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Detailed calculation of the electron Fermi velocities in Sb and Bi is carried out for the first time. The 
simultaneous (and independent) calculations of the contours of Fermi surface sections and of the veloc- 
ities v, on them allow us to obtain pictures of the "hedgehogs" or contours with Fermi-velocity halos. 
Effective calculation techniques for the determination of both the velocity spectrum at the limiting 
points and the values of the (v . H),,, distribution are developed. Analytical expressions are obtained 
for the case of ellipsoidal Fermi surfaces. A comparison with experimental data on the tilt effect has 
been carried out. It reveals some errors in the experimental data of Beletskii et al. [Sov. Phys. JETP 42, 
531 (1975)], which led to an incorrect analysis of tilt-effect experimental results in Sb and Bi. 

1. INTRODUCTION 

As is well known, for the description of the properties of 
elementary excitations in metals near the Fermi surface 
(quasiparticles-electrons and holes), by which most of the 
electron properties of metals are determined, it is necessary 
to know the single-particle velocities v = dE /dk in addition 
to their energies E (k) (k is the quasimomentum). 

In the traditional methods of calculation, it is quite 
complicated to obtain the value of the Fermi velocity from 
the calculated dispersion law E = E (k), because of the neces- 
sity of differentiation of functions that are determined with 
some error. The possibility of the independent calculation in 
addition to E (k), of the nine differential characteristics of the 
sKectrum, of the gradient dE/dk, and the Hesse matrix 
IIE ll=lld2E /dkidkjll, at the k point in thediagonalization of 
the secular matrix, as pointed out in Ref. 1, opens up a direct 
path for calculating of the Fermi velocities of the electrons 
and holes as well as their various distributions. 

In this work, we consider finding the velocity distribu- 
tion at the limiting points of the Fermi surface (FS) ,  v,,, 
= v,,, (p), in the case of rotation of the direction of H (in the 

experiments, this is usually the direction of the magnetic 
field) in a certain plane (p is the polar angle of the direction of 
H), and also the corresponding distribution of the values of 
the maximal projections of the velocity on this direction1', 
(V H)max = M ( P  1. 

As is known, these distributions determine directly a 
number of acousto-electronic phenomena in metals placed 
in a magnetic field (see, for example, Refs. 2-4). 

If a suitable graphical procedure is provided, we can 
obtain on the alphanumeric printer of a high speed computer 
a picture of the "hedgehogs"-the contours Y(E,) of the 
Fermi surface with mapped (in a certain scale) projections of 
the velocity on the corresponding plane of the contour 
Z(E,) (for electrons-"spines" outwards, for holes, 
"spines" inwards) or the contour Y ( E F )  with a "halo" of 
calculated velocities. 

To make clear the various situations with the Fermi 
velocities, it is very useful to consider first ellipsoidal Fermi 
surfaces, in which case we can obtain analytical expressions. 
Section 2 is devoted to this. 

Section 3 is devoted to algorithms for searches (at a giv- 
en H) of the limiting points of the Fermi surface and the 
points k, that are elements of the Fermi surface, at which 
the projection of v, on H i s  maximal, without carrying out 
global calculations aimed at reconstructing the entire Fermi 
surface. 

In Sec. 4, the corresponding calculations are carried out 
for Sb and Bi. As a model of the electron spectra we used: for 
%--the pseudopotential model of Falicov and L ~ I I , ~  the ade- 
quacy of which for Sb was established in a series of re- 
searches (see Refs. 6-8); for Bi-the model of McClure and 
C h ~ i , ~  which has been successfully applied to the description 
of the properties of electrons in Bi (see Ref. 10). In this same 
section, there is a comparison of the calculations with ex- 
perimental data (basically, we have used the data of Ref. 11, 
which were obtained in the study of the tilt effect in Sb and 
Bi. 

Section 5 is devoted to a discussion of the results and 
brief calculations. 

