only one 
thermal TLS capable of effecting transitions. Such a problem 
can have a direct bearing on a glass powder, in which the 
individual particles are interspersed in a crystal matrix. On 
the one hand, this problem admits of exact solution, and on 
the other it can track the basic physics of spectral diffusion in 
glasses. 

In addition, the results of Sec. 3 can be directly used to 
describe the saturation of the paramagnetic resonance of the 
so-called noncentral ions, which can occupy several equiva- 
lent positions in a unit  ell.^,'^ Transitions between these 
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positions are either by tunneling or by surmounting the bar- 
rier, with phonon participation. Owing to the anisotropy of 
the g factor, however, the value the spectroscopic splitting 
depends on the location of the noncentral ion. A similar situ- 
ation is realized in NMR spectra of molecules subject to the 
so-called chemical shift. 

Getting ahead of ourselves, we note that our analysis 
leads to the following important conclusion. It can be seen 
from the concrete form of the expression for the nonlinear- 
absorption line shape of a two-resonant TLS [Eq. (3.1 I)], this 
form is not described by a solution of the Bloch equations 
and by some constant value of the time T,, since these equa- 
tions can yield only a Lorentz absorption line. Only in the 
limiting case (3.17) of frequent transitions in the thermal 
TLS is the line shape Lorentzian and can be described by 
introducing a suitable time T,. 

The plan of the article is the following. We derive first, 
using a diagram technique, an expression for the linear ab- 
sorption coefficient. We compare the results of this deriva- 
tion with the earlier results based on the concept of quantum 
jumps. We verify that, at the accuracy of interest to us (and 
determined by the ratio of the absorption linewidth to its 
frequency w) both methods lead in the linear theory to equi- 
valent results. By the same token, the diagram-based deriva- 
tion can thus serve as confirmation of the quantum-jump 
concept. 

The jump method is used next to solve the main prob- 
lem of interest, the nonlinear one. 

2. FORMULATION OF PROBLEM AND CALCULATION OF 
LINEAR ABSORPTION 

We write the Hamiltonian of the system considered in 
the form 
8=i/,es3+'/,ES3+'/2Js,S,+miIiL,I~if M i S + +  cos otsi. 

Here e is the distance between the resonant TLS levels, E is 
the distance between the thermal TLS level, si and Si are 
Pauli matrices acting respectively in the spaces of the reso- 
nant and thermal TLS, and J is the energy of their interac- 
tion. This is the interaction referred to in the Introduction. 
The corresponding expression for the Interaction Hamilton- 
ian were obtained by Aminov and K~chelaev, '~ Joffrin and 
Leve l~ t ,~  and by Black and Halperin (Ref. 13).') The energy 
J is inversely proportional o ?, where r is the distance 
between the interacting TLS. We assume next that 

IJl<<o<<T. (2.2) 
Only in this case can allowance for the interaction between 
the resonant and thermal TLS be reconciled with the reso- 
nance approximation [see Eq. (2.9) below] in which the en- 
tire calculation that follows is carried out. The next two 
terms of the Hamiltonian (2.1) describe respectively the 
phonon interactions of the resonant and thermal TLS, which 
cause the transition in these systems; mi, and Mi, are the 
corresponding tensors of the strain potential, and Xph is the 
Hamiltonian of the phonon system. Finally, the last term 
describes the interaction between the resonant TLS and the 
alternating field of frequency w. 

We shall regard the first three terms of (2.1) as the un- 
perturbed Hamiltonian which has the four eigenvalues h,, 
h,, h,, and h,, where 

(a similar approach was used by Gauthier and Walker9). 
The scheme of these levels is shown in Fig. 1. For sim- 

plicity, we shall disregard hereafter the interaction of the 
resonant TLS with the phonons, and confine ourselves only 
to allowance for such an interaction for the thermal TLS (we 
shall indicate below how the results change when this inter- 
action is taken into account). The transitions that can be 
effected in this case by the phonons are shown in the figure 
by dashed lines. Transitions induced by the resonant field 
are shown by wavy lines. 

