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A new phenomenon-the magnetodynamic nonlinearity of the low-temperature static current- 
voltage characteristic (CVC) of a thin metallic plate-is predicted. An asymptotically exact non- 
linear-CVC theory is constructed with allowance made for an external magnetic field oriented 
parallel to the plane of the sample and perpendicularly to the direction of the current. The 
mechanism underlying the nonlinearity is connected with the trapping of electrons in the poten- 
tial well produced by the intrinsic magnetic field of the current. This mechanism is unique among 
the known nonoverheating nonlinear mechanisms obtaining in metals. Numerical computations 
indicate the feasibility of experimental detection of the investigated effects. 

L INTRODUCTION 

As is well known,' the static electrical conductivity of a 
thin metallic film with diffuse boundaries is described in the 
linear regime by the expression 

where a, is the conductivity of the bulk sample, d is the plate 
thickness, and I is the mean free path of the electrons. The 
formula (1.1) is valid in the Knudsen limiting case d(1. The 
conductivity a, is due to a small group of drifting electrons 
that move almost parallel to the plate surface, and do not 
collide with the boundaries during the entire mean free time. 
The relative number of drifting electrons is, in order of mag- 
nitude, equal to d /I. 

At low temperatures the dominant nonlinear effect in- 
volved in the conduction in the metal is connected with the 
influence of the intrinsic magnetic field of the current on the 
motion of the conduction electrons. The constant electric 
current I flowing along the film produces within it a constant 
magnetic field that is nonuniform over the thickness. It is 
asymmetrically distributed, i.e., it is equal to zero in the mid- 
dle of the plate, and assumes at the opposite surfaces values 
Hand - H that are equal in magnitude, but opposite in sign, 
with 

H=2nI/cD, (1.2) 

where D is the horizontal dimension of the film in the direc- 
tion perpendicular to the current and c is the velocity of 
light. 

It must be emphasized that even a relatively weak in- 
trinsic magnetic field of the current, i.e., one satisfying the 
conditions 

d< ( R d )  "><I, (1.3) 
alters appreciably the conductivity and the shape of the cur- 
rent-voltage characteristic (CVC) of the sample (here R is the 
characteristic radius of curvature of the electron trajectory 
in the field H). Owing to the fact that the magnetic field 
inside the plate is sign-variable, there appears a group of so- 

called trapped electrons that move without colliding with 
the boundaries along trajectories winding in the vicinity of 
the plane of inversion of the sign of the magnetic field. The 
relative number of such trapped electrons is, in order of mag- 
nitude, equal to (d /R )'I2, and their conductivity in the region 
(1.3) of variation of the parameters of the problem is charac- 
terized by the formula 

otr -oo ( d / R )  "'ml". (1.4) 

It is clear from a comparison of (1.1) and (1.4) that, when the 
inequalities (1.3) are satisfied, the voltage drop across the 
sample is determined by the conductivity of the trapped elec- 
trons. As a result, the influence of the intrinsic magnetic field 
of the current gives rise to a nonlinear current-voltage char- 
acteristic: the voltage drop V is proportional to the square 
root I 'IZ of the current. Let us point out that, for the condi- 
tions (1.3) to be fulfilled, it is not necessary that the charac- 
teristic radius R of curvature in the intrinsic magnetic field 
of the current be small compared to the mean free path I of 
the electrons. 

In an external magnetic field h, parallel to the plate and 
perpendicular to the direction of the current, the plane of 
inversion of the sign of the resultant magnetic field in the 
sample shifts toward one of the surfaces, and disappears en- 
tirely when h,>H. Thus, the external field h, alters the 
shape of the nonlinear CVC. In particular, we should expect 
a sharp change in the slope of the current-voltage character- 
istic in the vicinity of that current value at which H = h,. 
The proposed mechanism of the deviation from Ohm's law 
is, as far as we know, the only CVC-nonlinearity mechanism 
of the nonoverheating type in metals. 

