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We make a detailed theoretical investigation of a mechanism for the formation of the magnetic
flicker noise. The mechanism is based on the remembering and forgetting of the priming white
noise. We show that this mechanism leads to slow fluctuations with a nearly 1/ spectrum at
® — 0, with the shape of the spectrum depending on the dispersion relation of the priming noise
only at finite frequencies. We obtain a relation between the spectral intensity of the flicker noise
and the spectral intensity of the priming noise and use it to evaluate the frequency region in which
the 1/w spectrum dominates over the uniform background. We show that systems of other types
have a 1/w noise spectrum if the noise is generated by randomly occurring pulses whose duration
4 has an asymptotic (atw — o) probability distribution that is like the typical distribution for the
magnetic noise considered here. Such pulses characteristically arise for highly nonlinear nonequi-

librium systems which exhibit hysteresis.

I. INTRODUCTION

The theory of noise with the 1/ spectrum has been the
subject of many papers. Some of these have attributed this
noise to the gradual aging of the system, in which case it
must be treated as nonstationary.' Other papers treat this
noise as a stationary process. Equilibrium fluctuations of the
resistance, which are always present, give a stationary noise
whose spectrum grows as @ — 0, but this noise, as a rule, is
masked by noises of other origin (see, e.g., Ref. 2).

In the present paper we consider a mechanism for the 1/
o noise in systems with a memory in the presence of a prim-
ing white noise. An example of a physical system having a
memory is a ferromagnet in a static or periodically changing
external field.

Back in 1957 Néel® showed theoretically that if a de-
magnetized ferromagnet is suddenly subjected to a static ex-
ternal field having a small admixture of a priming random
field with a normal dispersion relation, then the magnetiza-
tion will change (over a certain time interval) as the square of
the logarithm of the time. This result, which has been con-
firmed experimentally,® suggests that the magnetization
fluctuations have a 1/ spectrum.

Subsequently magnetic noise (flucutations of the mag-
netic susceptibility or magnetization) with the 1/ spectrum
(or 1/Aw, see below) has been observed experimentally>® in
ferromagnets subjected to a harmonically varying external
magnetic filed. Visual observations of magnetization rever-
sal in samples having a small number of domains (a ferro-
magnetic film with three domains) have revealed that this
noise is due to random shifts of the domain walls, with cer-
tain parts of the walls remaining immobile for long periods
of time and then being set in motion as if they had been hit by
arandom jolt. Therefore, their motion can be followed by the
naked eye at external field frequencies of the order of a
hundred hertz. In many-domain samples the magnetization
reversal will occur in the same way, since regions containing
a small number of domains interact only weakly with one
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another and the magnetic characteristics of the whole sam-
ple are obtained by averaging over these regions.

On the basis of these observations the following mecha-
nism has been proposed for the magnetic noise.>* The mag-
netic state of the sample (as a whole) is characterized by a
random sequence & () at the times t =... — 26, — 6, 0, 6,
26,... when the external magnetic field H = H,, cos o, t is
maximum in absolute value (26 = 27/w, is its period). To
the external field we add a random magnetic field (an addi-
tive priming noise x(¢ ), which, at a given 8, can be considered
white). This random field determines a value of & (¢ ) which is
maintained until at one of the subsequent times ¢ the random
magnetic field exceeds the value that had up till then deter-
mined £ (¢ ) and “overthrows” this value of £ (¢ ). A new value
of £ (¢)is established at the next time in the sequence in accor-
dance with the value of x(¢) at that time (see Sec. 2). The
priming noise might be broad-band Barkhausen noise. The
correctness of this mechanism is confirmed, in particular, by
the fact that the most intense noise & (¢ ) occurs in a compara-
tively narrow interval of values of H,, and falls off at smaller
and larger values of H,,.’

Elementary considerations>® lead to the conclusion
that this mechanism can give a nearly 1/w spectrum (at
® — 0). The calculation presented below confirms this con-
clusion; it turns out that the random sequence £ (¢) can be
either stationary or nonstationary, depending on whether or
not one allows for a spontaneous [independent of x(t)]
overthrow of £ (¢) with an exceedingly small probability p.

