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Analytic methods based on the cluster approximation are proposed for calculating the thermody- 
namic properties and phase diagrams of hydrogen (H) in transition metals (Me). These methods 
differ from the mean-field approximation in that they can quantitatively incorporate the blocking 
and strong oscillatory interactions which are typical of hydrogen in transition metals. Calcula- 
tions are carried out on the stress-induced and screened Coulomb H-H interactions for the NbH, 
and PdH, systems. The calculations show, in particular, that the blocking seems to be due to an 
anharmonicity of the stress-induced interactions at short distances between the protons. These 
new methods are used for calculations on gas-liquid phase transitions of hydrogen in NbH, and 
PdH, . The results indicate that a nonbinary repulsion of protons is important whenx is not small. 

1. INTRODUCTION 

The properties and phase transitions of hydrogen (H) in 
transition metals (Me) have attracted considerable interest 
(see Refs. 1-3, for example) because of the promising appli- 
cations of Me-H systems. These systems are also of general 
physical interest since they rank among the closest realiza- 
tions of the lattice-gas model which is widely discussed in 
statistical p h y s i ~ s . ~ . ~  One of the most urgent problems in the 
physics of H in Me is to determine the nature of the proton- 
proton interactions, V H H  . These questions are ofboth funda- 
mental and practical interest, e.g., in connection with the 
problems of the limiting solubility of H in Me. In bcc transi- 
tion metals, for example, one observes that a proton will 
block the neighboring interstitial positions in the first few 
coordination spheres (it will prevent other protons from as- 
suming positions there); the nature of this blocking is not 
clear and is the subject of some debate.'*6 

The temperature-concentration (T-x) phase diagrams 
of H in Me are usually extremely complicated and show sev- 
eral phase transitions, both gas-liquid transitions and transi- 
tions to ordered structures of H in Me (Refs. 1,2,7, and 8). 
Experimental information on these phase transitions might 
yield much information about the H-H interactions. Theor- 
etically, on the other hand, it is difficult to study these phase 
transitions, because it is necessary to consider the strong 
correlations in the positions of the H (including the blocking 
effect) and the rapidly oscillatory behavior of V H H  as a func- 
tion of the distances R ,, which seem to be characteristic of 
H in Me (Refs. 6 and 9-1 1). For example, the standard mean- 
field approximation, which ignores these effects, overesti- 
mates the temperatures and concentrations (T, and x , )  at 
which the phase transitions occur for H in bcc metals by 
nearly an order of magnitude (See Ref. 12 and the discussion 
below). So far, the only quantitative estimates of T, ( x )  which 
have been found for H in Me (in simplified interaction mod- 
els) have been found by Monte Carlo  method^.^.^-" These 
methods, however, require a great deal of computer time, are 
afflicted by errors which are difficult to estimate, and are 
poorly suited for (among other questions) extensive studies 
of the sensitivity of the results to variations in the models. 

In the present paper we propose some analytic methods 
based on the cluster appro~imation'~- '~ for calculating the 
statistical properties of H in Me. The cluster approximation 
can deal adequately with these strong correlations and oscil- 
latory interactions. It has proved successful in describing 
several structural phase transitions, in particular, in crystals 
with H bonds, which are also characterized by strong corre- 
lations in the positions of neighboring protons (the "ice 
rule").'* For simple models this method is equivalent to the 
Bethe-Peierls and quasichemical  approximation^,^ but in the 
form in which it was used in Refs. 13-15 it can also be gener- 
alized easily to the cases of strong alternating-sign and long- 
range forces, nonbinary interactions, complicated real lat- 
tices, etc. The accuracy of the method improves as the 
short-range "intracluster" correlations become stronger. 
The results found by this method for systems with the ice 
rule, for example, ususally either coincide with the exact 
results or are extremely close to them.15 In Secs. 2, 3, and 5 
below we show that this approximation is also highly accu- 
rate for realistic models of H in Me and can be used for 
quantitative estimates of the properties of H in Me in a wide 
variety of models. 