The interaction between the resultant four-level system 
and the phonons will be described by perturbation theory. 
We shall sum the series that appear by the diagram tech- 
nique proposed by AbrikosovI4 for a spin interacting with 
electrons." This technique was used by MaleevI6 to describe 
interactions of two-level systems with phonons. It can be 
verified that the non-uniform level spacing does not prevent 
the use of such a technique to describe also the interaction of 
our four-level system with phonons. 

According to this technique, a four-level can be set in 
correspondence with a system of four fermions, to which 
correspond the renormalized propagators 

Here E is the energy variable, r i / 2  is the imaginary part of 
the self-energy and is due to the interaction of the quasifer- 
mions with the phonons (the real part of the self-energy is 
regarded as included in hi via renormalization of the bare 
energies). 

For Ti we obtain, in full analogy with Ref. 16, 

I'i 1 
- 2 = -- Im Jdx@ (x)g;(e+x) I ,=hi =@ (hi-hi). (2.4) 

2-c -- 
The subscripts i and 7 correspond to states coupled by a 
phonon transition:i = 2 , j  = 4 and the converse. Here @ ( x )  
is the imaginary part of the phonon propagator and is equal 
to 

FIG. 1. Level scheme for a dipole-dipole interacting pair comprising a 
resonant TLS and a thermal TLS [see (2.3)]. The dashed lines show transi- 
tions, with phonon participation, in the thermal TLS, while the wavy lines 
show transitions induced in the resonant TLS by the RF field. 
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N ( x )  = [exp (Z IT)  - I ]  -'. 

Here N is the Planck function, p the density of the glass, M, 
and M, the longitudinal and transverse constants of the TLS 
strain p~tential".'~: 

1 
M12 = - [ (Sp  M)'+2 Sp MZ], 

15 

and v, (v,) the corresponding sound velocities. 
Proceeding in the spirit of Refs. 16, we obtain the fol- 

lowing expression for the retarded susceptibility x (o), whose 
imaginary part describes the absorption in the linear theory: 

where Fi, are the vertex parts describing the interaction of 
the quasifermions with the resonant field F. As shown in Fig. 
1, only the vertices Ti, for the transitions 1-3 and 2-4 
differ from zero. The bare vertices for these transitions are 
assumed equal to unity. If suffices to calculate the normali- 
zation factor N for this case in the zeroth approximation in 
the phonons. It is equal to 

A'=sP exp (--%o ( T )  ) = exp ( -h i /T) ,  (2.7) 
I 

where %o is that part of the Hamiltonian (2.1) which does 
not contain interactions with the resonant field and with the 
phonons. Taking the inequalities (1.1) and (2.2) into account 
we have 

N=4 ch (E /2T) .  (2.8) 

It is easy to verify that in the resonant approximation 

la-el<o, (2.9) 

to which we confine ourselves, only the second and fourth 
terms of (2.6) are significant. 

Being interested in the absorption line shape, we consid- 
er only the imaginary part of the susceptibility. It can be 
represented, taking the inequalities (1.1) and (1.2) into ac- 
count, in the form (the so-called pole approximation) 

where 
p -fl- le-h,/T 

k- I + rn (2.11) 

The ladder approximation is sufficient for the calculation of 
the vertices Fi, (cf. Ref. 16). The small parameter that en- 

FIG. 2. Equation for the vertex 7, (E + O, E )  that describes the interac- 
tion of th_e four-level system (2.3) with the resonant RF field. (i, k ) = ( 1 ,  3) 
or (2,4); 1 = 2 ,3  = 4. The imaginary part of the phonon propagator @ (x) 
is shown dashed. 

sures validity of this approximation is the ratio 

r,lT-- (TIE,) '<<I ,  (2.13) 

where ro is the characteristic energy-level width of the ther- 
mal TLS and is defined by Eq. (2.4), while 
E, ~ ( ~ f i ~ v : ) ' / ~ / ~  is the characteristic energy introduced 
by Gurevich and Parshin18; it is of the order of 30 K. 