Since £ (¢ ) determines the magnetic susceptibility of the
sample, for a linear coupling of the magnetization and field
the mechanism in question gives a noise spectrum of the type
1/Aw about the frequency w, of the external field; for a non-
linear coupling the same will be true of the noise spectrum
around the harmonics of w,,. If £ (¢ ) determined the magneti-
zation, then the latter would have a 1/w spectrum concen-
trated at low frequencies.

It seems to us that mechanism described above has a
more general significance and can in many cases give rise to
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low-frequency noise with a nearly 1/w spectrum. Therefore,
in elaboratng the theory we shall not specify the nature of £ (¢)
and the nature of the priming noise x(t ).

1. SPECTRUM OF THE RANDOM SEQUENCE FORMED BY
NONOVERLAPPING PULSES

Let us consider a random sequence £ (¢ ), where ¢ is an
integral time variable (=0, + 1, + 2,...), consisting of a
superposition of randomly occurring pulses of a specified
shape and having a random amplitude ¢, and a random du-
ration ,, where a, and ¢, are statistically related to eact
other but statistically independent of @, and ¢, for u#v.
Such a sequence can be represented

8= Lot (), ()

v By

where ¢, is the random time at which the pulse arises (differ-
ent times ¢, are statistically independent); f( ) is a rectangu-
]

lar function, equal to zero for y < 0 and y>1 and equal to one
forO<y<1;4, =t,,, —t, is the duration of the vth pulse,
which ends when the next pulse begins. The autocorrelation
function

R () =E08= Lo () { F275) )

v,

is related to the spectral intensity S, (w) = S¢ (@ + 27) by the
well-known equations

Si@)= ) R@ew, R(=o-] S@edo. ()

T=—00

Introducing the notation
v—1

ad t ) = ) 1_ i0d
F(m’ fﬂ): Z f(_ﬁ_) emt_—_—Zem!= . eiw ’ (4)
t=0 —€

te==—oo

we can write S, (@) in the form

5:(0) = 21—” Y [ 2aF 3,00 F (0,0, explio () Toxp[i(@—0) (v—t) 15 (5)

v —n

Here the first exponential depends on the differences
t, —t,, which are determined by the duration of the pulses,
while the second exponential depends on the times ¢, at
which the pulses appear and so can be taken out and aver-
aged separately. As a result we obtain the series

Z em:_%_ - e—i9t=_2_g5_2

r==—00

§(Q—2mr),  (6)

which gives a periodic delta function; 3 is the average dura-
tion of a pulse, so 1/4 is the probability for the appearance of
a new pulse at some time ¢.

Substituting relation (6) into the integral in (5) and in-
troducing the function

#(0)=e=0= Y, P(0)e=", )

Om=i

where P (¢ ) is the probability that a pulse has duration «, we
obtain the spectral intensity of the random sequence £ (¢) as

5.(0)= 5 [K(@)¥2Re Aw)],
(8)
aF (0,8)e % aF* (0,?9)
T 1—¢(e)

where the function X (w) takes into account the intrapulse
correlation (v = 1) and the funtion A (») takes into account
the interpulse correlation (v m). The summation over v and
4 is done in the same way as in the analogous problem for a
random process (see, e.g., Ref. 1). The dispersion relation of
the randon quantities @ and & can be found by specifying the
mechanism which excites and quenches the pulses. This is
done in the next section.

K(o)=0*|F(0,9)|?, A(e)=
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2. EXCITATION AND QUENCHING OF WHITE-NOISE PULSES

Let us suppose that the random sequence ¢ (¢ ) consid-
ered above is generated by white noise x(f )—a stationary ran-
dom sequence whose values at different (integral) times ¢ are
statistically independent. The probability that an any inte-
gral time ¢ the value of x(¢) will not exceed a is given in the
usual form

a

W(a)=5 w(z)dz, 9)
where w(x) is the corresponding probability density; w(x)dx
is the probability that x < x(¢) <x + dx.