In Sec. 4 we also discuss the available models for the 
interactions of H in Me. The total interaction V H H  in these 
systems is by convention treated as the sum of a stress-in- 
duced term Vsi and a screened Coulomb ("electronic") inter- 
action V, (Refs. 6,9, and 10). The component Vsi is calculat- 
ed from data on the phonon spectra and the concentration 
dependence of spontaneous strains in h y d r i d e ~ . ~ , ~ . ' ~  How- 
ever, the applicability of the approximations which have 
been used here (ignoring anharmonic and nonbinary forces, 
considering the Me-H interactions in only one or two co- 
ordination spheres, etc.) is not completely clear and is in 

The V, interaction has been calculated in the 
models of linear9 and nonlinear ~creening,"~'~ and the re- 
sults show a large scatter. We have carried out detailed cal- 
culations of V, (R ) in a linear-screening model, using a var- 
iety of (the most reliable) approximations for the dielectric 
function ~ ( q ) ,  and also varying the effective density of the 
screening electrons over a broad range. By comparing the 
results with calculations for a nonlinearly screened V, (Ref. 
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18) and with estimates of the band structure of Me-H sys- 
tems19 we can draw several conclusions about the nature of 
V,. We will show in particular that, in contradiction of the 
suggestions in Refs. 6 and 10, the V, (R ) component could 
hardly explain the observed blocking effect. The blocking is 
more probably due to a pronounced stress-induced anhar- 
monicity at small values ofR = R ,, and the inapplicability 
in this case of the ordinary harmonic approximation for Vsi . 
We will also show that the component V, is apparently con- 
siderably less important than Vsi in bcc hydrides of the 
NbH, type, while in fcc hydrides of the PdH, type the V, 
and Vs, components are comparable; in this latter case the 
total interaction V,, is far less sensitive to the form of V, 
than in the bcc hydrides. 

In Sec. 5 we use these new methods to describe a gas- 
liquid phase transition for H in the best-studied .systems, 
NbH, and PdH, . Comparing the results with experiment, 
we draw several conclusions regarding the roles played by 
various factors in the thermodynamics of H in Me. In parti- 
cular, we find indications that nonbinary or concentration- 
dependent forces between protons are important at x 2 0.3- 
0.5. In the Conclusion we discuss the basic results and some 
further applications of these new methods. 

2. USE OF THE CLUSTER APPROXIMATION IN DESCRIBING 
HYDROGEN IN METALS 

We will be discussing only the "configurational" con- 
tributions to the thermodynamics of H in Me-those which 
depend on the mutual positions of the protons and stem from 
the H-H interaction. Other contributions, stemming from 
changes in the band structure, phonon contributions, etc., 
have been discussed elsewhere (see, for example, Refs. 8, 16, 
or 2, Vol. 2, Ch. 3). We use the model of a lattice g a ~ , ~ * ' - ' ~  
assuming that the protons occupy positions (pores) of only 
one type in the lattice, e.g., tetrahedral positions as in NbH, 
or octahedral positions as in PdH, (Ref. 2). The Hamilton- 
ian of the grand canonical distribution, H' = H - pN, can 
then be written 

(1) 
The operator A, here, which has the value of 0 or 1, describes 
the filling of pore i by a proton; p =pH is the effective 

chemical potential of hydrogen; and the terms with U, and 
U, correspond to a possible contribution of many-particle 
interactions. The average filling of a pore, (A, ) = c, in the 
hydride MeH, (in the absence of an ordering of protons) is 
proportional to the concentration x. For a tetrapore in a bcc 
hydride, for example (Fig. l), we would have c = x/6, while 
for an octopore in an fcc hydride we would have c = x. The 
thermodynamic potential per pore, 0, and its relation with c 
are 

where N, is the total number of pores in the lattice, p = 1/T, 
and the Sp means the sum over all sets of values ( n, ) . We will 
express 0 andp as functions of c and T. These configuration- 
al contributions to the entropy (s,) and the enthalphy (h ,) 
per proton are then given by 

In the case of a gas-liquid phase equilibrium, given val- 
ues of 0 andp correspond to two concentrations, c, and c,, 
determined by 

Q ( G ,  T ) = Q ( c z ,  T), p ( c i ,  T ) = p ! c z ,  T ) .  (4) 

The equation for the spinodal (the curve describing the 
loss of stability with respect to stratification), T, (c), is of the 
form dp/dc = 0, and the position of the critical point (T, , c, ) 
is determined from the system of equations2' 

ap/ac=o, azp/dc2=o. ( 5 )  

