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We make a detailed theoretical investigation of a mechanism for the formation of the magnetic 
flicker noise. The mechanism is based on the remembering and forgetting of the priming white 
noise. We show that this mechanism leads to slow fluctuations with a nearly l/w spectrum at 
w + 0, with the shape of the spectrum depending on the dispersion relation of the priming noise 
only at finite frequencies. We obtain a relation between the spectral intensity of the flicker noise 
and the spectral intensity of the priming noise and use it to evaluate the frequency region in which 
the l/w spectrum dominates over the uniform background. We show that systems of other types 
have a l/w noise spectrum if the noise is generated by randomly occurring pulses whose duration 
6 has an asymptotic (at w + cc ) probability distribution that is like the typical distribution for the 
magnetic noise considered here. Such pulses characteristically arise for highly nonlinear nonequi- 
librium systems which exhibit hysteresis. 

I. INTRODUCTION 

The theory of noise with the l/w spectrum has been the 
subject of many papers. Some of these have attributed this 
noise to the gradual aging of the system, in which case it 
must be treated as non~tationar~. '  Other papers treat this 
noise as a stationary process. Equilibrium fluctuations of the 
resistance, which are always present, give a stationary noise 
whose spectrum grows as w -+ 0, but this noise, as a rule, is 
masked by noises of other origin (see, e.g., Ref. 2). 

In the present paper we consider a mechanism for the 1/ 
w noise in systems with a memory in the presence of a prim- 
ing white noise. An example of a physical system having a 
memory is a ferromagnet in a static or periodically changing 
external field. 

Back in 1957 NCe13 showed theoretically that if a de- 
magnetized ferromagnet is suddenly subjected to a static ex- 
ternal field having a small admixture of a priming random 
field with a normal dispersion relation, then the magnetiza- 
tion will change (over a certain time interval) as the square of 
the logarithm of the time. This result, which has been con- 
firmed e~perimentally,~ suggests that the magnetization 
fluctuations have a l/w spectrum. 

Subsequently magnetic noise (flucutations of the mag- 
netic susceptibility or magnetization) with the l/w spectrum 
(or l/Aw, see below) has been observed e~perimentally~.~ in 
ferromagnets subjected to a harmonically varying external 
magnetic filed. Visual observations of magnetization rever- 
sal in samples having a small number of domains (a ferro- 
magnetic film with three domains) have revealed that this 
noise is due to random shifts of the domain walls, with cer- 
tain parts of the walls remaining immobile for long periods 
of time and then being set in motion as if they had been hit by 
arandom jolt. Therefore, their motion can be followed by the 
naked eye at external field frequencies of the order of a 
hundred hertz. In many-domain samples the magnetization 
reversal will occur in the same way, since regions containing 
a small number of domains interact only weakly with one 

another and the magnetic characteristics of the whole sam- 
ple are obtained by averaging over these regions. 

On the basis of these observations the following mecha- 
nism has been proposed for the magnetic n o i ~ e . ~ . ~  The mag- 
netic state of the sample (as a whole) is characterized by a 
random sequence f (t ) at the times t = ... - 28, - 8, 0, 6, 
28, ... when the external magnetic field H = H, cos w, t is 
maximum in absolute value (28 = 277/w0 is its period). To 
the external field we add a random magnetic field (an addi- 
tive priming noisex(t ), which, at a given 8, can be considered 
white). This random field determines a value off (t ) which is 
maintained until at one of the subsequent times t the random 
magnetic field exceeds the value that had up till then deter- 
mined & (t ) and "overthrows" this value of { (t ). A new value 
off (t ) is established at the next time in the sequence in accor- 
dance with the value of x(t ) at that time (see Sec. 2). The 
priming noise might be broad-band Barkhausen noise. The 
correctness of this mechanism is confirmed, in particular, by 
the fact that the most intense noise 6 (t  ) occurs in a compara- 
tively narrow interval of values of Ho and falls off at smaller 
and larger values of HO.' 

Elementary  consideration^^.^ lead to the conclusion 
that this mechanism can give a nearly l/w spectrum (at 
w + 0). The calculation presented below confirms this con- 
clusion; it turns out that the random sequence & (t ) can be 
either stationary or nonstationary, depending on whether or 
not one allows for a spontaneous [independent of x(t)] 
overthrow of & (t ) with an exceedingly small probability p. 

