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We construct a phenomenological theory that explains the onset of a steady electrical domain 
structure in ruby crystals under intense laser illumination. The theory is based on the assumption 
that the photovoltaic current arising in the centrosymmetric crystal in the presence of an electric 
field is directed counter to the field. In this case the resistance of the sample in zero field is 
negative, giving rise to an instability and to the spontaneous appearance of an electric field in the 
crystal. We study the various types of steady field distributions in the crystal for different values 
of the applied field and discuss the possible mechanism for the appearance of the negative photo- 
voltaic current. The theoretical conclusions are in complete agreement with the experimental 
results. 

INTRODUCTION 

It was shown by Liao, Glass, and Humphrey' that in- 
tense laser illumination of concentrated ruby at low tem- 
perature gives rise to a strong ( -  lo6 V/cm) internal electric 
field in the crystal. This field was detected from the pseudo- 
Stark splitting which is caused in the luminescence lines. 
After the illumination was shut off the internal field persist- 
ed unchanged over a long period of time at room tempera- 
ture on account of the extremely low dark conductivity of 
ruby. 

The appearance of an internal field was interpreted1 as a 
photovoltaic effect analogous to that observed earlier in fer- 
roelectric~.~ However, unlike the case of ferroelectrics, the 
crystal structure of ruby has a center of inversion. In ruby 
the Cr3+ impurity ions occupy two noncentrosymmetric po- 
sitions in the centrosymmetric Al,O, lattice; these positions, 
A and B, differ by inversion. Therefore, for a uniform distri- 
bution of Cr3+ ions over these positions the ruby crystal has 
a center of inversion and no photovoltaic current can exist." 
For this reason it was conjectured in Ref. 1 that during the 
growth of the crystal the Cr3+ ions for unknown reasons 
preferentially occupy one of the positions, A or B, so that it 
becomes possible to have a photovoltaic current Jparallel to 
the C3 axis of the crystal and proportional to the difference in 
concentrations of chromium in these positions. This current 
gives rise to an electric field E (also parallel to C3) whose time 
evolution during the illumination is described by the follow- 
ing equation, which expresses the condition that the total 
current is equal to zero (for an open-circuited sample): 

where the first term is the displacement current, j = aE + J ,  
and u is the electrical conductivity arising during the illumi- 
nation. Under the experimental conditions of Ref. 1 both a 
and J depended in the same way on the illumination intensity 
(provided that it was not too high), so that the steady-state 
value of the field Es = - J / u  did not depend on the intensi- 
ty. 

It was recently observed by Basun, KaplanskiT, and 

Feofilov3v4 that the laser illumination of ruby actually gives 
rise to domains in which the internal electric field * E,, 
parallel to the C3 axis, is equal in magnitude but opposite in 
direction. The total volume of the domains with fields + E, 
and - E, are equal. If at the time of the illumination a field 
E,, smaller than E, is applied to the crystal along the C3 axis 
with the aid of a voltage source, the domain structure per- 
sists and fields in the domains remain equal to f E,. How- 
ever, the total volume of the domains with field along + Eo 
increases at the expense of domains with the field in the op- 
posite direction. On the other hand, if Eo > E,, the domain 
structure does not form, and the internal field does not per- 
sist after the illumination is stopped and the voltage source is 
turned off. It has also been s h o ~ n ~ - ~  that the dependence of 
E, on the tempearture at which the illumination took place 
has the characteristic form for a second-order phase transi- 
tion with a critical temperature T, -- 150 K. The effect is 
observed only if the chromium concentration is sufficiently 
high and the illumination is not too intense. ' p 4  

The results of Refs. 3-5 are at odds with the interpreta- 
tion offered in Ref. 1. In fact, to explain the existence of 
domains with fields & E, from the point of view expressed 
in Ref. 1, and would have to suppose that the crystal contains 
regions of equal volume with equal and opposite differences 
in the chromium concentrations in positions A and B. Not 
only is such an impurity distribution improbable, but the 
hypothesis fails to explain the redistribution of the volumes 
of the domains in an applied field or the critical temperature 
dependence of the internal field E,. 