The result is the integral equation (Fig. 2) 

Since the function 0 ( x )  is smooth, it can be reduced to the 
form 

T i k ( ~ + O ,  E )  =1+2i@ (hli-E) IIi~ ( a ) .  (2.15) 

Multiplying this expression by gi (E + o)g,*(~)/2l.ri and inte- 
grating with respect to E from - rn to + rn, we obtain for Z7 
the system of equations 

where 
+ rx, 

In the resonant approximation of interest to us, (2.16) at 
w > 0 is a system of two equations, with two unknowns, 
which relate the quantities n,, and I&,. 

Taking into account expressions (2.3) for hi and intro- 
ducing the notation r ,  = 2 0  ( + E ), z = o - e, we obtain 

The expression for Z7,, = 4, differs from (2.18) by the 
substitution J--t - J in the numerator. 

The result is the following expression for the suscepti- 
bility: 

z,+J th (E /2T)  zi+J t h ( E / 2 T )  
x(a)=- - 

" 
z-zi 4TD'" z-z2 

(2.19) 
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where 

Expression (2.19) admits of a simple qualitative inter- 
pretation (see Refs. 19 and 20). It describes the absorption 
spectrum of a two-level system in which the level spacing 
fluctuates on account to transitions that occur in a thermal 
TLS and changes jumpwise from a value e + J to a value 
e - J .  The average lifetime in these states is respectively 1/ 
r- and 1 IT+ .  

Let us analyze (2.19) in the limiting cases of strong and 
weak interaction between the TLS. It can be verified that the 
measure of the interaction force is the ratio of the interaction 
energy J to thecharacteristic smearingr = T+ + T- of the 
quasi-fermion levels due to transitions in the thermal TLS. 

1. At 

expression (2.19) is transformed into 

n o w )  +- ~ ( a ) =  --- 
I-no (El 1 l (2.23) a-e-J+ir- a-e+J+ir+ - 

n , ( E )  = [exp (EIT) + I ]  -', 
where no(E )is the Fermi function. Actually this is none other 
than the average occupation number of the upper level of the 
thermal TLS. Expression (2.23) has a lucid physical mean- 
ing. It describes the splitting of the single absorption peak at 
o = e, which is present in the absence of the interaction, into 
two peaks corresponding to the resonant frequencies 
o = e + J. The relative powers of each of these peaks are 
proportional to the fractions of the time that the thermal 
TLS remains in the upper and lower states, respectively, i.e., 
to equilibrium populations no(E) and 1 - no(E ). 

As for the resonance widths, in this situation (see below) 
they are in no way determined by the real transitions of the 
resonant TLS, but by the loss of phase coherence of its wave 
function when transitions occur in the thermal TLS. These 
transitions are due either to emission of thermal phonons 
[first term of (2.23)] or to their absorption (second term). By 
virtue of inequality (2.22) each such transition produces 
complete dephasing, so that the peak widths are determined 
by the probabilities of departure from the states of the doub- 
lets (2.3) and (2.4) corresponding to transition energies e + J 
(see Fig. 1). The total absorbed power remains the same as 
before. 

2. At 

]<I- (2.24) 

expression (2.19) reduces to 

This result describes the line narrowing known from 
paramagnetic and nuclear magnetic r e s o n a n ~ e , ' ~ , ~ ~  and ad- 

mits of a simple interpretation. Indeed, when the level spac- 
ing of the resonant TLS is changed very frequently by transi- 
tions in the thermal TLS, the external alternating field 
"feels" the average value of this spacing: 
e + J [ n o ( E ) - ( 1 - n o ( E ) ) ] = e - J t a n h ( E / 2 T ) .  As for 
the damping, in this case it is also determined by the dephas- 
ing of the resonant-TLS wave function. The dephasing pro- 
ceeds now, by virtue of (2.24), in a diffuse manner, in small 
steps. Therefore the characteristic broadening must be equal 
to D,, where D, is the phase diffusion coefficient. This 
quantity can be easily expressed in term of the change of the 
energy J in each transition and in terms of the transition 
frequency r: 

D,=J2/r. 