We further assume that the value £ (¢) = a, arising at
time ¢, is maintained up till the time ¢, . ; — 1 (inclusive),
and at the time #, , , is replaced by the new valuea, , ;. The
time ¢, , , is determined by the condition x(¢, ., — 1)>a,:
the white noise, exceeding a, at t =t¢,,; — 1, dumps the
value £ (t)=a, att=t,, ;. The new value a,  , is deter-
mined by x(¢, . ,), specifically, & (¢)=a,,, =x(t,, ) for
t>t, . This value is again maintained up till a time ¢, , ,
such thatx(¢t, ., — 1)>a, ,, andis replaced for t>¢, , , by
the valuea, , , = x(t, . ,) (Fig. 1).

Thus the random sequence £ (¢ ) retains a memory of the
value x(¢, ) until a higher value x(¢, , ; — 1) comes along and
erases this memory, and afterwards £ (¢ ) will retain a memory
of the next value x(z, . , ). The random sequence £ (¢ ), unlike
x(t ), turns out to be correlated; as we shall show, its spectral
intensity increases without bond as w — 0.

In such a formulation of the problem the average value
of £ (¢ )is nonzero; we shall call£ (¢ ) arandom sequence of the
first kind (RS-1 for short). A random sequence of the second
kind (RS-2) is obtained by assuming that @, can with equal
probability take on both positive and negative values (i.e.,

L. A. Vainshteln and V. V. Rozhdestvenskir 1238



—_— .. )
[ [ )
Dr—————
° s ° o ° . °
) . — o0 o
17|1[l||?|||lf|11|1111111f|7?|||‘
tv tv+7 tv+ztv+3 tv+4 tvoi &

the function w(x) is even), and the pulses are quenched under
the condition |x(¢, . ; — 1)| > |a, |, whenx(¢, ., — 1)anda,
have different signs (Fig. 2). Here we obviously have & () = 0
and, as we shall see A (w) = 0.

For RS-1 the probability that a pulse of amplitude a will
have duration ¥ is clearly

Po(8)=W*"'(a) [1-W (a) ], (10)

since for this it is necessary that x(t )<a,, for ¢ — 1 times and
that x(t ) > a on the ¢ th time; the probability P () in (7) is
given by

©

P®)= | w(@)P.(0)da =L — 1

— = — (11
o 9+1 O0(8+1) (1

This probability, which does not depend on the form of w(x),
yields the value 3 = In o, and so Egs. (6) and (8) cannot be
used. This situation arises because £ (¢) is not a stationary
random sequence for infinite . In order to arrive at a finite ¢
and a stationary sequence SR-1, we must have, in addition to
the “induced” quenching of pulses with the aid of the prim-
ing noise x(t ), a “spontaneous’” quenching with a small prob-
ability p which does not depend on x(¢ ). Then formulas (10)
and (11) become

- - M
P®)=[gW (@ 1" [1-gW (@) ], P(®) ===, (12)

where ¢ = 1 — p~1 is the probability that the spontaneous
quenching does not occur. We then get
1 — 2 1 1

5=—1n1—, P=———In—
q p p q p

’

. (13)
o(o)=1— q_ (1—e*)In(1—ge=™).

For SR-2 the probability P, (i ) is obtained from the first

formulain (12) by replacing W (a) with W (|a|), and, since w(a)
is even and W (0) = 1/2, the expression for P () is

p(ﬁ)=2[q: (1—513-)— ﬁ?:i (1——2,%)] . (14)

so that

. ° °
. ® .
° N f;v*?,. * N
[ TN N T T T T T T Y T Tt T TN TN T U O N W Y N 0 S B Y
[ ]
ty ] e tV"’ ._tV*J. o .
[ ] * [ )
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FIG. 1. Random sequence of the first kind (RS-1).

_ 2 + _ 4 2 +
ﬁ=—ln£—p.’ 2=_——-_.__n1___p_,
q 2p p(1+p) ¢ 2p

Do) =1 — 2 (1—¢*) [1n<e"‘”—q>—1n(em‘_q‘)] ‘(15)
; 2

The average values which figure in (8) must be evaluated
using the relation

oo

B, (@B, (0= | w(a) 1 (a)da Y, Pa(8) 0:(0),

-—c0 =1

and on summing over ¢ we get

Y p.®) [P (@, 9) |* = et
ralll @ " 1—cos® ee"‘"—qW’
1
—i0d
Zo,pu(ﬁ)p(m,ﬁ)e P
eim
P,(9F (0,0)=——,
Lroreo=zty