In the present paper we construct an asymptotically ex- 
act theory of the current-voltage characteristic of a thin me- 
tallic film, and analyze the shape of the characteristic as a 
function of the external magnetic field h,. In the second sec- 
tion we formulate the problem, investigate the dynamics of 
the electrons in the nonuniform magnetic field, and give gen- 
eral formulas, obtained from the kinetic Boltzmann equa- 
tion, for the distributions of the trapped- and untrapped- 
electron current densities. In the third section we find an 
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asymptotic expression for the current under the conditions 
(1.3), and obtain an explicit solution, which gives the mag- 
netic-field distribution in the sample and the shape of the 
CVC, to the corresponding magnetostatics problem. In the 
fourth, concluding section we discuss the dependence of the 
voltage Von the current I for different values of the external 
field h,, as well as the h, dependence of Vat a fixed current 
strength I .  The distinctive features of the CVC are due to the 
competition between the contributions from the drifting and 
trapped electrons to the current. Numerical estimates dem- 
onstrate the feasibility of experimental detection of the pre- 
dicted nonlinear effects. 

2. FORMULATION OF THE PROBLEM, ELECTRON 
DYNAMICS, AND CURRENT DENSITY 

1. Let us consider a metallic film of thickness d along 
the y axis of which flows a current I. Let us orient thex axis 
perpendicularly to the plate surfaces, and let us choose the 
x = 0 plane in the middle of the plate. A constant and uni- 
form external magnetic field h, is applied along the z axis 
(Fig. 1). The intrinsic magnetic field H( x)  of the current is 
parallel to h, (the z axis). Then the strength of the resultant 
magnetic field in the sample is 

The equation of magnetostatics has the form 

where j( x) is the current density. The boundary conditions 
to Eq. (2.2) are as follows: 

2% (d/2) =ho-H, ( - d / 2 )  =h,+H. (2.3) 

The connection between the strength H of the intrinsic mag- 
netic field at the surface and the total current I i s  given by the 
expression (1.2). 

To find the dependence of the current density j( x) on 
the electric field E, we must solve the kinetic Boltzmann 
equation. It follows from the Maxwell equation curl E = 0 
that the field E, = E inside the sample is uniform. As to the 
transverse component of the electric field Ex (x) ,  it can be 
neglected in the current j( x) expressed in terms of the small 
parametersd /R andd /I. In this respect, the situation is simi- 
lar to the anomalous skin effect, in which the role of d is 
played by the skin depth 6. The requirement of diffuse elec- 
tron scattering at both plate boundaries serves as the bound- 
ary conditions to the kinetic equation. 

FIG. 1. The coordinate system; trajectories of the drifting (1 )  and trapped 
(2) electrons in the metal plate. 

The kinetic equation can be linearized in the electric 
field E, and the nonlinearity is due to the magnetic field 
X( x), being contained in the Lorentz force, which governs 
the dynamics of the electron motion. This means that the 
relation between j( x) and E is linear, and that the conductiv- 
ity a( x) does not depend on the field E and is a functional of 
the resultant magnetic field X( x). In other words, the non- 
linearity manifests itself in the presence of a complicated 
functional dependence of the conductivity on the current 
density. This magnetodynamic nonlinearity plays the domi- 
nant role if the force eEx exerted by the electric field is weak 
compared to the x component of the Lorentz force euX/c 
( - e is the charge and u is the electron Fermi velocity). As- 
suming Ex 5 E, and estimating the magnetic field from Eq. 
(2.2) to be X-4aut ,Ed  /c, we obtain the inequality 

which, together with the requirement (1.3), determines the 
region of existence of the magnetodynamic nonlinearity. 
The condition (2.4) places a lower bound on the sample 
thickness, but it is easily fulfilled in a good conductor if 
d 2 ( ~ ~ / 4 a u ~ v ) ' ' ~  =: 10W5 cm (v is the electron-relaxation 
rate). In this case the right inequality in (1.3) guarantees the 
fulfillment of (2.4). 