We obtain thus an estimate that agrees qualitatively with 
(2.25)-the higher the transition frequency in the thermal 
TLS, the narrower the absorption line of the resonant TLS 
(line narrowing). We note that it is precisely in the second 
limiting case (2.24) that the absorbing TLS goes off reso- 
nance via diffusion. 

In the foregoing analysis of the linear absorption we 
disregarded the intrinsic damping y, due to the fourth term 
in Hamiltonian (2. I), of the resonant TLS. It can be shown 
that this is justified if y( min (r, J2/r ) [see (3.15), (3.18), 
(3.21) and (3.23)]. 

The approach developed above makes it possible to con- 
sider relatively simply also the case when the resonant TLS 
has several (N) thermal neighbors. The result is a level 
scheme of the type shown in Fig. 1, consisting of 2N doub- 
lets. The system of linear equations for the 2N unknown ITi, 
is also similar in form to (2.16), with each equation having 
N + 1 terms (each doublet is connected with configurations 
that differ from it by a transition to one thermal TLS). Such a 
system of equations is simple to analyze in the limiting cases 
(2.22) and (2.24) (cf. Ref. 20). 

3. NONLINEAR ABSORPTION. METHOD OF STOCHASTIC 
DIFFERENTIAL EQUATIONS 

The results of the preceding section reduce thus briefly 
to the following physical picture. The thermal TLS executes, 
under the influence of the interaction with the phonons, 
quantum transitions (jumps) that influence the state of the 
absorbing resonant TLS. This picture will be used in the 
present section to describe nonlinear absorption. We use for 
this purpose the method of stochastic differential equations, 
since it permits the nonlinearity to be taken into account in a 
relatively simple manner. 

This method is relatively simple because the jumps are 
assumed in it to be instantaneous. In other words, the time of 
the jump is not contained at all in the formulation of the 
problem. This corresponds fully to the results of the preced- 
ing section. Its final formulas likewise did not involve the 
behavior of the system at short times of the order of l/e or 1/ 
E. Moreover, we go below to the limit of the linear case, 
compare directly the results with the final expressions of the 
preceding section, and ultimately verify that they agree. 

We shall assume that the duration of the RF  field pulse 
is much longer than the time interval 1 / r  between the 

1262 Sov. Phys. JETP 60 (6). December 1984 Gal'perin eta/ 1262 



jumps. In other words, we consider absorption in the station- 
ary regime (the same stationary condition was in fact used by 
us in the preceding section, where the Green's functions 
were assumed to be independent of the total time). 

We consider a resonant TLS in a classical random strain 
field. The fluctuations of this field are due to jumplike transi- 
tions of the thermal TLS. As a result, the level spacing of the 
resonant TLS is a random function of the time: 

where6 (t )is described by the so-called telegraph process2': it 
takes on alternately values + 1 and - 1 at random instants 
of the time; the random frequency of the jumps is T. For the 
sake of simplicity we shall not distinguish here between the 
lifetimes of the thermal TLS on the upper and lower levels. 
In terms of the preceding section this corresponds to the 
approximation 

The absorption of the resonant TLS is determined by its 
density matrix: 

In the resonance approximation (2.9), the equations for n 
and f take the form (cf. Ref. 22) 

where y = y+ + y- is the total resonant-TLS level width 
due to emission and absorption of phonons of energy e: 

s=z--JT; ( t ) ,  z=o-e, 

no= [exp (elT) + 11 -', 
no is the equilibrium population of the upper level of the 
resonant TLS. 

It must be noted that in the nonlinear-absorption prob- 
lem allowance for the natural damping y of the resonant TLS 
is essential wherever it describes the population relaxation of 
the resonant TLS [see (3.3)]. In addition, in this section we 
take y into account also where it describes the relaxation of 
the resonant-TLS wave-function phase [third term in the 
left-hand side of (3.4)], in order to understand its contribu- 
tion in comparison with the spectral-diffusion mechanism. 