One of us has offered an explanation for the effect, at- 
tributing the formation of the photoinduced domains in ruby 
to an electrical in~tability.~ It is assumed that the photovol- 
taic current arising in the centrosymmetric crystal in the 
presence of an electric field is directed counter to the field. If 
the absolute value of the photovoltaic current in the low- 
field region exceeds the conduction current, the resistance of 
the sample turns out to be negative and the state with zero 
field is unstable. Under these conditions an electric field 
should arise spontaneously. The proposed model leads to 
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conclusions in qualitative agreement with the experimental 
data.'-' A study of the volt-ampere characteristics5 of an 
illuminated ruby crystal has shown that under certain condi- 
tions the current flowing through the sample is directed 
counter to the field. This result confirms the basic assump- 
tion of Ref. 6. 

The mechanism proposed in Ref. 6 for explaining the 
formation of a photovoltaic current is similar to the mecha- 
nism described in Ref. 1. Specifically, the appearance of this 
current is attributed to a difference in the populations of the 
excited metastable states 2E of the chromium ions in posi- 
tions A and B (but not, as in Ref. 1, to a difference in the 
concentrations of chromium ions in these positions). A dif- 
ference in the populations of the excited states arises in an 
electric field because the A and B positions become nonequi- 
valent. In Ref. 1 it was assumed that the generation of the 
photovoltaic current occurs in two stages, of which the first 
is the excitation of the 2E states. Then the photovoltaic cur- 
rent is proportional precisely to the difference in the popula- 
tions of the 2E states of the chromium ions in positions A and 
B. Here the current can, in principle, be directed either along 
the field or counter to it. In the latter case the aforemen- 
tioned instability arises, leading to the spontaneous vanish- 
ing of the center of inversion of the crystal and to the appear- 
ance of an electric field. 

In the present paper we construct a theory of the photo- 
electric instability on the basis of the hypothesis of Ref. 6. 
We find the possible types of steady distributions of the elec- 
tric field in the crystal for various values of the applied field 
Eo and show that an electrical domain structure arises for 
Eo < E,. These field distributions determine the optical and 
electrical properties of the illuminated crystals. We study 
the volt-ampere characteristic of the illuminated sample 
and consider hysteresis effects. In addition, we consider the 
possible mechanisms for the formation of a photovoltaic cur- 
rent in crystals having a center of inversion in the presence of 
an electric field. 

pend on the relative orientation of the field, the polatization 
vector of the light, and the crystallographic axes, experi- 
ment~',~.' imply that there is no polarization dependence in 
ruby-the current is directed along the C, axis and depends 
solely on the projection of the field onto this axis. Thus in an 
approximation linear in the electric field E the expression for 
the photovoltaic current can be written 

J (E) =-an (nE) , (2) 

where n is the unit vector along the C, axis and a is a photo- 
voltaic coefficient which depends on the intensity and wave- 
length of the radiation, on the impurity concentration, and 
on the temperature. The negative sign in (2) corresponds to 
the basic assumption of the theory-that the photovoltaic 
current is directed counter to the field. 

We shall hereafter consider the one-dimensional situa- 
tion, assuming that the illuminated sample is a thin slab with 
surfaces perpendicular to the C, axis. Such a geometry corre- 
sponds to the experimental conditions of Refs. 1 and 3-5. 

The current density in an illuminated sample is given by 
the expression 

where j, E, and J are the projections of the corresponding 
vector quantities onto the C, (i.e., x )  axis, and o is the con- 
ductivity arising on illumination. 