As we will be discussing below, the many constants Vi,. 
in (1) are not small in comparison with Tnear a phase transi- 
tion of H in Me. For example, the blocking in the first three 
coordination spheres of H in a bcc metal implies the relation 
V,,:,.)T here. We know that the mean-field approximation 
breaks down here, but the cluster approximation proves ex- 
tremely good.13-15 In this method, groups of several pores, 
i.e., clusters, are chosen in the lattice, and the thermodynam- 
ic average of (1) per pore is written as 

Here H ;  is the Hamiltonian of the k th cluster, and the A, 

FIG. 1. Tetrahedral interstitial positions (pores) in a bcc metal. 
Small circles-Pores; large circles-metal atoms; light (dashed) 
lines-V, bonds, shown for clarity. 
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are numerical constants determined by the lattice geometry 
and the particular choice of clusters. Here we have the fol- 
lowing normalization condition on E' per pore: 

where v, is the number of pores in the k th cluster. 
In the cluster Hamiltonian H ;, the interactions within 

a cluster are described exactly, i.e., just as they are in the 
original Hamiltonian (I), while the interaction with the sur- 
roundings is described approximately by means of variation- 
al parameters: the effective fields $!?. For binary interactions 
[i.e., for U3 = U4 = 0 in (I)], for example, the cluster Hamil- 
tonian H i  and its density matrixp, are approximated by 

.. 
pk=exP @%-pH,'), P%=-lnZh=-ln Sp exp (-pH,') .  (8b) 

Certain relations among the values of $f in different 
clusters, which make it possible to cancel out terms with 
in sum (6), are established from physical considerations re- 
garding the additivity of the contributions to the field &' at 
the ith pore from the various pores of the surroundings, i.e., 
from the various "bonds" in the lattice or from groups of 
such bonds (see Refs. 13-15 and the discussion below). The 
values of $!I in each of the clusters are determined from 
matching conditions: the equality of all the averages (iii ) of 
the concentration c, 

where Y f )  = exppp -p$f)) is the "activity" of a pore, 
which appears in the expression for Z,  . 

Integrating the equation E' = d (B0 )/dB, we find from 
(6)-(9) 

Matching conditions (9) along with the relationships 
between the fields in different clusters are equivalent to 
the conditions minimizing expression (10) with respect to a 
variation of $!I: d 0  /$$ = 0. 

An expression for p corresponding to (10) can be de- 
rived from the thermodynamic relation 

Substituting (10) in here, and integrating over c, using (9), we 
find 

where Yk is the geometric mean of the values of Y!? in a 
cluster. For "symmetric" clusters, in which all the pores are 
geometrically equivalent, the values of Y do not depend on 
i, and the sign indicating the average can be omitted from 7, 
in (12). 

As the cluster size vk increases, the accuracy of this 

method obviously improves, but the calculations become 
more complicated. In practice, the clusters are chosen in 
such a manner that they include as many as possible of the 
bonds corresponding to the strongest interactions (see Refs. 
13-15 and the discussion below). 

To illustrate the method we first consider the simple 
example of binary clusters, setting U, = U4 = 0 in (1). We 
denote by Vr the interaction Vi,. in (I)  for the rth coordina- 
tion sphere, and we number a cluster of two pores connected 
by this "bond" by the index k = (2, r). Relations (6) and (8a) 
then become 

m 

Here m, is the coordination number in the rth sphere, pr 
represents the field acting on a given pore along the rth bond, 
and $, is the total field at one pore. Introducing 
y1 = exp (Bp - B$,), yz, = y, exp ppr ), we find the follow- 
ing expressions for 0, and 0 ,  ., using (8a): 

pQi=-ln(l+yl) , ~ ~ ~ , , = - l n [ 1 + 2 ~ , , , + ~ ~ ,  e x p ( - b v , )  1. 

Finally, from (10) and (12) we find 
(14) 

m m 

Here a , ,  p, and fi z , r ,  ji,, . , are given by the following ex- 
pressions, where we are using (9) and (12)-(14): 

wheref, = exp ( - PVr ) - 1. We see that the interaction ef- 
fects are described by a Mayer function5 here instead of by 
the parameter BVr, which would be characteristic of the 
mean-field approximation. For the values ofpVr under con- 
sideration here (i.e., values which are not small), this circum- 
stance makes the description much more accurate than the 
mean-field approximation, while at small values of BVr ex- 
pressions ( 15) and ( 16) become the expressions of the mean- 
field approximation. 