2. FORMULAS FOR ELLIPTICAL EQUAL-ENERGY 
CONTOURS 

Let the equation of an equal-energy contour be 
ak,2+bk,2=E0 (1) 

and let b >a,  so that the ratio of the semiaxes of the ellipse (1) 
a = (b /a)'I2 > 1 (in Fig. 1, the case a = 5 is shown). If we 
take the center of the ellipse as the pole, then in polar coordi- 
nates we have the equation of the ellipse (1) in the form 

k=E,'"/ ( a  cos2 cp+b sin2 cp) ". (2) 
For the velocity distribution along the equal-energy curve 
(2), we obtain (the polar diagram of the velocities) 

v ( c p )  =2k (aZ cosz cp+bz sin")')'"=2 (E,) '"(a2 cos2 cp 

+ bZ sinz ( p ) l h /  ( a  cosZ cp+b sin2 c p )  I". (3) 

It is seen that the polar diagram of the velocities (3) differs 
from an ellipse (in Fig. 1 it is shown by the dashed line). It is 
elementary to verify that v(p )increases throughout theinter- 
val 0 < p < ~ / 2 ;  v,,, = v(0) = 2 ( ~ ~ ) ' " ,  v,,, = U(T/ 

2) = 2(E,b )'I2 so that the ratio of the semiaxes of the figure 
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sought and p is a Lagrange multiplier, we obtain 

V$=V (vH) +yv=O. (7) 

From (7), we obtain the extremum condition 

FIG. 1 .  Velocity characteristics for elliptical section (a = 5): solid curve- 
contour of the section, dashed curve-v(q, ), squares-M(p ), points- 
s m  (4. 

(3) is, just as in the ellipse (I), equal to a :  v(?1/2)/u(O) = (b / 
a)'/' = a ,  but the direction of the largest and smallest axes of 
the figures (1) and (3) are exchanged. 

A characteristic feature of the polar diagram v = v(p ) 
are its peculiar "wings," which are more sharply delineated 
the greater the anisotropy of the ellipse a .  The "wings" de- 
crease the anisotropy of the moduli of the velocities on the 
contour but form a unique "funnel" near the values p = 0 , ~ .  
It can be shown that the "wings" appear upon satisfaction of 
the condition a > a,, , where 

("1 - a,, -[  (1+1'%)/2]'~-1.272. (4) 

The distribution v = v(p ) along the contour should not 
be confused with the hodograph of the Fermi velocities (for a 
given contour). It is easy to see that for the ellipse the hodo- 
graph of the Fermi velocities will also be an ellipse. The 
equation of the hodograph R (p ) will have the form 

R(cp) =2 (E,ab) '" / (b  cosz cpfa sinZ 9 ) ' " ;  (5) 
the dependence (5) is shown in Fig. 1 by the points. It is 
obvious that the velocity distribution at the limiting points 
vlim (p) is identical with the dependence R (p ). A graphical 
scheme of obtaining the limiting point B is shown in Fig. 1: 
the straight line BElH is tangent to the contour E (k) = E, at 
the limiting point B. The end of the vector vli,, drawn from 
the pole 0, lies on the hodograph R (p ). 

Such a scheme of obtaining the values of (v H)  is shown 
in Fig. 1: the straight line DFlH is tangent to the contour 
R (p). It is seen that the values of (vH),,, and vlim (H) are 
identical only in the directions of the principle axes of the 
ellipse and in the general case they cannot differ by more 
than severalfold [for a givenH this ratio depends, of course, 
on the anisotropy a of the ellipse (I)]. It is also seen that the 
dependence vlim (p) is much more anisotropic than the de- 
pendence M (p ), although their maximal and minimal values 
are identical. 