According to what we have said, in low fields we have 
J(E ) = - aE.  In this case, if a > a, the contribution of the 
photovoltaic current is dominant and the net current j is 
directed counter to the field. Then the resistance in low fields 
is negative, giving rise to the photoelectric instability. Since 
the relationship between the coefficients a and u depends on 
the temperature, impurity concentration, and radiation in- 
tensity, the onset of the photoelectric instability will clearly 
depend on these quantities in a critical manner. In rather 
large fields the net current should clearly be directed along 
the-field. Thus, for a > a the f (E ) curve is as shown in Fig. lay 

2. QUALITATIVE PICTURE OF THE PHOTOELECTRIC - Let us discuss the consequences of a dependence of this 
INSTABILITY form. First of all, for fields between - E, and E, there is 

The illumination of a crystal having a center of inver- negative differential conductivity, and therefore the homo- 
sion does not give rise to a photovoltaic current. In an elec- geneous state is unstable in a field which lies in this interval. 
tric field, however, such a current does arise. Although the In the particular case of an open-circuited sample, this fol- 
magnitude and direction of the current can in general de- lows immediately from (1) and (3): the steady state with 

FIG. 1 .  a) Schematic representation ofthe function f (E  ); b) 
volt-ampere characteristic of an illuminated crystal. Seg- 
ment AB corresponds to a homogeneous state, while CD 
corresponds to a state with a domain structure. The 
dashed lines correspond to field distributions of types I1 
and 111. Segment OA is unstable. 
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E = 0 is unstable, while the states with E = f Es are stable. 
For IE 1 > E, the homogeneous state is stable and, conse- 
quently, theF (E  )curve for J E  1 > E, gives one of thebranches 
of the volt-ampere characteristic of the sample (segment AB 
in Fig. lb). - -  . 

As is seen from Fig. la, values of the current in the 
interval - j, > j > j, correspond to two stable values of the 
field, differing in magnitude and sign. This means that at a 
fixed currentj there are two possible homogeneous states. In 
addition, the sample can stratify into domains in which these 
two stable field values alternate. It can be shown that in 
general the domain boundaries are moving. Stationary walls 
are possible only for j = 0 (see Sec. 3). Therefore, as can be 
seen from Fig. la, the fields in the stationary domains are 
equal to f E,. 

If the sample is open-circuited, it can be in a homogen- 
eous state with field E = E, or E = - E, or in an inhomo- 
geneous state with domains in which these two field values 
alternate. 

Let us now examine the conditions when a fixed voltage 
V = El l  is applied to the sample (I is the length of the sam- 
ple). If E, > E, a homogeneous state with currentj = f (E,) is 
possible (segment AB in Fig. lb). If there is a domain struc- 
ture in the sample, the combined lengths I, of the domains 
with fields + E, should satisfy the relation 

which states that the combined voltage across all the do- 
mains is equal to the applied voltage. Of course, 
I +  + I- = I .  Obviously, Eq. (4) can be satisfied only if 
Eo < Es. As we have said, a stationary domain structure is 
possible only for j = 0. Thus for E, < E, the volt-ampere 
characteristic contains a segment CD (see Fig. lb) which cor- 
responds to a state with a domain structure. 

It can be seen from Fig. lb  that for fields in the interval 
E, < E, < Es there are two possible steady states (one with a 
domain structure and one with a uniform field), which differ 
in the value of the current flowing through the sample. 
Which of these two states is realized depends on the previous 
history. If the sample was originally in a homogeneous state 
with field E, < E, < Es, then this state should persist on illu- 
mination. If, on the other hand, a domain structure has been 
produced by a preliminary illumination in a field E, < E,, 
then this domain structure persists as the field is increased to 
E, > Ex. A two-branched bolt-ampere characteristic and 
hysteresis effects due to transitions between the two steady 
states were observed in Refs. 4 and 5. 

The discussion of this section is illustrated by Fig. 2, 
which shows a schematic representation of the steady field 
distribution in the sample for various values of the applied 
field E,. For E, = 0 there are domains of equal volume with 
fields + E, (Fig. 2a). For E, < E, the domain wall shifts in 
accordance with Eq. (4) in such a way that the average field 
in the sample is equal to E, (Fig. 2b). If E, < E, < E,, two 
states are possible; in one of them the field is uniform and 
equal to E,, while in the other there are domains with fields 
f Es and dimensions I, determined by formula (4) (Fig. 