To take into account the nonbinary, many-particle, cor- 
relations, we should consider clusters of large numbers of 
pores, v > 2 (which we will call "v-clusters"). We will illus- 
trate the approach for the example of 3-clusters. In Hamil- 
tonian ( I )  we also consider three-particle interactions U3, but 
to simplify the equations we assume U4 = 0, as above. 

Expression (6) takes the form E' = E; +, + E;, where 
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E ;  + is given by the right side of (13a), and E; is given by 

Here H is H ,, , from (1 3b) with V, = V,, , and the Hamil- 
tonian (H gk) of the 3-cluster of pores i, j, k differs from (8a) 
with vk = 3 only in the addition of a term with the ternary 
interaction U gkA, A ,  A k  . The relationships among the fields 
$!I, $!I, and $, analogous to (13c) are 

where the p,, are equal to 9, from (13c) for V, = K,, and 
x ',k describes the nonbinary nature of the effect of pores j 
and k on pore i. The partition function of the 3-cluster, Z,, is 

where 

and the quantities YI ,  = Y are found from the nonlinear 
system of equations (9). 

As a result we replace (15) by 

Here the contributions of the ternary correlations are 

where fi; and p; mean fi2,, and P,,, from (16) with 
v, = vg . 

The higher-order correlations can be taken into account 
by examining v-clusters with v >  3. This must be done in 
describing strong interactions with P I K, I > 1 (e.g., block- 
ing), as we will see in Secs. 3 and 5. On the other hand, at 
p I Vi,. I 5 1 even the binary-cluster approximation turns out 
to be sufficiently accurate (Sec. 5). 

3. BLOCKING MODEL WITH A WEAK [VAN DER WAALS] 
INTERACTION 

To illustrate the influence of blocking effects on the 
thermodynamic properties of H in Me and to describe these 
effects in the cluster method, we consider a simplified model 
of a bcc hydride in this section. We assume that all the inter- 
actions beyond the blocking radius R, are weak: c, U,, 
U41<T. If these conditions are assumed to hold up to the 
critical temperature Tc ,  then this model becomes an exact 
"lattice analog" of the van der Waals model of a nonideal 
gasZo (this case was called the "high-temperature limit" in 
Ref. 6). The model also describes an a-a' phase transition of 
the gas-liquid type. By comparing the phase diagrams calcu- 
lated in various versions of the cluster method with each 

other and with Monte Carlo  calculation^,^ we can evaluate 
the accuracy of the methods. 

As we mentioned above, the cluster method is equiva- 
lent to the mean-field approximation in the description of 
weak interactions with IPV 14 1. In accordance with this ap- 
proximation, in all the terms in (1) which are nonlinear in A,, 
except the terms with the blocking interactions Vi,. = Vi, we 
write A, as c + 2,, where A, = A i  - c, and we ignore the in- 
teraction of the fluctuations-terms of second and higher 
order in A, . Hamiltonian (1) becomes 

where 

In model (22) with Vg > T, the thermodynamic poten- 
tials fl and p are evidently 

Q = T f b  (c) +!A, p=Tg6 (c) +w. (24) 

Here the functions fb (c) and gb (c) [which are related by (1 1): 
f; = .- cg;] correspond to a model with only blocking in- 
teractlons, which would naturally be called the "lattice 
hard-sphere model" by analogy with the models of nonideal 
gases.6 

The functions fb (c) and g, (c) depend on only the block- 
ing geometry in the lattice and can be calculated approxi- 
mately by using clusters of various types. Corresponding cal- 
culations are described in the Appendix for crystals of the 
NbH, type; their application in calculating the phase dia- 
gram for van der Waals model (22) (with y <O and 
y, = y4 = 0) is illustrated by Fig. 2 and Table I. Table I lists 
the critical concentrations and temperatures, x, and Tc , for 
the gas-liquid phase transition, along with the concentra- 
tions corresponding to the densest random packing (of pro- 
tons), x,,, . For the ordinary hard-sphere model this con- 