For the ellipse, it is not difficult to show that the value 
(v . H),,, is realized at the point C where the corresponding 
ray H, drawn from the origin, intersects the contour (1). Ac- 
tually, solving the problem of the conditional extremum of 
the function 

$=@+p (ak,Z+bk,2), (6) 

where @ = (v H) is the functional whose maximum is 

We obtain the equation for the function M (p ). We write 
down (see the notation in Fig. 1 near the point C ) :  
M (p ) = v(p ) cos a = v(p ) sin w, for the angle a we have 
tgw = k (p )/k '(p ), wherek (p )andu(p )aredeterminedfrom 
(2) and (3). After a number of transformations, we obtain 

We can show that the dependence (9) at a > a!:), where 
= 2 1% (10) 

has "wings," just as v = v(p ). 
For the dependence of the ratioA (p )-M (p )/vIim (p) on 

p,  we obtain 

A ( c p )  = I / ,  (ab)- '"[ (b-a)' s in  2q+4ab] Ih. (11) 

It follows from (1 1) that the value of A (p ) is a maximum at 
p = r/4: 

A ( c p )  ma,=A (n/4)  ='Iz ( a  b )  -'" (a+ b )  . ( 12) 

It is clear that for any anisotropy a(a # 1)A (p) > l ( p # ~ n / 2 ) .  
It is entirely evident that operations analogous to (6)-(8) 

lead to a conclusion identical to (8) for any ellipsoidal equal- 
energy surface, i.e., in the case 

the maximum value of the functional @ = (v . H )  for a given 
direction of H is realized at the point of the ellipsoid at which 
the ray of this direction "pricks" the surface, i.e., at that 
point of the ellipsoid, which satisfies the relation 

It is easy to grasp that the hodograph of the Fermi ve- 
locities for (13) will [in analogy with (5)] be the ellipsoid2' 

k,2~a+k,2,/b+k,2/c=4Eo. (15) 

The surface characterizing the distribution (v H),,, will 
encompass the ellipsoid (15) and be tangent to it at points 
lying on its principal axes. 

For the determination ofM (p ) and vlim (p) in the case of 
real Fermi surfaces, special calculation procedures were de- 
veloped. 

3. SCHEME OF CALCULATIONS OF "VELOCITY" 
CHARACTERISTICS 

We first consider the general setup of the problem. We 
need to find on the Fermi surface the point k* that makes 
stationary the given functional @(k,H), where H is a certain 
unit vector serving as a parameter, and stipulate the deter- 
mination of a set of points [k*(H)J,  when H takes on all 
possible directions in some plane. 

The procedure of the determination of the point k* was 
set up according to an "adaptive-gradient" scheme. This 
means that the vectors vo and V@ (k,)=@, are calculated at 
some initial point k,, on the Fermi surface. The direction of 
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motion in the (n + 1)st step was determined by the direction 
of the projection of a, in the plane tangent to the Fermi 
surface. The corresponding unit vector 1, + , is obviously 
equal to 

ln+i=Ln+tILn+i( (16) 

where 

Ln+i=@a-~n (vn@n) l v2 .  
The magnitude of the displacement An + , in the direction of 
1, is not connected with a n ,  but depends exclusively on the 
magnitude of the displacement A, calculated in the pre- 
vious step, and on the value of the function Sg (@, - @, p , ), 
which is equal to Sg = 0 if the nth step brings @ closer to a 
stationary value, and Sg = 1 if it moves it further away: 

4n+t=An ( I -0 .5Sg)  ; (17) 

here the value of A, was specified in the adjustment proce- 
dure (usually A,-0.01). 

The relations (16) and (17) lead to the following formula 
for calculation of the point k, + , : 

kn+i=kn+ln+tAn+i. (18) 

The following three functions enter into the problems 
that we have considered (the third is auxiliary): 

a) @ "' = vH, so that 

cD'"=(1GjjH, L"'=l(E(~H-v (v((E(1H) / u Z ;  (194 

b)@ (2' = (vH)/u, so that 

@f2)=IIE'II~/v, L(Z'=I]E;lII~-~ (viiEiiz) / uZ ;  (19b) 

where z = H - v(vH)/u2; 
c) @(3' = (kH), SO that 

cDf3'=H, L'3)=H-v(vH) /uZ=z. (1 9 4  

The third functional is obviously the projection of the radius 
vector k of the Fermi surface on the direction H; its maxi- 
mum is achieved at the limiting (for a given H )  point k, that 
coincides with the reference point. Therefore, the problem of 
the extremalization of the functional for most of our 
problems (more precisely, for convex surfaces) was reduced 
to the simpler problem of the extremalization of the func- 
tional @'3'. This is seen also from the relations (21b) and 
(21c): the equality z = 0 is the general condition of termina- 
tion of the iterative processes connected with the extremali- 
zation of these functionals. 