Since f (t ) determines the magnetic susceptibility of the 
sample, for a linear coupling of the magnetization and field 
the mechanism in question gives a noise spectrum of the type 
l/Aw about the frequency w, of the external field; for a non- 
linear coupling the same will be true of the noise spectrum 
around the harmonics of w,. I f 6  ( t  ) determined the magneti- 
zation, then the latter would have a l/w spectrum concen- 
trated at low frequencies. 

It seems to us that mechanism described above has a 
more general significance and can in many cases give rise to 
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low-frequency noise with a nearly l/w spectrum. Therefore, 
in elaboratng the theory we shall not specify the nature of{ (t ) 
and the nature of the priming noise x(t ). 

1. SPECTRUM OF THE RANDOM SEQUENCE FORMED BY 
NONOVERLAPPING PULSES 

Let us consider a random sequence { (t ), where t is an 
integral time variable (t = 0, + 1, + 2, ...), consisting of a 
superposition of randomly occurring pulses of a specified 
shape and having a random amplitude a, and a random du. 
ration a,, where a, and 9, are statistically related to eack 
other but statistically independent of a, and .9, for p # Y. 

Such a sequence can be represented 

where t, is the random time at which the pulse arises (differ- 

lar function, equal to zero for y < 0 and y> 1 and equal to one 
for OQ < 1; 9, = t, + , - t, is the duration of the vth pulse, 
which ends when the next pulse begins. The autocorrelation 
function 

is related to the spectral intensity Sc (w) = Sc (w + 2 4  by the 
well-known equations 

1 
S ( a )  = R (T) e m ,  R, ( T )  = - St ( a )  e-"' d o .  (3)  

7--m 2nL 

Introducing the notation 
m 6-1 

ent times t, are statistically independent); f ( y) is a rectangu- we can write S6 (w) in the form 

Here the first exponential depends on the differences 
t, - t, , which are determined by the duration of the pulses, 
while the second exponential depends on the times t, at 
which the pulses appear and so can be taken out and aver- 
aged separately. As a result we obtain the series 

which gives a periodic delta function; 8 is the average dura- 
tion of a pulse, so 1/8 is the probability for the appearance of 
a new pulse at some time t. 

Substituting relation ( 6 )  into the integral in (5) and in- 
troducing the function 

OD 

where P (9 ) is the probability that a pulse has duration 9 ,  we 
obtain the spectral intensity of the random sequence { (t ) as 

aF (o, 6 )  e - i " e ' a ~  (o,  6 )  ' 
K ( o ) = a 2 1 F ( o , 6 )  IF, A(o)=. . 

1-cp (0 )  

where the function K (w) takes into account the intrapulse 
correlation (Y = p) and the funtion ;l (w) takes into account 
the interpulse correlation (Y # m). The summation over Y and 
p is done in the same way as in the analogous problem for a 
random process (see, e.g., Ref. 1). The dispersion relation of 
the randon quantities a and 9 can be found by specifying the 
mechanism which excites and quenches the pulses. This is 
done in the next section. 

I 
-- 

2. EXCITATION AND QUENCHING OF WHITE-NOISE PULSES 

Let us suppose that the random sequence { (t ) consid- 
ered above is generated by white noisex(t )-a stationary ran- 
dom sequence whose values at different (integral) times t are 
statistically independent. The probability that an any inte- 
gral time t the value of x(t ) will not exceed a is given in the 
usual form 

w ( a )  = J w ( X I  b. 
- m 

(9) 

where w(x) is the corresponding probability density; w(x)dx 
is the probability that x < x(t ) < x  + dx. 

We further assume that the value { (t ) = a, arising at 
time t, is maintained up till the time t,+ , - 1 (inclusive), 
and at the time t, + , is replaced by the new value a, + , . The 
time t, + , is determined by the condition x(t, + , - 1) > a, : 
the white noise, exceeding a, at t = t,,, - 1, dumps the 
value { (t ) = a, at t = t, + , . The new value a, + , is deter- 
mined by x(t, + , ), specifically, { (t ) = a, + , = x(t, + , ) for 
t>t, + , . This value is again maintained up till a time t, +, 

such that x(t, + , - 1) >a, + , and is replaced for t> t ,  + , by 
the value a, + , = x(t, + , ) (Fig. 1). 

Thus the random sequence (t ) retains a memory of the 
value x(t,) until a higher value x(t, + , - 1) comes along and 
erases this memory, and afterwardsg (t )will retain a memory 
of the next value x(t, + , ). The random sequence ( (t ), unlike 
x(t ), turns out to be correlated; as we shall show, its spectral 
intensity increases without bond as w + 0. 