FIG. 2. T,(x) phase diagrams for van der Walls model (22) of hydrides of 
the NbH, type in various approximations. Dot-dashed line-Mean-field 
approximation; curves a-g+luster approximations a-g in Table IV; 
dashed line--Monte Carlo  calculation^.^ 
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TABLE I. Values of the parameters x, , T, , and x,,, for van der Waals model (22) of hydrides of 
the NbH, type in various approximations 

cept was introduced by Bernalzl; the corresponding value of 
the packing parameter (the ratio of the volume of a sphere to 
the average atomic volume) is vDRp = 0.64 [by way of com- 
parison, the equilibrium crystallization of a hard-sphere 
(HS) system occurs atZZ 7 = 0.49, while for the densest crys- 
tal packing we would have vHS = ~J2/6 = 0.741. In the lat- 
tice model under consideration here, (22), (24), we find the 
value of xDRp from the vanishing of the entropy in (3): 
sH = - f, /c - g, = 0. The quantity xDRP evidently deter- 
mines the maximum possible value of x at which H can still 
be in the disordered phase of a "lattice liquid" in the given 
structure: At x > xDRP , only ordered structures of H are pos- 
sible in Me. Correspondingly, the equilibrium curves 
Te (x) = Taa, in Fig. 2 are drawn only up to x = xDRp . 

From Table I and Fig. 2 we see that (first) the simple 
mean-field approximation overestimates the values of x,, 
T,, and xDRp in this system by an order of magnitude; i.e., 
this approximation is of no use for anything in the way of a 
quantitative estimate. Second, we see that the refinement of 
the description represented by increasing the clusters or 
choosing a more appropriate partitioning in the clusters 
leads to decreases in the calculated values of x,, T,, and 
xDRP , apparently because of the more accurate description 
of the "excluded-volume" effects and the growth of the ef- 
fective size of each proton in the lattice. Third, we see that 
the partitioning into clusters of type g which is described in 
the Appendix is generally the most natural of the partition 
procedures considered, since each of the Me atoms is the 
center of a regular 24-cluster, while the clusters of smaller 
size are added (or subtracted) only to satisfy (6). We see from 
Table I and Fig. 2 that for this partitioning the results on x, , 
T, , and T, (x) [and also on the functions f, (c) and g, (c)] at 
x 3: 0.7 are essentially the same as those found by the Monte 
Carlo calc~lations.~ At larger values ofx the functions f, (c), 
g, (c), and T, (x) begin to diverge slightly from those calculat- 
ed by an interpolation of the Monte Carlo calculations of 
Ref. 6, apparently because this interpolation becomes less 
accurate at large values of x, as mentioned in Ref. 6. 

Nevertheless, on the whole Table I and Fig. 2 show that 
even for the extremely simple clusters of types c, d, and, 
especially,f, the accuracy of the results is quite high. Ac- 
cordingly, in the discussion below of some models for hy- 
drides which are more realistic than the van der Waals mod- 

Number of pores in *pproximtion ithe clusters 1 xi 1 T c / y  1 x ~ ~ p  

el we will for simplicity describe the influence of the blocking 
interactions by means of 5-clusters of type d.  

MFA 
a 
b 
c 
d 
e 
f 
&! 

Monte Carlo6 

4. ESTIMATES FOR THE H-H INTERACTIONS IN Nb AND Pd 

As we mentioned in the Introduction, theVHH interac- 
tions in Me are assumed by convention to consist of stress- 
induced and screened Coulomb components Vsi and Ve . We 
will discuss these components for the particular cases of the 
NbH, and PdH, systems, which have received the most 
study. We wish to determine the nature and the relative roles 
of the Vsi and Ve components in bcc and fcc hydrides. We 
will use the results to calculate thermodynamic properties in 
Sec. 5. 

In finding Vsi we will for simplicity consider only the 
incoherent states of the ~ r y s t a l , ~ . ~  and we will use the ordi- 
nary equations of the harmonic approximation [see, e.g., 
(2.9) in Ref. 6 or (38.20) in Ref. 231, assuming a linearity and a 
superposition of the displacements of the Me atoms induced 
by the various protons. In the calculations for Nb, we use the 
same lattice constants and the same dipole-elastic tensor as 
in Ref. 6, while for the phonon spectra w(k) we use the data of 
Ref. 24. The values found for Vsi (R) are shown in Table 11. In 
this table, R is measured from pore 7 in Fig. 1; m, is the 
coordination number in the rth coordination sphere; and 
y = y,-, is the constant of the mean-field approximation 
from (23b) (with a summation over Rq > R,, i.e., over r>4), 
which characterizes the "average" interaction. The values of 
Vsi in Table I1 differ from those found in Refs. 6 and 10 
[where older dataz5 on w(k) were used] by 10-1 5% but exhib- 
it the same qualitative behavior. 