We shall now give some more specifics about the search 
for the points k*(p). The calculation of the value of (v H),,, 
was begun with finding the point k, belonging to the Fermi 
surface and lying on the given ray H. The point k* that guar- 
antees the maximum of the functional @, . , = (v H) was 
always not far from k, and was found by the method of suc- 
cesive approximations with the use of (18) and (19a). 

The calculation of v,,, (H) turns out to be a more cum- 
bersome problem. In this case, each step of the iteration con- 
sists of two steps: 

a) the transition from the point k, - , to the point k, 
according to (18), in which the unit vector 1, was determined 
from (19c) or, in case of necessity, from (19b); 

b) return of the variable point k to the Fermi surface. 
Since the limiting point of the Fermi surface is located, as a 

rule, far from the initial point $, the point k, can be signifi- 
cantly far removed from the Fermi surface (i.e., the differ- 
ence E (k, ) - EF = E, can exceed the error of calculation of 
E (k), which is equal to 0.0001 atomic units in our calcula- 
tions); in this case, using the approximation 
~ ( k )  ZE, + (k - k, )vn , we "drew" the variable point to the 
Fermi surface, i.e., the second step was reduced to the transi- 
tion 

Having found the point k, + , , we calculate v, + , and 
s, + . If I E ,  + 1 <0,0001, then we proceed to the completion 
of step a) for the next stage of the procedure; in the opposite 
case, we again turn to the relation (20). 

4. FERMl VELOCITIES IN Sb AND Bi; COMPARISON WITH 
EXPERIMENT 

In the numerical calculations, it is important to secure 
convergence of the results in dependence on the dimensiona- 
lity of the secular matrix. Careful investigations of the de- 
pendences of the calculated values of the velocity compo- 
nents vi in Sb on the dimensionality of the secular matrix M, 
carried out by us, have shown that at M = 90 the calculated 
error in the computation of the Fermi velocities of both elec- 
trons and holes amounted to several percent. Further reduc- 
tion in the calculated error does not make sense, because the 
results given below for Sb were obtained at M = 90 

Figure 2 shows the following: the "hedgehog" for the 

FIG. 2. Contours of the sections of the Fermi surface of Sb: S; ,  (a), S;,, 
(b) and S;, (c) together with the distribution of velocities u(p ); the scale of 
u forb and c follows from the text. 
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FIG. 3. Polar diagrams u(p), M (q), and V,,, (p) together with thecontours 
of the sections of the Fermi surface (Bi) for S L,, (at the right) and S:,, (at 
the left). The notation is the same as that of Fig. 1. The scale for v, is 
shown on the ordinate, the scale for k, (which is different for S,,, and 
S,,, ) on the abscissa. 

section S Lax and the polar diagrams of v(p ) for Skin and 
Skin in Sb. Attention should be paid to the dependence 
v = v(p  ) along the contour of the section S&,. According to 
(3), u = u(p ) is a monotonic function, but calculation leads to 
a nonmonotonic dependence u = u(p ) with an absolute by 
minimal (for this cross section) value of the velocity ~2:) 
= 6,21 . lo7 cm/s. Such a result of the calculation may seem 

surprising, but it is not difficult to verify that it correlates 
excellently with the fact (previously obtained by us in Ref. 7) 
that the shape of S kin changes under pressure. 