2. Let us proceed to discuss the electron dynamics in the 
nonuniform magnetic field X( x)  = h, + H ( x). Let us 
choose the gauge of the vector potential of the resultant field 
in the form 

It is convenient to choose the lower limit of integration in 
(2.5) differently, depending on whether or not there exists 
inside the plate a plane x = x, at which the magnetic field 
X( x)  reverses sign (X( x,) = 0 at O<x,<d /2). Such a plane 
exists when h, < H (see (2.3)), and, as the lower limit, we shall 
choosex,. In this case the vector potentialA ( x) in the sample 
is negative, and attains its maximum value, equal to zero, at 
the point x = x,, i.e., A ( x,) = 0. If, on the other hand, the 
field X( x) is of constant sign (h, > H ), then we set the lower 
limit equal to d /2: the vector potential, being also negative, 
vanishes at the upper plate boundary, i.e., A (d /2) = 0. 

The integrals of the electron motion in the field X( x) 
are the total energy (which we shall assume to be the Fermi 
energy) and the generalized momenta p, = mu, and 
p ,  = mu, - eA ( x)/c (m is the electron mass). The electron 
trajectory in the plane perpendicular to the magnetic field is 
determined by the velocities ux ( x) and u, ( x). For a Fermi 
sphere of radiusp, = mu we have 

(u,(x) ( = ( V ~ ~ - V , Z ) ' ~ ,  vl= ( v 2 - v z ~ )  '12 

v, (x) = (p,+eA (x) /c) /m. 
(2.6) 

The classically admissible regions for the electron motion 
along the x axis can be found from the inequalities 

-p,-mu,<eA (x) /c<-p,+mv,. (2.7) 

They insure the positiveness of the radicand in the formula 
(2.6) for Iu,(x)l. 
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The turning points x ,  and x, ( x, < xo < x,) are the roots of 
the equation 

FIG. 2. The ( x, p ) phase plane and the regions of existence of the various 
electron groups in a) a sign-variable (h, < H )  resultant magnetic field and 
b) a resultant magnetic field of constant sign ( H <  h,): I) the region of 
existence of the untrapped electrons, 11) that of the trapped electrons, and 
111) that of the surface electrons. 

Figure 2 shows schematically of the regions of motion 
of an electron in the ( x, p ,  ) phase plane in two cases: when 
there exists inside the plate a plane x = xo of inversion of the 
sign of the field A?( x) (Fig. 2a) and when there is no such 
plane (Fig. 2b). The upper boundary for the phase plane is 
described by the curve p ,  = mu, - eA ( x)/c; the lower 
boundary, by the curve p ,  = - mu, - eA ( x)/c. It can be 
seen from the figure that the electrons naturally split up into 
groups according to the magnitude and sign of the integral 
p ,  of the motion. 

a) Untrapped electrons 

p,----mu,-eA(-d/2)/cGpu<mv,, Ixl<d/2. (2.8) 

These electrons collide during their motion with both sur- 
faces of the plate. Their trajectories are almost not bent by 
the magnetic field because of the fact that d(R. There are 
always untrapped electrons, whether or not the metal con- 
tains the plane x = xo (i.e., no matter what the relation 
between ho and His). 

b) Trapped electrons 

They occur only in the case when ho < H and the mag- 
netic field Z ( x )  inside the sample passes through zero. 
Their states are confined to the region (see Fig. 2a) 
-mu,<p,<pUt=-mu,-eA (d/2)/c, x,in<x<d/2. (2.9) 

The coordinate xmin of the lower boundary of the region of 
existence of the trapped electrons can be found from the 
equation A (x,, ) = A (d /2). 

The trajectories of the trapped electrons are almost two- 
dimensional oscillating curves because of the periodic mo- 
tion in the direction of the x axis and the uniform motion 
along the y and z axes. The period of the oscillations about 
the x = xo plane is equal to 2T ( p ,  ), where 

2 6  

In that part of the plate where the trapped electrons 
occur, i.e., in the region xmin <x<d /2, the vector potential 
A ( x) is an even function of x - x,. Therefore, 

c) Surface electrons 

They undergo collisions with only one of the boundaries 
of the film. Their contribution to the conductivity of the 
metal determines the insignificant numerical constant, 
which is of the order of unity, in the argument of the loga- 
rithm contained in the asymptotic form of the expression for 
the conductivity due to the drifting electrons. Therefore, be- 
low we shall, in computing the current density, neglect the 
surface electrons. 