It can be seen from this table that the values of VSi (R) 
vary rapidly as the magnitude and direction of R change; as 
we go from r = 10a to r = lob, for example, the weak attrac- 
tion gives way to a strong repulsion. This behavior is deter- 
mined primarily by geometric factors. In this model, in 
which the H-Me interaction is taken into account in only 
two coordination spheres, the proton is primarily a dilata- 
tion center, and it repels the neighboring Me atoms. Accord- 
ingly, if two protons are present on different sides of the 
same Me atom, the interaction Vsi between these protons 
will be strongly repulsive, as at r = lob (between pores 7 and 
14 in Fig. 1). If, on the other hand, the Me atoms lie beside 
the bond (as for r = 1, 2, 3 or r = 10a, for example; i.e., for 
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2, 1 
4, 2, 1 
4, 4, 2, 1 
5, 2, 1 
24, 2, 1 
8, 3 
24, 6, 2, 1 
384 
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3 

0,682 
0,553 
0,455 
0,452 
0,417 
0,383 
0,370 
0,366 

0,25 

0,0329 
0,0301 
0,0269 
0,0272 
0,0254 
0,0245 
0,0236 
0,0237 

6 

1,46 
1,34 
1,21 
1,18 
1,16 
1708 
1,075 
1,09 



the bond between pores 7 and 9' in Fig. I), then the tendency 
of the lattice of Me atoms to maintain a constant average 
density gives rise to compressional forces along the bond, 
i.e., an effective H-H attraction. In the harmonic approxi- 
mation used here, the displacements of the Me atoms in- 
duced by each proton add up in a linear manner; i.e., the 
anharmonicity effects which limit these displacements are 
ignored. As a result, for small R (in particular, for r = 1, 2, 
3), the calculated attractive forces turn out to be very large. 

We turn now to the Ve (R) interaction. In their study of 
phase transitions in NbH, , Horner and Wagner6 and Futran 
et al. lo assumed that Ve gives rise to the observed blocking at 
r = 1,2, and 3 and is small at r>4, but they did not calculate 
V,. We have carried out such calculations, in the approxi- 
mation of a linear screening [see, for example, Eq. (1) in Ref. 
261, which ignores the inhomogeneity of the electron density 
in the metal and also terms of higher order in the e-H inter- 
action. Nevertheless, this approximation can be used for a 
qualitative discussion. We used various approximations for 
the dielectric function ~ ( q )  (Refs. 26-29), and we varied the 
number of screening electrons (z,) at the Me atom. The last 
column in Table I1 also shows the results calculated for Ve 
with a nonlinear screening (taking from Fig. 1 in Ref. 18), 
i.e., without the use of a perturbation theory in the e-H inter- 
action. For a homogeneous electron gas, these results should 
be regarded as more accurate than those found in the ap- 
proximation of linear screening, but in a metal the presence 
of the strong e-Me bond should reduce the polarizability of 
the electrons caused by an impurity proton, and models with 
linear ~ ( q )  may also have realistic features. 

From the results of these calculations of Ve , illustrated 
in Table 11, we can draw several conclusions. 

1. When the harmonic approximation, (26), is used for 
Vsi , it is not possible to describe the observed blocking effect 
with any realistic V,; i.e., it is not possible to derive values 
(Vsi + V,),)T, ~ 4 5 0 K w i t h r =  1,2, 3inTableII.Anon- 
linear screening1' for all ze 2 1 leads to a repulsion even 
weaker than that found with linear screening. The band cal- 

TABLE 11. Estimates for H-H interactions in Nb 

culations of Ref. 19 also indicate that the screening of H in 
Me is important. It can thus be assumed that the blocking is 
due to a pronounced anharmonicity of the stress-induced 
interactions at small values of R and the inapplicability of 
the general expressions for Vsi from Refs. 6 and 23 in this 
case. Qualitative confirmation of this assumption comes 
from the circumstance that the displacements of the Me 
atoms with respect to the H in NbH, are not small, even 
around a single proton: SR ,,, ~ 0 . 1  A (Ref. 30). For two 
neighboring protons, the superposition of such displace- 
ments would give us SR ,,, /R ,,, 2 0.1, which probably 
exceeds the applicability limit of the harmonic approxima- 
tion in Nb. Consequently, in the statistical calculations in 
Sec. 5 we use V(R) from Table I1 only for r>4; for r = 1,2,3, 
we assume there is a blocking. 