Polar diagrams of v(p) and M (p ) are shown in Fig. 3, as 
well as hodographs of the Fermi surfaces and the contours of 
the sections of the Fermi surface of Bi for S k,, and S kin, 
calculated from the spectrum of McClure and ChoL9 The 
anisotropies of the section S $, lead to a value o f a  which is a 
little larger than a,, from (4) and (10); therefore, the appear- 
ance of "wings" and "funnels" for v(p ) and M (p ) is not sur- 
prising. But, ifwe compare the details ofu(p ), M (p ) andA (p ) 
for this section with the relations (3), (9) and (1 I), then the 
effect of the deviation of the electron spectrum of the model 
of Ref. 9 from the simple ellipsoidal model is noticeable. 
Thus, for example, for the value A ( ~ / 4 )  we have 6.0, while 
according to (12) we would obtain 1.9 (for Ski,, the corre- 
sponding values are 1.04 and 1.01). 

The most complete comparison with experiment can be 
carried out by using the data of Ref. 11 on the measurement 
of the tilt effect with Sb and Bi, which consists in a strong 
increase in the second absorption when the magnetic field 
vector H is tilted to a small angle from the direction H l q  (q is 
the wave vector of the sound wave). According to Ref. 2, this 
effect is due to the absorption of sound by electrons from the 
vicinity of the elliptical limiting point, and it allows us to 
determine the velocity of the electrons at this point. To be 
precise, at a certain critical tilt angle p,, , 

cpc,=arcsin (s/uli,(H) ) (21) 

(s is the sound velocity), a group of charge carriers appears 
from the vicinity of the limiting point of the Fermi surface, 
moving in phase with the wave and effectively absorbing the 
sound-wave energy. 

As was shown in Ref. 3, at wr s1  (w is the sound fre- 
quency, r is the relaxation time), the angular position p, of 

FIG. 4. Polar diagrams of u,~, (q) for electrons in Sb in the three crystallo- 
graphic axes. The points are from the experiments of Ref. 11, the solid 
curve is a calculation, the dashed curve is formed by pieces of the polar 
diagrams of individual electron "pockets" of the Fermi surface. 

the point of inflection on the curve of the dependence of the 
absorption coefficient r on the tilt angle, r = r (p), is identi- 
cal, with great accuracy, with the value p,, . In recording the 
derivative r the points of inflection are determined as the 
spikes (extrema) on the curve. Experiments1' and estimates 
carried out by the authors on the oscillations of the geomet- 
ric resonance and the shape of the curve T(p) yielded 
or = 1.5. Numerical calculation according to the formulas 
from Ref. 3 shows that this leads to a lowering of the mea- 
sured velocities by 15%. In the case, however, in which the 
r (p) dependence is a superposition of contributions from 
several regions, the authors of Ref. 11 were unable to intro- 
duce a similar correction. 

Measurement of the angles p, has been carried out in 
Ref. 11 at three orientations relative to the crystallographic 
axes:qIIX (IIC2)-here, the projections of the Fermi velocity on 
the trigonal-bisecting plane ClC3 is determined; 
ClC3;qlJY(IICl) gives the projection of v, on the trigonal- 
binary plane C2C3: qllZ (lie3) gives the projection ofv, on the 
binary-bisecting plane C,C2. 

The polar diagrams vlim (p) are shown in Fig. 4 for Sb in 
the three crystallographic plane C,C,, C2C3 and C1C3, ob- 
tained in the experiments of Ref. 11, and also calculated by 
us, and the values of u, for a number of specific crystallogra- 
phic directions, are tabulated in Table I. Experimental data, 
obtained in Ref. 12, are also included in this Table, as well as 
the calculations of Ref. 11 carried out in the quadratic ap- 
proximation and according to the empirical model of the 
electron spectrum of Sb constructed from experimental data 
on the basis of the Lifshitz-Pogorelov13 theory by the proce- 
dure suggestd by Mueller.14 

Fair agreement of our calculated values with the experi- 
mental data is seen from Fig. 4 and Table I, and it must be 
taken into account that the experimental values of Fig. 4 and 
Table I are given without correction for the finiteness of wr. 
The greatest difference is observed in the directions of 
( v ~ ~ ~ ) ~ , , ,  in the C,C2 plane, where vFp/vF1"=2 We defer the 
discussion of these differences to Sec. 5. 