where W = W (a) for SR-1and W = W (|a|) for SR-2. Intro-
ducing the notation

w(a)a* da

Ti(w) =_‘[-e"T—’q_W—(az)q’ (16)
where therefore get for SR-1
K(o)= Re[ (¢°—1)/:(0) ],
1—cos o
eio) .
A(®)='1—_Wfi (@), (17)

while for SR-2 we must replace W (a) by W (|a|) in integrals
(16). Thus the problem of evaluating thespectrum of € (¢ ) with
formula (8) has reduced to the problem of evaluating inte-
grals of the form (16) for k£ = 1 and 2; these integrals depend
both on the frequency and on the form of the function w(a).

3.SPECTRAL INTENSITY ATw — 0

In evaluating the integrals J,(») and J,(w) for SR-1 one
must recognize that W (a) is a monotonic function of @ which
goes from W ( — o) =0to W () = 1; therefore, the inverse

FIG. 2. Random sequence of the second kind (RS-2).
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function a = a(W) is single-valued, and the integral J, (o)
can be written

1

a(W)dw
J =
(@) je""—qW

o

(18)

and if a varies over finite limits, i.e., if b,<a<b,, where
b, = a(0) and b, = a(1), then an integration by parts easily
yields the expression

R

bt
J,(m)=——‘1n(ew—q)+b—°zm
q q

da* (W)

+ — < jln( o—qW) aw,

which is convenient for evaluating J; (w) atw € 1 andp < 1.
Setting

prio=(p*tw®)"e™, =arctg(w/p), 0<P<<n/2 (19)
and introducing the large logarithm
1
we get in the low-frequency limit
da* .
(o) =b*(L—ip)—1,, I,=— j In(1—W) @ (W) aw,

aw

where I, is a real number which depends on the dispersion
relation W (a). The spectral intensity of SR-1 is of the follow-
ing form forw € 1 and p < 1:

. 2[12 ’ll) ﬂI:z 1
S =— Y e .
Ho) =TT S S e erd)
if o>p. (21)
For the SR-2 we easily see that J,(w) = 0and A (w) =
while the integral J,(w) can be written
1
& (W)dw
J2(w)=2 jw
1
2 . 2 .
=——>b,In(e"*—q)+— j In(e°—qW) da”(W) aw,
1 ' W
from which, forw < 1 and p € 1, we get
Jo(0) =—2bIn(pt+ie) —1,,
et [y Sy
1 W
and
2b,* b 1
Sio)=2 ¥ L i e (22)

In these relations it is assumed that the white noise x(¢ ) lies

withing finite limits, so that by,<a<b, for SR-1) and
— b,<axb, for SR-2.

Theresults, specifically (21) and (22), can be summed up

by the following remarks. We have introduced a small prob-

ability p which makes the random sequence £ (¢ ) stationary
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and the average duration 4 finite; for example, for SR-1 we
have ¢ ~23 at p = 107 '°. The nature and size of p remain
open questions; evidently p can be due to different causes in
different systems. Nevertheless, it is important that for
p € w £ 1 the spectrum of SR-1 is nearly proportional to 1/
o and the spectrum of SR2 is exactly proportional to 1/w.

Even though the distinction between the spectra of SR-
1 and SR-2 is barely perceptible at low frequencies on ac-
count of the slow change in In o, the integrals

j.Sg (0)do

behave differently at p — 0: for SR-1 the integral goes to
zero [since the factor 1/(In’w + 7%/4) ensures the conver-
gence of the integral, and d— oo ], while for SR-2 the inte-
gral approaches a finite limit determined by the value of & (¢ ).
The difference is due to the fact that SR-1 is a fixed-sign
sequence (see Fig. 1), and so for it £ (¢)> 0and the spectrum
contains another term proportional to § (w), whereas for SR-
2 we have £(z) = 0 and there is no such term. In both cases
S () goes to finite limits for » < p:

S:(0)=212/(%)°p (SR-1),
S.(0)=2b2/8p (SR-2).