The absorption of the resonant-TLS alternating-field 
energy is determined by the imaginary part of the suscepti- 
bility, Imx(m), which is connected with the off-diagonal 
component of the density matrix f by the relation 

where the angle brackets denote averaging over the realiza- 
tion of the random process { (t ). 

The value of ( f )  is determined from Eqs. (3.3) and (3.4) 
averaged over the realizations of the random process { (t ) 

The set of equations obtained for the mean values is not 
closed, since it contains the quantity (Sf). Since the tele- 
graph process6 (t ) is a Markov random process, the following 
equation, as shown in Ref. 21, holds for (Sf): 

A similar equation holds also for (gn). Using now Eqs. (3.3) 
and (3.4) and the fact that { '(t ) = 1 is a determined quantity, 
we obtain in the stationary case the following system of four 
equations for the quantities ( f ), (n), (Sf), and ({n): 

y ((n>-n,)+F Re (f>=O, 

(y/2+iz) (f)-iJ(gf>=F ((n>-'I,), 

The solution of this system of linear equations for Re ( f )  is 

where 

AsFLOandat y( min ( r ,  J2/r) weobtain from (3.1 I), 
taking (3.6) into account, the same results that expression 
(2.19) gives for I m x  (a) ,  provided we put in (2.19) 
r+ = r- = r and tanh (E/2T) = 0. These two equations 
are interrelated and stem from the fact that they are quite 
well satisfied at E( T. 

We start the analysis of Eq. (3.1 l), which describes the 
nonlinear absorption, with a typical experimental situation, 
when 

r ~ y .  (3.13) 

Three limiting cases are possible here: a) J)T, b) 
T%J)(~T)"~ ,  c) ( ~ T ) ' / ~ % J .  We consider the first: 

In this case we have from (3.11) in the principal pole 
approximation 
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It follows from this that the nonlinear effects in the absorp- 
tion of one resonant TLS become substantial at an amplitude 
F of the order of and larger than a certain critical value 

In the second limiting case 

In the principal pole approximation we have from (3.11) 

In this case the critical amplitude F,, is given by 

Finally, in the third case 

we have 

and 
~ , , = y / l ' %  

These results have a rather simple qualitative interpre- 
tation. The critical intensity Fz is determined by the balance 
between the processes of the transition of the resonant TLS 
with absorption of a quantum, on the one hand, and pro- 
cesses of relaxation of their population on account of emis- 
sion of phonons of frequency close to w, on the other. The 
rate of the transitions with absorption of a quantum (at reso- 
nance) at F = Fc is (in order of magnitude) F ;/a, where S is 
the resonant-TLS absorption linewidth in the linear regime; 
the population relaxation rate is y. Hence Fc z ( y 8  )'I2. In 
case (a), S z r  and we have the estimate (3.16); in case (b) 
S z  J Z / r a n d  we arrive at (3.19); finally, in case (c) the princi- 
pal role in the dephasing of the wave function of the resonant 
TLS is played by emission and absorption of phonons of the 
resonant TLS itself, with energy o, while the spectral diffu- 
sion is inessential. We obtain therefore for the critical ampli- 
tude the same result (3.21) as in the absence of spectral diffu- 
sion. 

We consider now the case y ) r .  From (3.11) we obtain 

In this case the processes of transition to the thermal TLS do 
not influence the resonant-TLS effective linewidth, since the 
characteristic time that forms the line profile is too short for 
such transition to take place. The answer is therefore a sum 
of peaks centered at w = e + J and having a width deter- 
mined by the natural damping y of the resonant TLS. 

The nonlinear-absorption problem is thus reduced to a 
determination of the effective dephasing time of the reso- 
nant-TLS wave funcion, i.e., of its absorption linewidth S. 