FIG. 2. Field distribution E (x )  in a sample at various values of the applied 
field E,: a) Eo = 0, b) E, < E,, c) E, < E, < E, (there are two stable states), 
d)Eo>E,.  

2c). Finally, for E, > E, the domain structure does not form 
and the field in the sample is uniform and equal to the ap- 
plied field (Fig. 2d). In all cases in which there is a domain 
structure the current through the sample is zero (segment 
CD in Fig. lb). In states with a uniform field we have 
j = f (E,) (segment AB ). 

Let us consider what happens when the illumination is 
stopped and the voltage source is turned off. We assume here 
that the sample is short-circuited, as in the experiments of 
Refs. 3 and 4. The result will vary depending on whether the 
initial state had a domain structure or a uniform field distri- 
bution. 

In the first case the charges creating the steady field 
distribution are located both on the surfaces of the sample 
and in its interior-on the domain walls. When the sample is 
close-circuited the charges in the interior remain, since the 
dark conductivity of the crystal is negligibly small. The sur- 
face charges, on the other hand, by flowing through the ex- 
ternal circuit, rearrange themselves in such a way as to 
equalize the potentials of the opposite surfaces of the sample. 
This gives a new field distribution which differs from the 
original distribution by an amount E, at every point in the 
sample. Thus the domains persist, with fields E, - E, and 
- E, - E, and with dimensions I ,  determined by formula 

(4). 
In the second case, when the initial field distribution is 

uniform, the surface charges are neutralized and the field in 
the sample vanishes. 

All of these conclusions of the phenomenological the- 
ory are in complete agreement with the experimental re- 
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s ~ l t s . ~ - ~  We note that the question of the number of domains 
and their dimensions has not been studied experimentally. 
The theory elaborated in the next section, which does not 
allow for inhomogeneity of the sample, predicts the exis- 
tence of only two domains (as shown in Fig. 2) or else a few 
domains, the precise number of which depends on the 
boundary conditions. However, the inhomogeneity that is 
actually present can lead to the formation of a large number 
of domains. All of our results remain valid in this case if I* 
is taken to mean the optical length of the domains with fields 
+ E, , respectively. 

3. STATIONARY DOMAIN STRUCTURE 

The complete system of equations describing the field 
distribution in the crystal includes Poisson's equation and 
the continuity equations for the charge carriers with 
allowance for the generation and recombination kinetics. 
However, nothing is currently known about either the pho- 
toconductivity mechanism in ruby or about the nature of the 
recombination. We shall therefore consider only a very sim- 
ple model in which it is assumed that there is only one type of 
mobile charge carrier during illumination (for definiteness, 
say electrons). In this case the complete system of equations 
is 

where n is the electron densi ty ,~ is the density of the immo- 
bile holes, y is a coefficient which determines the rate of 
recombination, no is the average steady-state electron den- 
sity, determined by the rate of generation, p is the electron 
mobility, and D is the electron diffusion coefficient. 

Under steady conditions np = ni  and the system re- 
duces to two equations (5) and (8) for the quantities E and n. 
Further simplification arises if the quasineutrality condition 
is satisfied: In'/ gn,, where n' = n - no. In this case n - 2n' 
and Eqs. (5) and (8) yield an equation which determines the 
feild distribution for a fixed current j: 

where a = en&. The boundary conditions on Eq. (9) are de- 
termined by the physical processes on the x = 0 and x = 1 
surfaces of the sample (at the contacts). The actual boundary 
conditions are unknown. However, as we shall see, these 
conditions are not very important if the sample is large 
enough. 

It follows from (9) that the characteristic scale of the 
spatial inhomogeneity of the field is of the order of magni- 
tude of the Debye radius r,. We shall assume that the dimen- 
sions of the sample are considerably larger than this (Isr,). 
To find the volt-ampere characteristic of the sample one 

must [after solving Eq. (9) for a fixed current jl evaluate the 
average field in the sample: 

I 

1 
F '0 - ---I ~ ( r ) d r .  

l o  

One thereby finds the function j(Eo). It is clear that 
j( - E,) = - j(E,), and therefore it suffices to consider the 
field distribution for j > 0. 