In such a formulation of the problem the average value 
of{ (t ) is nonzero; we shall call{ (t ) a random sequence of the 
first kind (RS-1 for short). A random sequence of the second 
kind (RS-2) is obtained by assuming that a, can with equal 
probability take on both positive and negative values (i.e., 
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the function w(x) is even), and the pulses are quenched under 
the condition (x(t, + , - 1) 1 > la, 1, when x(t, + , - 1) and a, 
have different signs (Fig. 2). Here we obviously have f (t ) = 0 
and, as we shall see A (w)  = 0. 

For RS- 1 the probability that a pulse of amplitude a will 
have duration 9 is clearly 

P, (6)=W6- ' (a )  [ I - W ( a ) ] ,  (10) 

since for this it is necessary that x(t )(a, for 9 - 1 times and 
that x(t ) > a  on the 8 th time; the probability P (9 ) in (7) is 
given by - 

This probability, which does not depend on the form of w(x), 
yields the value 6 = In co , and so Eqs. (6) and (8) cannot be 
used. This situation arises because f (t ) is not a stationary 
random sequence for infinite 6. In order to arrive at a finite 8 
and a stationary sequence SR-1, we must have, in addition to 
the "induced" quenching of pulses with the aid of the prim- 
ing noisex(t ), a "spontaneous" quenching with a small prob- 
ability p which does not depend on x(t ). Then formulas (10) 
and ( 1 1 ) become 

where q = 1 - p z  1 is the probability that the spontaneous 
quenching does not occur. We then get 

- 1 1 2 1 1  +=-In-, fi2=---1n- 
4 P P 4 P  

1 (13) 
cp ( a )  =I - - ( l -e i") ln( l -qe- i") .  

Q 

For SR-2 the probability Pa (9 ) is obtained from the first 
formulain (12) by replacing W (a) with W(Ia I), and, since w(a) 
is even and W (0) = 1/2, the expression for P (9 ) is 

so that 
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FIG. 1.  Random sequence of the first kind (RS-1). 

The average values which figure in (8) must be evaluated 
using the relation 

m ce 

mi ( u )  e, (6)  = 5 w ( a )  e, ( a )  da pa (6)  m2 (.a), 
-(o 6-1 

and on summing over 9 we get 

where W = W(a) for SR-1 and W = W(la1) for SR-2. Intro- 
ducing the notation 

OD 

w ( a )  ak da 
J ~ ( U ) = J  eia-'qW(a) 9 

where therefore get for SR-1 
1 

K ( m )  = --- Re[ (eiw-I) 1, ( a )  1, 
I-cos w 

while for SR-2 we must replace W(a) by W(la 1 )  in integrals 
(1 6). Thus the problemofevaluating thespectrum off (t )with 
formula (8) has reduced to the problem of evaluating inte- 
grals of the form (16) for k = 1 and 2; these integrals depend 
both on the frequency and on the form of the function w(a). 

3. SPECTRAL INTENSITY AT w -, 0 

In evaluating the integrals J,(w) and J,(w) for SR-1 one 
must recognize that W(a) is a monotonic function ofa which 
goes from W ( - w ) = 0 to W ( ) = 1; therefore, the inverse 

FIG. 2. Random sequence of the second kind (RS-2). 
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function a = a(W) is single-valued, and the integral Jk (a) 
can be written 

and if a varies over finite limits, i.e., if bo<a<b,, where 
b, = a(0) and b, = a(l),  then an integration by parts easily 
yields the expression 

1 + - J ln (rh-qw) 
dak ( W )  
dw- d W ,  

q o 

which is convenient for evaluating Jk (w) at w ( 1 andp ( 1. 
Setting 
p+io= (p2+ 02)  $=arctg (a lp) ,  0<$<n/2 (19) 

and introducing the large logarithm 

we get in the low-frequency limit 

where I, is a real number which depends on the dispersion 
relation W(a). The spectral intensity of SR-1 is of the follow- 
ing form for w ( 1 andp ( 1: 

For the SR-2 we easily see that Jl(w) = 0 and A (w) = 0, 
while the integral J,(w) can be written 

from which, for w ( 1 and p ( 1, we get 

J2(o) =-2bi21n(p+ io)  -I2, 

and 

In these relations it is assumed that the white noise x(t ) lies 
withing finite limits, so that bo<a<bl for SR-1) and 
- bl(a<bl for SR-2. 