4. NONLINEAR ABSORPTION. AVERAGING OVER A TLS 
ENSEMBLE 

We have determined absorption by one pair consisting 
of a TLS with energy e close to w, and a thermal TLS with 
energy E z  T. It is known, however, that the energy spec- 
trum of TLS in glasses is quite broad.5 Therefore there is 
practically equal probability of encountering in different 
glass-powder particles low-energy TLS with different values 
of e,  as well as their neighbors with different values of E, 
including E of the order of T. Moreover, even TLS having 
the same energy make different contributions to the absorp- 
tion. The point is that the squared matrix element F2 of the 
interaction with the wave is proportional to the square of the 
ratio of the tunnel level splitting A to the energy e (Ref. 23): 

The same holds for the quantities y and T: 

where A is the energy of the tunnel splitting of the ther- 
mal TLS, and l/yo and l / r ,  are the minimum relaxation 
times, respectively, of resonant and thermal TLS with speci- 
fied level spacing. The interaction energies Jo f  the resonant 
and thermal TLC in two different powder particles are also 
generally speaking different, since Ja rP3, where r is the dis- 
tance between theTLC. I t  must be noted that J depends also 
on the difference between p and P (Ja [(I - p)  . (1 - P )]'I2 
(Refs. 6 and 13). We, however, will disregard this depen- 
dence in the estimates that follow, since allowance for it 
leads to no qualitative changes. 

To determine the total absorption it is necessary to sum 
over all the glass-powder particles in the volume. We assume 
that the characteristics of the resonant and thermal TLS that 
constitute the interacting pair do not correlate. We sum ac- 
cordingly over all the glass-powder particles that contain 
resonant TLS, and average the result over the characteristics 
of their environment, i.e., over the parameters E and Pof the 
neighboring thermal TLS and over the distance r to it. 

To this end we take into account the fact that the distri- 
bution function of the resonant TLS in the parameters e and 
p can be represented in the formz3 

where No is the TLS density of states in glasses and is as- 
sumed to be independent of the energy e. The summation 
over the resonant TLS reduces therefore to integration with 
respect tode and dp with weight (4.3). It can be seen from this 
that the nonlinear absorption is not by the position of the 
absorption-peak center, but only by the effective width of 
this peak at a given amplitude F of the resonant wave. 

The density of the thermal TLS in glass is of the order 
NOT, so that the average distance between them is 
r, ~ ( N , T ) - ' / ~ .  More accurately, r, ~ ( N , T Y ) - ' / ~ ,  where 
9 = In I',Jyo, i.e., of importance to us are those thermal 
TLS in which the transitions between levels are fast enough 
compared with the resonant ones. Since we are interested in 
a situation in which a powder particle having a characteristic 
dimension ro contains not more than one thermal TLS, we 
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assume that the condition r, < r, is satisfied. 
Each powder particle containing a resonant TLS has 

then a maximum probability, W,=: 1, of having no fast ther- 
mal TLS. The probability W, that a resonant TLS has one 
neighboring fast thermal one is of the order of 

The probability of configurations with large numbers of fast 
thermal neighbors is accordingly much less than W,, and we 
shall disregard these configurations. Spectral-diffusion pro- 
cesses are important only for particles containing thermal 
TLS. As for particles that contain only resonant TLS, their 
absorption coefficient saturates already at small amplitudes 
Fc -yo. This coefficient is equal in the linear regime to 
(F(y,)c,,a,(l - W,), where c, is the relative density of the 
glass particles and a, is the absorption coefficient in bulky 
glass. At &yo it is determined by those powder particles 
which contain both a resonant and a thermal TLS. 

The nonlinear absorption coefficient depends on the ra- 
tio of the characteristic parameter Jmin and r ,  where Jmin is 
the energy of the interaction of the resonant and thermal 
TLS separated by a characteristic distance of the order of the 
size r, of the amorphous particle. 

We begin with an analysis of the case 

The inequality Jmin )(royo)"2 is then satisfied automatical- 
ly, since yogT because o(T. For the absorption coefficient 
we obtain in this case 

where 

a, is the linear absorption coefficient, and the angle brackets 
with subscriptp denote averaging over the parameterp of the 
resonant TLS with distribution function (4.3) and weight p. 
This averaging does not alter the asymptotic form of the 
dependence. Since W, c 2, the large logarithm 2 in this 
equation is canceled out and does not enter in the final an- 
swer. Inasmuch as we assume here that B y , ,  the absorption 
in the nonlinear regime (4.6) in this range o f F  turns out to be 
smaller than the linear absorption with a, W , .  