Equation (9) has the form of Newton's equation describ- 
ing the one-dimensional motion of a body under an external 
force if E and x are taken as the coordinate of the body and 
the time, respectively. Let us rewrite this equation in the 
form 

d2E/dx2=-dU/dE, (10) 

where U, which plays the role of a potential energy, is a 
function such that 

The function f (E ) in (1 1) is defined by Eq. (3) and is sketched 
in Fig. la. 

The functional form of U (E) implied by (1 1) is shown 
schematically in Fig. 3. For j <j, the function U (E ) has two 
maxima and one minimum, while for j > j ,  it has one maxi- 
mum. 

The possible trajectories for the motion of the body in 
the potential field U correspond to different electric-field 
distributions E (x) in the sample. The stay of the body in the 
equilibrium positions that correspond to the extrema of the 
function U (E ), corresponds to a uniform distribution of the 
electric field. 

A nonuniform field distribution corresponds to motion 
of the body from a certain initial point to a final point, with 
the sample length I playing the role of the total time of this 
motion. Since Isr,, an arbitrary motion will generally 
speaking correspond to an enormous value of the field [of the 
order of E,exp(l/r,] near one of the contacts. Therefore, 
under reasonable boundary conditions one should consider 
only motions for which the body either executes oscillations 
between two maxima of the function U (E ) or spends most of 
the time near them. Thus the following types of motion are 
possible: I-motion in which the body spends practically all 
the time near one of the maxima of U(E),  11-motion in 
which the body spends a long time near each of the two maxi- 
ma, with the greater part of the time near the larger maxi- 
mum, 111-the same as 11, but with the body spending the 
greater part of the time near the smaller maximum, IV-the 
body executes oscillations between the two maxima without 
getting too close to them. 

Type I corresponds to a practically uniform field in the 
sample. Such solutions are possible for E,, > E,. Types I1 and 
I11 describe a domain structure with domains which are 
large in comparison to the width of the domain wall. Such 
solutions exist only at very small values of the current j, in 
which case the heights of the two maxima of the function 
U (E ) are rather similar. In the type I1 field distribution the 
larger domains have the stronger fields, which are in the 
direction of the current, while in the type I11 distribution the 
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larger domains have the weaker fields, directed counter to 
the current. Type IV describes a structure having domains 
with dimensions of the order of r,. 

The stability of the various field distributions is consid- 
ered in Sec. 4, where it is shown that solutions with a large 
number of domains are always unstable. In particular, solu- 
tions of type IV are unstable. 

Let us consider the volt-ampere characteristics for the 
stable states. Uniform distributions of type I, as we men- 
tioned in the previous section, correspond to segment AB of 
the volt-ampere characteristic in Fig. lb. We shall now show 
that in the presence of domain structure the current is ex- 
ponentially small. Since the dimensions of the domains are 
large compared to the width of the domain wall, as a first 
approximation let us take one such wall in the sample, which 
we shall assume to be infinite. In the mechanics problem 
such a field distribution corresponds to motion beginning at 
x = - co in one of the maxima of U ( E )  and ending at 
x = + co in the other. Such a motion is obviously possible 
only if the heights of the two maxima are equal, i.e., for j  = 0 
(see Fig. 3a). Thus, for I/r,--tco the state with the domain 
structure corresponds to segment CD of the volt-ampere 
characteristic in Fig. lb. It can be shown that this conclusion 
remains valid when one abandons the quasineutrality ap- 
proximation used in this Section; in reality this approxima- 
tion is most likely invalid. 