Polar diagrams of vlim (p) for Bi in the three crystallo- 
graphic planes C,C2, C,C3 and C,C, are shown in Fig. 5. 
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TABLE I. Fermi velocities (in lo7 cm/s) for a number of crystallographic directions in Sb. 

Experiment [ 11 ] 
Experiment [ 121 
Our calculation 
Empirical model [ 11 I 
Quadratic approximation [ 111 

Source 

*The direction makes an angle of 5" with the C3 axis in the Z Y  plane. 
**The direction makes an angle of 35" with the C3 axis in the Z Y  plane. 

Electrons Holes 

These were obtained experimentally and also calculated by 
us. Figure 5 also shows the values of the velocities with cor- 
rection for the finiteness of the quantity w r .  This correction 
significantly improved the agreement between calculation 
and experiment in those directions where the contribution to 
the effect of the charge carriers from a single region of the 
Fermi surface predominates heavily. As has already been 
noted,in the more complicated cases of the superposition of 
contributions of different regions of the Fermi surface, a sim- 
ilar correction of the experimental values of v, becomes dif- 
ficult. 

In Table I1 are given the experimental values, and those 
calculated by us, of the velocities of the electrons in Bi in the 
directions of the principal axes of the electronic "ellipsoid." 

As a whole, good agreement of experiment and theory 
must be acknowledged. The greatest divergence, as in the 
case of Sb, is observed in the direction of (v,im)min in the ClC2 
plane, where V ~ ~ / V ~ - " ' "  - 2. 

5. CONCLUSIONS AND DISCUSSION 

We have demonstrated the possibility of calculating the 
"velocity" characteristics of the Fermi surface both in the 
scheme of a pseudopotential and also outside of this scheme. 
We have given examples of calculated "hedgehogs" and pic- 
tures with "halos" for certain plane sections of the electron 
and hole parts of the Fermi surface of Sb. 

In addition to the calculation of the values of v(k,) at 
some point k, lying on the Fermi surface, we have shown the 
method of calculating (with a brief description of the corre- 
sponding algorithms) polar diagrams of ulim (p) and M (p ). 
These characteristics of the Fermi surface of metals (more 
accurately, the characteristics of the dispersion law 
E = E (k)Ik = kF) directly determine a number of observable 
effects. 

The so-called tilt effect was considered from among 
these effects. Figure 4 and Table I (Sb), and Fig. 4 and Table 
I1 (Bi) were devoted to a comparison of the calculations with 
experiment. At first glance, the comparison of Figs. 4 and 5 
(especially in the C,C2 planes) suggests better agreement of 
theory with experiment in the case of Bi than in the case of 
Sb. But, as we have noted, both in the case of Sb and in the 
case of Bi the greatest divergence was observed in the ClC2 
planes in the directions corresponding to (uIi, ) min, i.e., in the 
"craters" of the diagrams, while in both cases we have 
V ~ ~ / V ~ . " ' "  -2 for these directions. Because of the great anisot- 
ropy of the electron "ellipsoid" in the case of Bi, this discrep- 
ancy extends over a smaller area of the diagram and appears 
to be visually smaller. 

It should therefore be recognized that the measure of 
agreement between theory and experiment in the cases of Bi 
and Sb is about the same. 

What can be thought of the significant divergence 
between theory and experiment in the "funnels" of the dia- 
grams in the C,C2 planes? It must be remarked that in Refs. 
2, 3 and 14 the formula analogous to (21), contains not 
v,,, (H) but (v H),,, which these authors nevertheless take 

TABLE 11. Values of u ,  (in lo7 cm/s) of electrons in Bi along the 
principal axes of the "ellipsoid." (Curve 1-axis of the ellipsoid, axis 
3-binary axis) 

Source 

[ I01 * 10,o 
' [I61 ** 1 I g,g 
Our calculation 9 3  

FIG. 5. Polar diagrams of u,,, (q) for electrons in Bi in the three crystallo- *Calculated from the radii of curvature (see Ref. 10) and the re- 
graphic planes. The basic notation is the same as in Fig. 4. Additional sults of measurement of the resonances of the magnetic surface 
symbols are: A-values of the velocities with correction for the finiteness levels in Ref. 15 (for v,) and Ref. 16 for u, and u,. 
of WT (from Ref. 11); in the "funnel" of the diagram in the C,C, plane the **It was also demonstrated in Ref. 16 that the velocities of elec- 
small dots are the results of dispersion-law calculations carried out in Ref. trons on the minimal sections of the Fermi surface change ac- 
11 in the quadratic approximation. cording to an elliptical law; this agrees with Fig. 3. 