3. The current density for the trapped and untrapped 
particles is quite easily derived with the aid of the standard 
methods of solving the kinetic Boltzmann equation. Let us 
omit these computations, and give the result: 

In these formulas 

dx" 
T (Z, Xr) = j  

Ivz(xN)I 

is the time it takes an electron to move from the point x to the 
point x' and 0 ( x) is the unit step function, equal to unity 
when x > 0 and zero when x < 0. 

3. ASYMPTOTIC EXPRESSIONS FOR THE CURRENT 
DENSITIES; SOLUTION OF THE MAGNETOSTATIC 
EQUATION 

1. The expressions for the current densities of the un- 
trapped and trapped electrons are simpler when the inequal- 
ities (1.3), in which the quantity R is determined by the char- 
acteristic value of the resultant magnetic field in the plate, 
are satisfied. The right-hand side of (1.3) corresponds to the 
condition U ~ T (  x, xl)l 5 (Rd )1'2/1< 1, and therefore we can 
limit ourselves in the formulas (2.13) and (2.14) to the consi- 
deration of the leading approximation in VT. Further, on ac- 
count of the left inequality in (1.3), we have elA ( x)l/ 
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mu, c 5 d / R  ( 1 .  This means that the dominant contribution 
to the p ,  integrals in (2.13) and (2.14) is made by the neigh- 
borhoods of those points at which the velocity Iu, ( x ) l  is 
small. These points are the ends of the integration intervals, 
i.e., the ends of the regions of existence of the individual 
groups of electrons. 

Since the trajectories of the untrapped electrons are 
only slightly bent by the magnetic field, we can ignore this 
bending, setting p; = - mu, and u ,  = p ,  /m in the 
expression (2.13). But after this the p ,  integral in (2.13) di- 
verges logarithmically at the limits of integration. Its evalua- 
tion with logarithmic accuracy leads to the following asymp- 
totic expression for the current density of the drifting 
electrons: 

Notice that the asymptotic form (3.1) can be obtained from 
( 1 . 1 )  by replacing the mean free path 1 under the logarithm 
sign by the effective mean free path ( ~ + d ) " *  of the un- 
trapped electrons. The current density (3.  I) does not depend 
on I, and is determined by the electron scattering at the sam- 
ple boundaries. 

To find the asymptotic form of the current density 
j ,  ( x )  of the trapped electrons, we can neglect the second 
term in the curly brackets in (2.14), replace the product 
uY(~)uY(~')byu~,andexpand Ju,(x)I about p ,  = -mu, ,  
using the fact that elA ( x )  J / c  is small compared to mu,. After 
this the integrations are elementary, and, carrying them out, 
we obtain 

It is remarkable that the relation between j,, ( x)  and the vec- 
tor potential of the magnetic field is local in terms of the 
coordinatex. This circumstance enables us to obtain an ana- 
lytic solution to the magnetostatics problem. The current 
(3.2) due to the trapped electrons is proportional to their 
mean free path. On account of the fact that the states of these 
electrons at the Fermi surface are located in a narrow band 
of relative width (d / R  )"'< 1, their relaxation rate v is deter- 
mined not by the transport, but by the total, scattering cross 
section, i.e., only the "departure" term in the collision inte- 
gral operates. 

2. Let us proceed to solve the magnetostatic equation 
(2.2) with the currents (3.1) and (3.2) and the boundary condi- 
tions (2.3). 