For a real finite sample with a domain structure, one 
can show that the volt-ampere characteristic is given by 

j==t2ESf' (E , )  exp (-A) sh (AE,IE , ) ,  (12) 

where A = I /Nu) 1, N is the number of domain walls, 
a = (87if '(ES)/&D )- is a quantity which determines the 
width of the domain wall and is of the order of the Debye 
radius r,, and f '(E,) is the derivative off (E) at E = E,. For- 
mula (12) is valid fo r j4 , .  In addition, it was assumed in the 
derivation that the boundary conditions at the surfaces of 
the crystal are symmetric. In this case the number of do- 
mains is even, while N is odd. Structures of type I1 contain 
only two domains (N = 1). The + signs in (12) correspond 
to field distributions of types I1 and 111, respectively. 

In the region of applicability of formula (12), while 
E, - Eo)A -'E,, the current is exponentially small and the 
volt-ampere characteristics are very close to the straight line 
CD in Fig. lb. Outside this region the type I1 and type I11 
field distributions go over to practically uniform distribu- 
tions of type I. Therefore, the volt-ampere characteristics of 
types I1 and I11 approach segments DB and DA, respectively, 
as is shown in Fig. lb. 

Which of the two types of domain structure, I1 or 111, is 
actually realized depends on the boundary conditions on the 
surface of the sample. However, for 1 )r, the boundary con- 
ditions play only a minor role, and so, as we have shown, the 
field distributions and volt-ampere characteristics of these 
two types are practically indistinguishable. It is possible, in 
fact, that the domain structure is determined by inhomo- 
geneities in the sample. In that case, if the domains are large 
compared to the width of the domain wall, as is found in 
 experiment^,^-^ all of the above conclusions remain in force. 

4. STABILITY OF THE STEADY STATES 

At a given currentj through the sample the evolution of 
the field distribution is described by the equation 

which differs from (9) in that it contains a displacement cur- 
rent. Equation (13) is valid if the recombination time of the 
carriers is considerably shorter than the characteristic time 
for changes in the field. 

The stability of the steady states can be analyzed by the 
standard method used, for example, in the study of the do- 
main instability in semicond~ctors.~ Let E (x) be some stan- 
dard solution of Eq. (13). Writing a small correction to this 
field distribution in the form $(x)exp( -At ) and linearizing 
Eq. (13), we obtain the equation 

The steady state is stable if all the eigenvalues A determined 
from Eq. (14) are positive. 

If the voltage across the sample and not the current is 
given, then the stability problem also reduces to Eq. (14) but 
in this case one should consider only those fluctuations of the 
field which leave the voltage across the sample unchanged. 
In other words, the function $(x) should be subject to the 
condition 

I 

Let us first consider the case 1-+a. Then the steady 
field distributions are periodic. Equation (14) has the form of 
a Schrodinger equation for a particle in a periodic potential 
V ( x )  with minima at the locations of the domain walls. We 
note that the function $, = E '(x) is a solution of Eq. (14) with 
the eigenvalue A = 0. With increasing domain size the dis- 
tance between adjacent potential wells increases. In the 
limiting case, when this distance is infinitely large, the value 
A = 0 determines the ground state in a single well, since the 
corresponding eigenfunction 14, has no nodes in this case. 
For a finite distance between wells the ground state will obvi- 
ously be lower, i.e., eigenvalues A <O appear. Thus in the 
present case of an infinite sample, any domain structure is 
unstable on account of the interaction of the domain walls. 
An exception is a structure with a single domain wall, which 
is found in a state of neutral equilibrium (A = 0). 

In the real case of a finite sample the stability of the 
steady field distributions depends on the boundary condi- 
tions. It is clear, however, that a structure with a large num- 
ber of domains is still unstable, since the interactions 
between domain walls is more important than the influence 
of the sample boundaries. If, on the other hand, the sample 
has only a few domains, then the boundary conditions can 
stabilize such a structure. A structure with a single domain 
wall in a finite sample can be either stable or unstable de- 
pending on the boundary conditions. For example, in the 
case of the simple boundary conditions dE  /dx = 0 at x = 0 
and x = 1 one can show the following. In the case of a fixed 

11 95 Sov. Phys. JETP 60 (6), December 1984 M. I. D'yakonov and A. S. Furman 11 95 



FIG. 3. Schematic representation ofthe "potential energy" U(E ) at differ- 
ent values of the current j: a) j = 0, b) 0 <j  < j,, c)  j>j,. 

current any domain structure is unstable, and only homo- 
geneous states with E > E, are stable. In the case of a fixed 
voltage there is, in addition to these homogeneous states, a 
stable structure consisting of two domains with fields + E,. 
All structures having a greater number of domains are un- 
stable. 