121 9 Sov. Phys. JETP 60 (6), December 1984 Pospelov etal. 121 9 



FIG. 6. Corrected polar diagram of uli, (9) for electrons in Sb in the ClC2 
plane. The crosses and dashed lines are the experimental data corrected by 
us according to Table I. The heavy continuous curve is our calculation. 
The fine continuous lines: with 0-the calculation according the quadrat- 
ic approximation, with %the calculation according to the empirical 
model, (both from Ref. 11). The dotted and dot-dash curves are pieces of 
the polar diagrams of the individual pockets of the Fermi surface. 

to mean the quantity vIim (H). This is apparently due to the 
misunderstanding, mentioned in footnote I), whereby the 
value (v H),,, is seemingly reached at the limiting point of 
the surface. The values of (v H),,, and vlim (H) are identical 
only in the directions of the principal axes of the ellipsoids. 
For the other directions, (v H),,, #vlim, and therefore, 
generally speaking, the question arises as to the selection of 
effectiveelectrons. Replacement of the curveu,im (p) by M (p ) 
significantly raises the bottoms of the calculated "funnels." 
But the electrons from the region with (v H),,, will not be 
in phase with the sound wave, and therefore their role will 
obviously not be significant. 

We think that the reason for the discussed discrepancy 
is the incorrect determination in Ref. 11 of the velocity 
v,,, (9) in the C,C2 plane. At the very least, careful analysis of 
the experimental diagrams of Sb and Bi shown in Ref. 1 1 (see 
4 and 5) reveals significant internal inconsistencies (cf. the 
value of vy from the rotation diagrams in the C,C2 and C,C3 
planes). There is significant discrepancy also between the 
experimental values of uy in Sb, given in Ref. 1 1 on the graph 
and in the table (see Fig. 4 and Table I). If the tabulated 
experimental value v, = 2.7 lo7 cm/s, which agrees with 
the diagram value of vy in the C,C, plane, is used in the 
graph, then the calculated and experimental plots of Fig. 4 
for the CIC, plane will be close together. 

In Fig. 6, we show the experimental diagram, corrected 
in this fashion, for Sb in the C,C2 plane; as well as the rsults 
of the calculations of Ref. 11 according to the quadratic and 
empirical models of the electron spectrum of Sb. It is seen 
that both models describe the experiment worse (if, in ana- 
logy with Bi, we take into account the correction for the 

finiteness of w.r for the regions of predominant contribution 
from a single electron "pocket," then our calculated result 
and the corrected experimental dependences are almost 
equal). 

Similarly, if the value of vy from the diagram in the 
ClC3 is used for Bi, the bottom of the "funnel" from the 
experimental points in the C,C, plane is lowered and the 
experimental and calculated diagrams merge. By the same 
token (as a particular result of the calculations that have 
been performed), a definite error appears in the representa- 
tion of the experimental data of Ref. 1 1. If this error is eli- 
minated, the results of the calculations of the velocities of 
electrons in Sb and Bi that have been carried out are in good 
agreement with the entire set of experimental data. 

In conclusion, it should be recalled that the electron- 
phonon correction Sv, is proportional to the area of the Fer- 
mi surface (see, for example, Ref. 17) and therefore it should 
in principle be small in the case of semimetals. 

''In spite of a rather widespread opinion, these distributions are entirely 
different even for ellipsoidal energy surfaces. 

2'Actually, if the radius vector k, = ( k, , k,,, , k,, j satisfies (13), then the 
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v, = (2ako,, 2bk,,,, 2ckOz] will satisfy Eq. (15). 
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