It can be seen from (4.6) that the critical value of the 
wave amplitude is 

At &,, we have 

axao (Wi!5?) (FciIF) 

and at F&,, 

i.e., the dependence on the intensity is weakly logarithmic. 
The main contribution to the absorption are made then by 
powder particles with thermal TLS, for which r=F2/ 

y,(T,, i.e., with a strongly asymmetric two-well potential. 
There are thus two stages of nonlinear behavior of a: 

during the first stage are saturated the resonant TLS that 
have no neighbors (or have a slow neighbor with r< yo); 
during the second state are saturated the remaining TLS, 
and the critical amplitude is determined by the characteris- 
tic frequency of the transitions to the thermal TLS. 

The case 

is more complicated, since the powder particle can contain a 
thermal TLS with T(Jmin. We are therefore unable to use 
the asymptotic expression for a at J ( r .  

To estimate the a(F) dependence we subdivide the plane 
of the parameters Jand  r into regions where J >  r a n d  J <  r 
respectively. In each of these regions we use the correspond- 
ing asymptotic expression [(3.15) or (3.18)] and assume that 
the quantities are matched, in order of magnitude, on the 
boundary between the regions. It is found as a result that the 
critical amplitude is 

At @Fc2 we have 

and the main contribution to the absorption is made by pow- 
der particles whose thermal TLS has r=:Jmin. 

The nonlinear behavior goes thus in this case through 
two stages: the logarithmic plateau (4.12) and the fall-off 
section (4.1 1). The critical intensity Fc2 however, is deter- 
mined in this case by expression (4.10). 

In the caseTo)yo)Jmin, finally, the spectral diffusion is 
negligible and does not affect the nonlinear behavior of the 
absorption. 

5. DISCUSSION OF RESULTS 

Thus, the general character of the dependence of the 
absorption on the intensity, except in the last case 
To)'yo)Jmin, is of the following form. The first section of the 
relatively steep (like I decrease is due to the contribu- 
tion of both the resonant TLS that have no thermal neighbor 
and of the ones having a "slow" neighbor (with transition 
frequency r5 yo). This is followed, as the intensity is in- 
creased, by a "plateau" section, where the dependence on 
the intensity is logarithmic. It extends to the critical intensi- 
ty determined by the smaller of the two expressions (4.8) and 
(4.10). Next comes the second section of the steep decrease, 
again like 1/F. The position of the start of this second section 
depends thus on the ratio of Jmin and r,, i.e., on the relation 
between the particle dimensions and the temperature. 

In the estimates that follow we introduce a temperature 
To connected with the particle size by the relation 

In this notation we have W, = T/TO, so that the condition 
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for the validity of our theory takes the form 

T<To. (5.2) 

According to Ref. 6, we have for To, yo, and J (r) 

Ts 02T 
I '  Yo"-. AO2 

E t  ' E,Z ' J ( r )  = - pu;r3 ' (5.3) 

where A, is the deformation-potential constant (of the order 
of 1 eV), and E, =(pfi3v~)'12/~o--,30 K. Therefore 
J,,, zB2?T0, where p = Ao2N,Jpv2 is a dimensionless pa- 
rameter. The condition J,, --,To is thus equivalent to the 
condition 

where TD = is the characteristic temperature, 
which plays an important role in the theory of spectral diffu- 
sion. The quantity 2 is determined by the formula 

B z l n  (I ' , /yo)  --ln ( T / o ) ' .  (5.5) 

The case J,,, > ro (4.5), with allowance for (5.2), is thus 
realized at 

The opposite case J,,, < ro occurs when 

These conditions are compatible only when 

T>TD. (5.8) 

Finally, the case J,, < y,(T, when the spectral diffusion is 
not important, is realized under the condition 

L?ToTD2/02<T<T0, (5.9) 

i.e., it calls for rather high frequencies w > Y' '2~D.  
We obtain numerical estimates of the quantities that 

enter in the theory. Putting No--, erg-' cm-3 (Ref. 6) 
and v, = 2 lo5 cm/s we obtain T, =: 1 K. 