Let us begin with the h, < H case, when there exists in 
the film a plane x = x, of inversion of the sign of the resul- 
tant magnetic field X( x) .  Here we must take into account 
not only the large current due to the trapped electrons, but 
also the small-with respect to the parameter (R  + d ) ' I2/ 

1 4  1-current due to the drifting particles. If we neglect the 
current (3. I ) ,  then we cannot satisfy the boundary conditions 
(2.3). 

Let us introduce the dimensionless vector potential and 
transverse coordinate 

a(2xld) =A (x) / A ( d / 2 ) ,  E=2x/d. (3.3) 

In the dimensionless quantities the magnetostatic equa- 
tion (2.2) has the following form: 

It should be solved in the region - 1 ( f <  1 with the bound- 
ary conditions 

Here the prime denotes differentiation with respect to f ,  the 
quantity {,, = 2 xmin / d  is the dimensionless coordinate of 
the lower boundary of the region of existence of the trapped 
particles, a(fmi ,  ) = 1, 

The parameter Pis, in order magnitude, equal to the ratio of 
the untrapped-electron current to the trapped-electron cur- 
rent. 

In the interval f,, < { < I  the solution to Eq. (3.4) is 
symmetric about the point fo = ( 1  + fmin) /2  at which the 
"vector potential" a ( { )  has its minimum value, which is 
equal to zero: ~ ( 6 , )  = at({,) = 0. I t  is given by the following 
formula: 

a(B)  

This relation implicitly gives a(f ). 
In the remaining part of the plate, where we have only 

drifting electrons, i.e., in the region - 1 < f  <{mi,, , the solu- 
tion to Eq. (3.4) is given by the expression 

The two solutions (3.7) and (3.8), together with their deriva- 
tives join at the point { = f,,.  

The boundary conditions (3.5) determine the value of 
A (d /2 ) ,  the location x,  = {& / 2  of the zero of the resultant 
magnetic field, and the E dependence of the intrinsic field H, 
i.e., the current-voltage characteristic of the plate. Let us, for 
convenience of the subsequent exposition, introduce the no- 
tation 

The parameters h and 8? are characteristics of the sample in 
question, and, as will be seen below, serve as the natural 
measurement scales for the magnetic and electric fields in 
the case of strong nonlinearity. The quantity h is the charac- 
teristic strength of the magnetic field in which the path tra- 
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versed by a trapped electron over a period of the motion is of 
the order of the mean free path, i.e., (Rd )"'- 1. 

If we combine term by term the first two boundary con- 
ditions in (3.5), then we obtain with the aid of (3.6)-(3.8) the 
following expression for the relative shift of the zero of the 
resultant magnetic field: 

According to (3. lo), the position of thex = x, plane is deter- 
mined by the quantities h, and j,,,, no matter what the rela- 
tion between the current densities of the drifting and trapped 
particles (i.e., the value of the parameter fl ) is. 

The formula (3.10) indicates quite a curious effect- 
whereby the position of the x = x, plane inside the plate is 
unstable, an effect which should occur in the regime of pre- 
scribed voltage (prescribed electric field E ). In this case the 
current in the film and the intrinsic magnetic field H of this 
current are functions of h,: H = H (h,). Let initially h, = 0 
and the conditions (1.3) be fulfilled, i.e., let H (0) be due to the 
trapped-electron current and H (0)sh. The plane of inversion 
of the sign of the magnetic field is located exactly in the 
middle of the sample (i.e., x, = 0). When the external field h, 
is switched on, this plane undergoes a relative shift 6, = h d  
Hunt,, where 

Hunt, =2ndjunt,/c- [H (0) h] '"aH (0) , (3.11) 