The actual boundary conditions, as we have mentioned, 
are unknown. However, on the basis of the arguments pre- 
sented above it can be concluded that in any case only struc- 
tures with a small number of domains can be stable. 

The stability analysis in this Section does not allow for 
the presence of inhomogeneities in the crystal. In this case, 
wheq the size of the domain is much larger than the width of 
the domain wall (A) I), the growth increments of the fluctu- 
ations are extremely smal1:il -a exp( - A /2). Therefore, in- 
homogeneities actually present in the sample might stabilize 
structures having a large number of domains. 

5. ON THE NATURE OF THE BACKWARD PHOTOVOLTAIC 
CURRENT 

The photovoltaic effect arises in crystals lacking a cen- 
ter of inver~ion.~ In the presence of a center of inversion this 
effect cannot occur. However, in an electric field the center 
of inversion vanishes, and so a photovoltaic current should 
appear. (Here we are speaking, of course, not about the direct 
action of the electric field on the photoexcited charge carri- 
ers (the effect responsible for the photoconduction current), 
but about a photoexcitation asymmetry which gives rise to 
an average carrier velocity.) General principles admit any 
direction of the photovoltaic current, both with the field and 
against it. In fact, in ferroelectrics, where the photovoltaic 
current is due to an internal field, the direction of this cur- 
rent varies depending on the optical excitation conditions.* 

Let us discuss the possible mechanism for the appear- 
ance of photovoltaic current in crystals having a center of 
inversion in the presence of an electric field. First of all, the 
field directly affects the wave functions of the states between 
which the transitions that lead to photoionization occur. As 
a result, the probabilities for carriers to be excited with ve- 
locities directed with the field or counter to it are not the 
same. This effect is clearly proportional to the ratio of the 
applied field to the atomic field. In the case of photoioniza- 
tion of impurities occupying centrosymmetric positions in 
the crystal, this mechanism is the only one present. 

If a crystal having a center of inversion contains impuri- 
ties distributed uniformly over equivalent noncentrosymme- 
tric positions (such as the chromium ions in ruby crystals), 
there is also another mechanism, which derives from the fact 
that the levels of impurities occupying different positions are 
shifted differently in an electric field. If all the impurities 
occupied positions of only one type, then the crystal would in 
fact be a ferroelectric and would support a photovoltaic cur- 
rent. 

In the case of a uniform distribution of the impurities 
over all the positions the contributions to the photovoltaic 
current from impurities occupying positions which differ by 
inversion precisely cancel each other and there is no net cur- 
rent. In an electric field, however, positions which differ by 
inversion become nonequivalent, and so there is a preferen- 
tial photoionization of the impurities in one type of position. 
As a result, the compensation of the currents breaks down 
and a photovoltaic current appears in the crystal. The differ- 
ence in the photoionization probabilities for the impurities 
in different positions is due to the difference in the shifts of 
the energy levels in an electric field. 

For single-photon excitation such a selectivity can be 
particularly pronounced near the photoionization thresh- 
old. If the photoionization process has a two-photon charac- 
ter (as was assumed in Ref. l), then the difference in the 
populations of the intermediate excited states of the impuri- 
ties occupying different positions becomes an important 
consideration. This difference, in turn, can be due to two 
causes. One is the selective pumping of the excited state of 
the impurity in one type of position in the case when the first 
stage of the photoionization has a resonance character.'' The 
other possible cause involves the establishment of a Boltz- 
mann distribution between the excited states of the impuri- 
ties in different positions through a transfer of excitation. 