(23)

We have obtained all these results by assuming that the
duration ¢ of a pulse depends on its amplitude a. If, on the
other hand, we assume that @ and «} are independent random
quantitiies and that the probability P (¢ )is, as before, taken in
the form (12) or (14), then for SR-1 we obtain the simple
expression

a—(a)2 1— Recp((o)
L) 1—cos @

Se(0)= (24)

which can also be used when a varies over an infinite inter-
val. At small p and @ expression (24) becomes

_ 2 i (7)2
So)S@2 @t o
) 0} 0 o)
and here
. (7)2 ¢
so=2"2 2 (26)
P

Setting @ = 0 in (24) and taking ¢(w) according to (15), we
obtain S, (w) for SR-2; expressions (25) and (26) must be dou-
bled for SR-2. We see that a 1/w law is obtained in this case
also, but then P () must be introduced in a purely formal
way.
According to (21), the function
1
o (In* o+n*/4)
determines the spectrum of SR-1; this function differs little
from 1/o. The spectrum S (w) is often represented (in sepa-
rate regions) in the form B /o*, where the exponent.
A=—d1ln S;(0)/dIn ®

is a slowly varying function of w. For the function in (27) we
have A <1, with A — 1 at o — 0. The correlation function

s(o)= (27)
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corresponding to spectrum (27) falls off at 7 — « as 1/
In(y7), ¥y = 1.781...(see Ref. 7).

4. SPECTRAL INTENSITY AT FINITE »

The behavior of the spectral intensity over the entire
interval O < w <7 depends on the probability density w(a). To
discover this dependence, let us take the functions w(e) and
W (a) for 0<a<1 in the form

_ (U+p)p _ (1tp)a _ oW
w(a)= m, W(a)—w > a(W)—-__-H-p#W )

(28)
where p is a real parameter (p>0orp< — 1). Forp € 1
small values of @ are the most probable, for p ~ — 1 the most
probable values are close to unity, and for p = « the prob-
ability density w(a) becomes uniform in the interval 0<a<1
(Fig. 3). For the functions in (28) the integrals in (18) are
easily evaluated, and we get

—_— p ﬁi — -1

Ji(w)= __—q(1+@)—ei”[1‘+ 7 In(1—ge )],

I,=(1+p)ln-%_£, (29)
=.—_.pz* — 10

() = T Lo 261,

2iw

1 ) )
~Rlg(ttp) —e*] -~ ln(tge) .

q

The expression for I, shows that the spectral intensity
(21) for p < 1 is proportional to In*(1/p), i.e., gets larger as
the probabilities of comparatively large overshoots gets
smaller, while for p~ — 1 the value of I3 is small. These
expressions enable one to evaluate S, (w) for SR-1. To elimi-
nate the parameter p, we introduce the normalized function
S(w) = 1_985 (w)/7I% and, assuming @ > p and p < 1, we ob-
tainp=0andg=1.

Figure 4 shows graphs of the normalized functions s(w)
evaluated by the exact formulas (8), (17), and (29); at small
they coincide with the low-frequency asymptote (27). Figure
4 shows that at finite value of w the exponent A can be larger
or smaller than one (depending on the parameter p) and
changes rather slowly with frequency. Figure 4 also shows

w(a)

p=01 =11

1 g
0 7a

FIG. 3. The function w(a) according to Eq. (28).
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FIG. 4. Normalized spectral intensities for SR-1 at various values of p.

that a function w(a) for which small values of a are more
probable leads to a relatively fast decay of S (w) as w — 7.
This result, like the large values of S, (w) for w < 1, is ex-
plained by the fact that such a function w(a) leads to pro-
longed overshoots of & (¢ ).

For SR-2 we give the probability density as

w(a)=(1+p)p/2(p+|a])?, —1<a<1, (30)

and then the integral J,(w) can also be expressed in terms of
elementary functions. Figure 5 shows the normalized func-
tions s(w = 43S, (w)/mb?; evaluated at p =0. For o — 0
they approach the 1/w asymptote from below, unlike the
case of Fig. 4, where the curves approach the asymptotic
curve (27) from both sides.