from the middle of the plate towards the upper surface. It 
can be seen from this that the x = x, plane exists (i.e., that 
x, < d /2) only in the case when the external field h, does not 
exceed the intrinsic magnetic field Hun,, of the current due to 
the drifting particles, which is much lower than the intrinsic 
magnetic field H(0)  of the current due to the trapped elec- 
trons when h, = 0. As h, increases, because of the displace- 
ment of the sign-inversion plane x = x, (and, as a conse- 
quence, the decrease of the conductivity due to the trapped 
electrons), the intrinsic field H (h,) decreases rapidly. At the 
instant h, becomes equal to Hunt,, the conductivity a,, be- 
comes equal to aunt,, the x = x, plane coincides with the 
upper plate surface (x, =d/2) ,  the resultant field 
A?( x) = h, + H ( x) assumes a constant sign, and the group 
of trapped electrons disappears. Therefore, when ho>Hun,,, 
the intrinsic magnetic field H = Hunt,, i.e., is entirely deter- 
mined by the untrapped particles. Thus, in the regime of 
prescribed potential difference the magnetodynamic nonlin- 
earity is controlled by the external field h,, whose "critical" 
value is determined by the weak current junt,, and not by the 
strong current jt, . 

In the regime of prescribed current I (the intrinsic field 
is prescribed) the resultant magnetic field X ( x )  = h, 
+ H ( x) is sign-variable ( x, < d /2) when h, < H (see (2.3)). 

As will be seen from the analysis of the CVC, in this case, as 
the external field strength h, increases, the electric field E 
and, hence, j,,,, and Hunt, increase. Therefore, the relative 
shift f, of the x = x, plane changes little as h, increases, and 
the transition from the high conductivity o,, to the low aunt, 
occurs over a broad range of h, values. Thus, there obtains 
between the trapped and untrapped particles in the regime of 
prescribed current a distinctive negative feedback, owing to 

which the stability of the location of the zero of the resultant 
magnetic field in the sample is ensured: as h, increases, the 
group of trapped electrons does not disappear, and ensures 
the nonlinearity of the CVC in a broad range of values of 
h,<H because of the fact that it, by becoming small, in- 
creases the untrapped-particle current and thereby main- 
tains its own current at the prescribed level (I,, = I). 

Let us now turn to the derivation of the current-voltage 
characteristic. From (3.7) we find a(1) and al(l);  from (3.8), 
a'( - 1). We substitute the expressions obtained into the 
boundary conditions (3.5). These relations contain the quan- 
tities a ,  p, and IA (d /2) 1 .  Using (3.6), we eliminate a and 
( A  (d /2)1 from them. After a series of identity transforma- 
tions with account taken of the notation introduced in (3.9) 
and the explicit form (3.10) for lo, we arrive at the following 
relation between the electric field E and the intrinsic mag- 
netic field H (i.e., the current I ) :  

The parameter f l  in the relation (3.12) characterizes the ratio 
of the untrapped- and trapped-electron currents, and is de- 
fined as the real positive root of the cubic equation: 

It is easy to solve this equation explicitly in the cases when 
the values of the right member of (3.13) are small and large 
compared to unity. Therefore, let us consider the limiting 
cases of small and large fl separately. 

In the strong-nonlinearity limit, when Bg 1, or when 

we can set the parameter B equal to zero in the equation 
(3.12) for the CVC. As a result, we have 

The expression in the square brackets in (3.15) is none 
other than 1 - 6, (see (3.10)). I f l og  1, then the formula (3.15) 
describes the parabolic section of the nonlinear CVC: the 
voltage drop V is proportional to the square root of the cur- 
rent I (Ha E2). The deviation, connected with the finite 
quantity l o ,  from the parabolic law is due to important role 
played by the weak untrapped-particle current. Thus, the 
formula (3.15) for the current-voltage characteristics illus- 
trates the above-noted feedback effect existing between the 
trapped and untrapped electrons. 

The physical meaning of the inequality (3.14), which 
determines the region of applicability of the result (3.15), 
becomes quite clear when the inequality is represented in the 
form 

'h ln(R+/d) (Rd) '" R+ 
I-go> ($) -- 

I 
ln-. 

d 
(3.16) 

It can be seen from (3.16) that the planex = x, of inversion of 
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the sign of the resultant magnetic field should not be too 
close to the upper plate surfacex = d /2. In fact, in the exter- 
nal field h, the relative number of trapped electrons is, in 
order of magnitude, equal to [d (1 - go)/R and the 
conductivity a,, will be significantly higher than a,,,, only 
when the condition (3.16) is fulfilled. 