For T=: 1 K and at 2r/w z 1 GHz the characteristic 
distance between the significant thermal pairs is 

i.e., the characteristic particle size should not exceed 100 b; 
in this case. 

The quantity usually measured is the nonlinear-absorp- 
tion critical intensity and its dependence on frequency and 
temperature. It follows from (4.8) and (4.10) that 

6. CONCLUSION 

Let us summarize our results. The behavior of the non- 
linear absorption of a wave by a resonant TLS + thermal 
TLS system is determined by the relation between three 
quantities, the energy of interaction of the two TLS, the fre- 
quency r o f  the transitions in the thermal TLS, and the natu- 
ral absorption linewidth y of the resonant TLS. 

At J> max(T, y) the absorption spectrum takes in the 
linear case the form of two relatively narrow peaks (doublet 
at w + J ,  with width -max(T,y). In the case 
T) max(J, (ry)'I2) one peak of width max(J2/r, y) is pro- 
duced. The quantity J2/r is none other than the coefficient 
of the resonant-TLS wave-function phase diffusion due to 
frequent transitions in the thermal TLS. At Jgy ,  finally, the 
thermal TLS has no significant effect on the absorption of 
the resonant TLS. 

The described structure of the absorption spectrum re- 
mains the same also in the nonlinear situation, but the 
heights and widths of the peaks become dependent on the 
wave amplitude F. The nonlinearity becomes substantial 
when the quantity F2/y  becomes comparable with absorp- 
tion linewidth in the linear regime. This condition deter- 
mines the critical amplitude Fc of the nonlinear absorption. 
At *F, the height of the peak decreases in proportion to 
F -2, and its width increases in proportion to F. 

Owing to the broad distribution of the energies e of the 
resonant TLS in glasses, the wave absorption coefficient is 
determined only by the absorption intensity integrated over 
the spectrum. The spectral diffusion processes therefore do 
not affect the linear absorption. Their influence in the non- 
linear regime is extremely important. 

Nonlinear absorption in a system of amorphous parti- 
cles (glass powder) is determined to a considerable degree by 
the dimension of the particles r,, as well as by the frequency 
w of the wave and by the temperature T. The first of these 
quantities determines the minimum energy J,,, a r; of the 
TLS interaction in the particle, and the last two determine 
the minimum relaxation times of the resonant and thermal 
TLS, i.e., l/yo and l/To. 

The dependence of the absorption a on the intensity F2 
in powdered glass at w <T takes the form of two steps (except 
for the case To> y0,Jmin, when the spectral diffusion is of no 
importance at all). The first step is due to the saturation of 
the resonant TLS in particles that have no thermal TLS, or 
else in particles where the transition frequency of the ther- 
mal TLS is low. The corresponding critical amplitude is 
F, a yo. The second step is due to saturation of those TLS 
which have a sufficiently "fast" thermal neighbor. In view of 
the large scatter of the transition frequencies r of the ther- 
mal TLS in glass, it turns out that the critical intensity for 
the second step is of the order of yo min(r,, Jmin ). 

By varying the particle size ro and the temperature it is 
possible, as we have seen, the change the ratio of J,, and To. 
By the same token, a study of the nonlinear absorption in 
glass powders can yield much additional important informa- 
tion on the properties of TLS in glasses. 

The authors thank Yu. M. Kagan, B. I. Kochelaev, and 
L. A. Maksimov for an interesting discussion. 

"Validity of the Bloch equations can be corroborated only in this case. 
*'We disregard here the off-diagonal Hamiltonian terms that describe the 

TLS interaction, such as s,S,, s,S,, etc.' I t  can be shown that at IJ / (o 
their contribution can be neglected compared with the contribution of 
the term s,S,. 
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