The results, specifically (2 1) and (22), can be summed up 
by the following remarks. We have introduced a.small prob- 
ability p which makes the random sequence 6 (t  ) stationary 

and the average duration 9 finite; for example, for SR- 1 we 
have 8 ~ 2 3  at p = 10-lo. The nature and size o fp  remain 
open questions; evidently p can be due to different causes in 
different systems. Nevertheless, it is important that for 
p ( w ( 1 the spectrum of SR-1 is nearly proportional to 1/ 
w and the spectrum of SR2 is exactly proportional to l/w. 

Even though the distinction between the spectra of SR- 
1 and SR-2 is barely perceptible at low frequencies on ac- 
count of the slow change in In w, the integrals 

X 

1 SE ( a )  do 
0 

behave differently at p + 0: for SR-1 the integral goes to 
zero [since the factor l/(ln2w + r2/4) ensures the conver- 
gence of the integral, and 8 + w],  while for SR-2 the inte- 
gral approaches a finite limit determined by the value ofE 2(t ). 
The difference is due to the fact that SR-1 is a fixed-sign 
sequence (see Fig. I), and so for it (t 0 and the spectrum 
contains another term proportional to S (w), whereas for SR- 
2 we have f = 0 and there is no such term. In both cases 
S6 (w) goes to finite limits for w ( p: 

We have obtained all these results by assuming that the 
duration 9 of a pulse depends on its amplitude a. If, on the 
other hand, we assume that a and 9 are independent random 
quantitiies and that the probability P (9 )is, as before, taken in 
the form (12) or (14), then for SR-1 we obtain the simple 
expression 

- 
a2- (ii) "-Re cp ( a )  

SE (0 )  = .---' 
6 I-cos 0 ' 

which can also be used when a varies over an infinite inter- 
val. At smallp and w expression (24) becomes 

and here 

Setting ti = 0 in (24) and taking p(w) according to (15), we 
obtain Sc (w) for SR-2; expressions (25) and (26) must be dou- 
bled for SR-2. We see that a l/w law is obtained in this case 
also, but then P (9 ) must be introduced in a purely formal 
way. 

According to (21), the function 

determines the spectrum of SR-1; this function differs little 
from l/w. The spectrum S6 (w) is often represented (in sepa- 
rate regions) in the form B /wA , where the exponent. 

A=-dln S ,  ( o ) / d  In o 

is a slowly varying function of w. For the function in (27) we 
have A < 1, with A -+ 1 at w -+ 0. The correlation function 
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corresponding to spectrum (27) falls off at r + cc as 1/ 
ln(yr), y = 1.78 1. ..(see Ref. 7). 

4. SPECTRAL INTENSITY AT FINITE w 

The behavior of the spectral intensity over the entire 
interval 0 < w<a depends on the probability density w(a). To 
discover this dependence, let us take the functions w(a) and 
W(a) for O<a< 1 in the form 

( I + P ) P  w(a)=- ( l + p )  a W ( a )  = -- , a ( w ) =  
P w 

(p-i-a) ' p+a l+p-W ' 

(28) 
where p is a real parameter ( p > 0 or p < - 1). For p ( 1 
small values of a are the most probable, forp -- - 1 the most 
probable values are close to unity, and for p = cc the prob- 
ability density w(a) becomes uniform in the interval O<a< 1 
(Fig. 3). For the functions in (28) the integrals in (18) are 
easily evaluated, and we get 

The expression for I, shows that the spectral intensity 
(21) forp < 1 is proportional to ln2(l/p), i.e., gets larger as 
the probabilities of comparatively large overshoots gets 
smaller, while for p =: - 1 the value of I: is small. These 
expressions enable one to evaluate S6 (w) for SR- 1. To elimi- 
nate the parameterp, we introduce the normalized function 
s(w) = (w)/aI: and, assuming w % p and p 4 1, we ob- 
tainp = Oandq = 1. 

Figure 4 shows graphs of the normalized functions s(w) 
evaluated by the exact formulas (8), (17), and (29); at small w 
they coincide with the low-frequency asymptote (27). Figure 
4 shows that at finite value of w the exponent A can be larger 
or smaller than one (depending on the parameter p )  and 
changes rather slowly with frequency. Figure 4 also shows 

FIG. 3. The function w(a) according to Eq. (28). 

FIG. 4. Normalized spectral intensities for SR-1 at various values o f p .  

that a function w(a) for which small values of a are more 
probable leads to a relatively fast decay of Sc (w) as w + a. 
This result, like the large values of Sc (a) for w ( 1, is ex- 
plained by the fact that such a function w(a) leads to pro- 
longed overshoots of ( ( t  ). 