Let us point out that the results obtained in this section 
are based on the asymptotic expression (3.2) for j,, , which, 
strictly speaking, is applicable only when the condition 
(3.16) is fulfilled, i.e., when p g l .  But in the slightly nonlin- 
ear regime, when B)1, Eq. (3.12) again yields the correct 
result for the CVC. Therefore, we can assume that the for- 
mula (3.12) is a good interpolation of the true CVC in the 
region of intermediate p values, i.e., in the region p- 1, as 
well. These arguments demonstrate that the relations (3.12) 
and (3.13) indeed describe the current-voltage characteristic 
for an arbitrary value of the parameter P. 

In the region of weak nonlinearity, i.e., for fl) 1, or 

we obtain from (3.12) and (3.13) the relation 

In this case the nonlinearity of the current-voltage charac- 
teristic stems from the weak logarithmic dependence of the 
untrapped-electron current on the intrinsic magnetic field 
H = Hun,,. The x = x, plane is then flush with the upper 
plate surfacex = d /2, and the intrinsic field H of the current 
is practically equal to the external field h,: 

H-ho (Rd)'" R+ 
1-to = - << - 

H 1 
In- 1. 

d 
3. Let us now discuss the current-voltage characteristic 

in the region of stronger external fields, i.e., in the region 
h, > H. Here the resultant magnetic field in the sample does 
not change sign, there are no trapped electrons, and the con- 
ductivity of the plate is due to the untrapped electrons. 
When the right inequality in (1.3) with the quantity R re- 
placed by R + is satisfied, the current-voltage characteristic 
is given, in accordance with the asymptotic expression (3. I), 
by Eq. (3.18). The formula (3.18) shows that the slightly non- 
linear CVC becomes linear in the limit when Hgh,, since the 
cyclotron radius R +  tends to R, = cp,/eh, in this limit. 

4. In conclusion, let us note that the slightly nonlinear 
CVC (3.18) is not realized at all in the region of sufficiently 
weak external fields, i.e., when h, < h, or 

As the current I (the intrinsic field H ) decreases, the parabol- 
ic current-voltage characteristic (3.15) goes over in the re- 
gion H 5 h into a linear dependence whose slope is deter- 
mined by the conductivity u, (1.1): 

4. THE CVC CALCULATIONS AND A DISCUSSION OF THE 
RESULTS 

Figure 3 shows the results obtained in a numerical cal- 
culation of the current-voltage characteristic of a thin metal- 

FIG. 3. The current-voltage characteristic, depicted on a double logarith- 
mic scale, of a metallic plate for different values of the parameter hdh: the 
curve 1 corresponds to h,/h< 1; the curve 2, to h,/h = 10; the curve 3, to 
h,/h = 100. On the vertical straight line4 the radius R = cm and the 
dot-dash straight line corresponds to ZV/LD = 1 W/cmZ (i = 0.86 A and 
U =  3.1 x 1 0 - ~  v). 

lic plate with thickness d = 10W3 cm and electron mean free 
path I = 0.1 cm for different values of the external-field 
strength h,. According to (3.9), forp, = 10-l9 gm . cm/sec, 
the magnitudes of the scaling units h and 8 are respectively 
equal to 

h=0.540e9 8=3.1.10-5 V/cm . (4.1) 
The unit i of measurement of the current is related to the 
characteristic magnetic field h by the formula (1.2) and the 
voltage scale U = 8 L ,  where L is the distance between the 
potential contacts in the direction of the current. The dot- 
dash inclined straight line 5 in Fig. 3 is described by the 
equation 

When the dimensions L = D = 1 cm, the straight line 5 cor- 
responds to the power density IV/LD = 1 W/cm2, which 
can easily be detoured in the liquid helium so that the sample 
will not warm up. For these values of L and D the quantity 
i = 0.86 A and U = 3.8 X lo-' V. The vertical straight line 4 
is described by the equation 

R cp,  i 
-=--= 

i 
i.2.io4-= I. 

d ehd I I 

It limits from above the current I flowing through the sam- 
ple, and determines the boundary of the region where the left 
inequality in (1.3) is satisfied. 