Let us consider in more detail the formation of a photo- 
voltaic current in an electric field for the case of two-photon 
excitation. If it is assumed as in Ref. 1, that the formation of 
mobile carriers in ruby occurs in two stages, the first of 
which is the population of the metastable *E level of chromi- 
um, then the photovoltaic current is proportional to the dif- 
ference in the populations of the chromium ions A * and B * 
(in positions A and B ) that have been excited to this state: 

where k is a proportionality coefficient. 
The balance equations for the populations of the excited 

states (under weak pumping) are of the form 
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where G, and G, are the rates of pumping of the 2E states of 
the chromium ion in positions A and B, respectively, T is the 
lifetime of the excited state, and W,, and W,, are the proba- 
bilities for excitation transfer from position A to position B 
and vice versa. 

The difference between GA and G, and between WA, 
and W,, is due to the nonequivalence of positions A and B in 
an electric field. The energies of the excited states of the ions 
in positions A and B differ by an amount of 2Ed, where + d 
are the dipole moments of the *Estates for the A and B ions. 
Here the ratio of the probabilities W,, and W,, is given by 
the Boltzmann factor: W,,/WA, = exp(2Ed /T),  where T 
is the temperature in energy units. 

The steady solution of Eqs. (16) is of the form 

A'-B'=JT* i 7 '  ( E )  +T th  (EdIT)  

T+T'(E) 
9 

where N* is the total concentration of excited chromium 
ions, gis a measure of the selectivity of the excitation, r*(E )is 
the characteristic excitation-transfer time, which depends 
on the chromium concentration, the temperature, and the 
size of the energy gap 2Ed. 

If the ratio r*/r is sufficently large, than the selectivity 
of the excitation is the most important factor. In small fields, 
{is clearly proportional to the field: 6 = CE. The photovol- 
taic current is directed counter to the field if the product of 
Ck of the coefficients is negative. 

If gr*/r(Ed /T, the population difference is governed 
by the tendency toward the establishment of a Boltzmann 
distribution. In thise case, assuming /Ed I(T, we can use 
Eqs. (16) and (17) to write the expression for the photovoltaic 
current as 

where we have introduced the critical temperature 

The photovoltaic current is directed counter to the field 
if kd < 0. 

If the ratio r*(E )/r increases substantially in the field 
interval where (Ed I <T, then the saturation field E is deter- 
mined by an equation which follows from the condition f (E ) 
= u E + J ( E ) = O :  

(T+ T* ( 0 )  ) / (T+T* (E,)  ) =T/T,. (19) 

In the opposite case, when the ratio T*(E )/T depends weakly 
on the field, Es is determined by the equation 

th y=(T/T,)y,  

where y = Esd /T,. 
The function E, ( T )  has the form characteristic for a sec- 

ond-order phase transition at T + Tc. The currently avail- 
able experimental data do not permit a definite conclusion as 
to the specific mechanism for the formation of the photocur- 
rent in ruby. For this reason it is not possible to do a quanti- 
tative calculation of Tc and E,. 

In conclusion we note that the phenomenological the- 
ory which we have elaborated here for the photoelectric do- 
main instability is in complete agreement with the experi- 
mental results. It can thus be considered firmly established 
that ruby supports a current directed counter to the electric 
field. However, the specific microscopic mechanism which 
gives rise to this current is still unknown. 

The spontaneous vanishing of the center of inversion in 
the crystal, the presence of negative resistance in zero field, 
and the resulting instability which leads to the formation of a 
static domain structure in the absence of electric field are 
new effects which merit further study. 

We wish to thank S. A. Basun, A. A. Kaplyanskii, and 
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''In this paper the term photovoltaic current is used everywhere to mean 
the current due to the absence of a center of inversion in a crystal (the 
current which leads to an anomalous photovoltage in ferroelectrics2), as 
distinct from the currents which arise in the Dember or drag effects. 
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