For SR-2 we give the probability density as 

and then the integral J,(o) can also be expressed in terms of 
elementary functions. Figure 5 shows the normalized func- 
tions s(w = 4 8 ~ ~  (w)/ab : evaluated at p = 0. For w + 0 
they approach the l/w asymptote from below, unlike the 
case of Fig. 4, where the curves approach the asymptotic 
curve (27) from both sides. 

The functions we have obtained not only give a l/w 
spectrum but also establish a quantitative relation between 
this spectrum and that of the priming noise. Formulas (8), 
(13), (15), (16), and (17) imply that for w = a the spectral 

FIG. 5 .  Normalized spectral intensities for SR-2 at various values o f p .  
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density of l/w noise satisfies the equations (for q- 1) 

- a2w (a) da 
* S t ( n ) = j  forRS-2, 

- m 

the right-hand side of which to within a factor of order one 
coincide with the constant spectral density S, = a2 - (a)2 of 
the priming noise. For example, in the case of a uniform 
distribution [Eqs. (28) and (30) for p = CO]  the right-hand 
side is equal to 0.69Sx for SR-1 and 0.54Sx for SR-2. Thus 
the frequency interval in which the l/w noise is noticeable is 
determined primarily by 6, which depends on the spontane- 
ous-overthrow probability p [Eq. (13)l; for any reasonable 
values ofp the quantity 6 is of the order of tens. Consequent- 
ly, the l/w noise will exceed the priming background at fre- 
quencies which differ from the harmonics of the magnetiza- 
tion-reversal frequency w, by a quantity of the order of 0.1 
w, or less. It is just such values that have been observed 
experimentally .' 
CONCLUSION 

To the best of our knowledge, noise with a l/w spec- 
trum or nearly l/w spectrum has never been considered in 
terms of the mathematical theory of random processes and 
sequences. In the physics papers such noise was first inter- 
preted as a pulse process with pulses decaying as t -'/' at 
t - co .9 Subsequently, since pulses of this shape had not 
been observed in physical systems, the l/w noise began to be 
regarded as either the superposition of relaxation processes 
with different relaxation times'' or as a pulse process with 
pulses of fixed shape but of different durations and ampli- 
tudes.'' The main difficulty with these interpretations is to 
find a physical justification for the requisite relaxation-time 
or pulse-length distributions that would give a l/w spec- 
trum. 

The above analysis of magnetic noise shows that in sys- 
tems with a memory a suitable distribution [see Eq. (1 1) and 
following] arises in a natural way. The mechanism we have 
considered that leads to the l/w spectrum is "coarse": a 
spectrum proportional to l/w at w + 0 is obtained regard- 
less of the distribution of the priming noise and the particu- 
lar method of establishing and overthrowing pulses. 

Another extremely interesting question is, what other 
mechanisms besides a memory can give the required pulse- 
length distribution for the generation of l/w noise? One such 
mechansim, found in a recent paper,'' is a random sequence 

6 (t ) consisting of zero and one and approximating (for low 
frequencies) an iteration process in which a regular change 
[slow, { (t ) = 0] alternates with a stochastic change [fast, 
{ ( t  ) = 11. If P (1 ) is the probability of having 9 zeros in a row 
(which for 9 -+ m is prorportional to 1/9 2), one obtains a 
spectrum for w g 1 that is proportional to the function (27). 
The random sequences6 (t ) and 1 - 6 (t ) have identical spec- 
tra for w +O, and for the second random sequence P (9 ) refers 
to the length of rectangular pulses separated by empty spaces 
of random length. Be that as it may, the function P (9 ) which 
leads to the l/w spectrum has the same asymptotic expres- 
sion at 9 -+ co as in the above theory of magnetic noise. 

The theory elaborated in the present article can be un- 
doubtedly be generalized to random processes. In this case 
the l/w spectrum would follow from a probability density 
P (9 ) = 2 9 , / ~ ( 9  + 9 2, forw9, g 1. It should be noted that 
this expression is meaningful at all values of 9 and is integra- 
ble, whereas the probability density adopted in the tradition- 
al spectral approachlo is proportional to 1/9 and cannot be 
used at 9 + 0 and 9 -+ C O .  In our approach S6(w) is ren- 
dered integrable at w = 0 by introducing a factor exp( - p9 / 
a,), in P (9 ), with p ( 1. Moreover, if the pulse duration is 
related to the activation energy E by the relation 9 = 9,- 
exp(E /kT), then for P (9 ) - 1/9 the probability density for 
the energy E is proportional to exp( - E /kT ), which is more 
sensible physically than a uniform energy distribution.1° 
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