The curve 1 corresponds to the values of h,<h at which 
we can neglect the second term in the square brackets in 
(3.15) in the nonlinear region. (Since the CVC's in Fig. 3 are 
plotted in log-log scale, the variation of the slopes of the 
curves at high currents corresponds to the nonlinearity re- 
gion.) For the curve 1, Ohm's law is valid in the region I /i(5, 
and is described by a formula corresponding to (3.21), 

I/i=2 (V/U) ln(l/d). (4.4) 

A smooth transition from the linear to parabolic CVC oc- 
curs in the 5 < I /i < 50 current range. The parabolic CVC is 
realized in the region I /i > 50, and is given by the equation 

Z/i= (V/U)2. (4.5) 

Let us emphasize that the nonlinearity is noticeable even at 
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FIG. 4. Dependence of the voltage drop across the sample on the external 
magnetic field for Z / i  = 100. 

the fairly low currents 12  5i z 4A. The region where the 
transition from the limiting law (4.4) to (4.5) occurs is broad 
because of the low values of the external-field intensity h,. 

The dependence of the current-voltage characteristic 
on the external field h, is manifested in the region h,%h. 
Here, in the first place, the linear section of the CVC in the 
region of low currents is determined not by the relation (4.4), 
but by the expression 

This is precisely the cause of the rise of the curves 2 and 3 
above the curve 1 in the region of low currents. In the second 
place, there appears a broad region of weak nonlinearity 
where 

Finally, in the third place, the second term in the square 
brackets in (3.15) plays an important role in the strong-non- 
linearity regime. 

On the curve 2, which corresponds to h, = 10h = 5.4 
Oe, the CVC section (4.7) is realized in the region of current 
strengths Z/i < 12- 13; subsequently, there occurs a transi- 
tion to the dependence (3.15). The CVC tends in the strong- 

nonlinearity region to the parabola (4.5), but this is impeded 
by ln(R + / d  ), which decreases with increasing current. 

On the curve 3, which corresponds to h, = lOOh = 54 
Oe, the strong-nonlinearity region (3.14) occurs in the region 
of higher currents I /i > 12& 130. Although in this case the 
absolute width of the region where the transition from (4.7) 
to (3.15) occurs is greater, the relative width is smaller, and, 
on the logarithmic scale, the modification of the CVC is visu- 
ally much more abrupt. 

It is of interest to analyze the dependence of the voltage 
Von the constant magnetic field h,. Figure 4 illustrates such 
a dependence for the case I / i  = 100, in which the strong- 
nonlinearity regime is realized. At low h,/h values the for- 
mula (3.15) is valid, and there exists in the sample a group of 
trapped electrons, the current due to which is quite sensitive 
to changes in h,. Therefore, the voltage V increases sharply 
when the external-field intensity is increased slightly (see the 
comments on the formula (3.10)). Near h d h  zZ/i ,  the group 
of trapped electrons disappears, and the growth of the vol- 
tage V(h,) in accordance with (4.7) occurs only because the 
logarithm ln(R + / d  ) decreases. Let us note that the function 
V(h,) for I h,l -+ 0 is nonanalytic: the derivative dV/dh, un- 
dergoes a jump as the external field h, passes through zero. 
The magnitude of this jump is 

The appearance of nonanalyticity is due to the fact that we 
are dealing with the CVC in the strong-nonlinearity regime, 
when there exists in the sample the strong intrinsic magnetic 
field H of the current. 

It seems to us that, although the detection of the pre- 
dicted magnetodynamic-nonlinearity effects in the conduc- 
tivity of thin metallic samples will meet with certain difficul- 
ties, it is entirely within reach of present-day experiment. 

K. Fuchs, Proc. Camb. Philos. Soc. 34, 100 (1938). 

Translated by A. K. Agyei 
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