The functions we have obtained not only give a 1/
spectrum but also establish a quantitative relation between
this spectrum and that of the priming noise. Formulas (8),
(13), (15), (16), and (17) imply that for w = 7 the spectral

74

L

e
8 |z

S

D,

ACTs
2

107"
10°° 707t 707 g0t 107 7

w

FIG. 5. Normalized spectral intensities for SR-2 at various values of p.
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density of 1/w noise satisfies the equations (for g~ 1)

© ©

_ _ aw(a)da ___1_ aw(a)da T
BS; (1) __‘[;H-_W(J’ ™ [im] for RS-1,
< 2
_ d
By (m)= [ -Lwi@da RS2,

2 1+ W (Jal)
the right-hand side of which to within a factor of order one
coincide with the constant spectral density S, = a* — (a)’ of
the priming noise. For example, in the case of a uniform
distribution [Eqgs. (28) and (30) for p = «] the right-hand
side is equal to 0.69S, for SR-1 and 0.54S, for SR-2. Thus
the frequency interval in which the 1/@ noise is noticeable is
determined primarily by <, which depends on the spontane-
ous-overthrow probability p [Eq. (13)]; for any reasonable
values of p the quantity «} is of the order of tens. Consequent-
ly, the 1/ noise will exceed the priming background at fre-
quencies which differ from the harmonics of the magnetiza-
tion-reversal frequency w, by a quantity of the order of 0.1
w, or less. It is just such values that have been observed
experimentally.’

CONCLUSION

To the best of our knowledge, noise with a 1/w spec-
trum or nearly 1/ spectrum has never been considered in
terms of the mathematical theory of random processes and
sequences. In the physics papers such noise was first inter-
preted as a pulse process with pulses decaying as ¢ ~'/2 at
t — «.” Subsequently, since pulses of this shape had not
been observed in physical systems, the 1/ noise began to be
regarded as either the superposition of relaxation processes
with different relaxation times' or as a pulse process with
pulses of fixed shape but of different durations and ampli-
tudes.!! The main difficulty with these interpretations is to
find a physical justification for the requisite relaxation-time
or pulse-length distributions that would give a 1/w spec-
trum.

The above analysis of magnetic noise shows that in sys-
tems with a memory a suitable distribution [see Eq. (11) and
following] arises in a natural way. The mechanism we have
considered that leads to the 1/w spectrum is “‘coarse”: a
spectrum proportional to 1/w at @ — 0 is obtained regard-
less of the distribution of the priming noise and the particu-
lar method of establishing and overthrowing pulses.

Another extremely interesting question is, what other
mechanisms besides a memory can give the required pulse-
length distribution for the generation of 1/ noise? One such
mechansim, found in a recent paper,'? is a random sequence
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£ () consisting of zero and one and approximating (for low
frequencies) an iteration process in which a regular change
[slow, & () = 0] alternates with a stochastic change [fast,
£(t) = 1]. If P (/) is the probability of having & zeros in a row
(which for ¢ — oo is prorportional to 1/ ?), one obtains a
spectrum for @ < 1 that is proportional to the function (27).
Therandom sequences ¢ (¢ )and 1 — & (¢ ) haveidentical spec-
trafor w #0, and for the second random sequence P () refers
tothe length of rectangular pulses separated by empty spaces
of random length. Be that as it may, the function P (¢ ) which
leads to the 1/w spectrum has the same asymptotic expres-
sion at ¢ — oo as in the above theory of magnetic noise.

The theory elaborated in the present article can be un-
doubtedly be generalized to random processes. In this case
the 1/w spectrum would follow from a probability density
P(3)=28y/m(d 3 + 9 ?)forwd, < 1.Itshould be noted that
this expression is meaningful at all values of < and is integra-
ble, whereas the probability density adopted in the tradition-
al spectral approach'® is proportional to 1/ and cannot be
used at ¢ — 0 and ¢+ — . In our approach S, (w) is ren-
dered integrable at @ = 0 by introducing a factor exp( — pd /
J,), in P (), with p € 1. Moreover, if the pulse duration is
related to the activation energy E by the relation & = -
exp(E /kT), then for P (& ) ~ 1/  the probability density for
the energy E is proportional to exp( — E /kT ), which is more
sensible physically than a uniform energy distribution.'®

We are indebted to S. M. Rytov and A. Ya. Shul’man
for valuable comments.
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