2. For realistic interactions Ve (e.g., for the GT approxi- 
mation'' or the VS approximation2' of& withz, = 3-4 or for 
the nonlinear E in Table 11) we usually have I VSi I > I V, I. For 
quantitative calculations, however, V, must be taken into 
account. 

3. The interactions V,, (R) = Vsi + Ve are oscillatory 
and not small in comparison with T, up to r = lob, and they 
fall off rather slowly with increasing R at large R. 

In Table I11 we show the results calculated for V,, (R) 
for Pd. We took the values of Vsi for this metal from the 
calculations of Ref. 9, while the linear screening V, was 
found in the same way as above, by varying z, from 1 to 9. 
The nonlinearly screened interactions ( V, ),,, are given in 
Ref. 18 only f o r ~ 5 ~ ,  =2.8&  here(^,),, 5 2 0 K .  

It can be seen from Table I11 that the maximum values 
of I Vsi I in the fcc hydrides are much smaller than in the bcc 
hydrides (because the pore density per Me atom is lower by a 
factor of six), and at all values of R we have 
I V,, (R ) / 5 T, =: 565 K. In this connection, the simplemean- 
field approximation turns out to be generally applicable for 
evaluating statistical properties here, although in quantita- 
tive calculations the substantial and oscillating potentials Vr 
in the first three spheres require more accurate methods, 

T 
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TABLE 111. Estimates for H-H interactions in Pd 

e.g., cluster methods. It can also be seen that although ( Vsi I accurately by using the 8-clusters described in Sec. f of the 
is usually greater than I V, I, as in Nb, the "average" interac- Appendix (Fig. 2 and Table I). This refinement is easy to 
tions ysi and ye are comparable. The thermodynamic prop- make in more detailed, quantitative calculations. Here, on 
erties here are thus much more sensitive to the form of V, the other hand, we will be discussing qualitative questions 
than in bcc hydrides. for the most part, and we will use simple expressions (26) for 

5. CALCULATIONS OF GAS-LIQUID PHASE DIAGRAMS IN 
NbH, AND PdH, 

In this section we use the methods of Sec. 2 and 3 to 
describe incoherent6,' gas-liquid phase transitions in NbH, 
and PdH, , using the estimates of the interactions VHH from 
Sec. 4. We will show that even for models of the hydrides 
more realistic than the van der Waals model (Sec. 3) the clus- 
ter approximation yields accurate calculations of the statisti- 
cal properties. A comparison of the calculated results with 
experimental data also leads to certain qualitative conclu- 
sions about the interactions of H in Me, in particular, the 
conclusion that there are significant nonbinary or concen- 
tration-dependent forces among protons. 

As we noted earlier, in PdH, the interactions VHH in 
Table I11 are not comparable to T,, and the very simple 
approximations of 2- and 3-clusters [(I 5) and (20)] seem to be 
sufficient for describing this system. In NbH,, however, 
many of the interactions VHH (R ) exceed Tc , and, in accor- 
dance with the discussion in Secs. 2 and 3, the expressions for 
D andp in this case are written as the sums of contributions 
from short-range (in particular, blocking) interactions R,, 
ps and from the interactions of more remote neighbors, R,, 
PI :  

Q=Q,+Q,, p=p,+pr. (25) 

For R, we use the approximation of 5-clusters (see Sec. d in 
the Appendix) containing only blocking interactions. From 
Table IV in the Appendix we have 

The Ds contribution can be taken into account more 

R, and p, . 
The contributions of nonblocking interactions 0, are 

described in three approximations: A ) the approximation of 
binary clusters [with a summation over r)4 in (15)l; B )  the 
approximation of 2- and 3-clusters [with a summation in (20) 
over clusters of pores i, j, k with RV,  Rjk , Rki > R,]; and C ) 
the approximation in which the contributions of Vr with 
r = 4,6,8b, and lob are described by means of 8-clusters of 
pores 1, 3, 7,9 ,  1 1, 12, 13, 14 and Cclusters of pores 1, 3, 7, 
and 9 in Fig. 1 (called "8c-clusters" and "4c-clusters" be- 
low), while binary clusters (16) are used for the other values 
r>5. 

Approximation C was chosen because these interac- 
tions Vr are large according to the estimates in Table 11; for 
example, V,,, I V41 2 2Tc. It is thus interesting to compare 
the results found in a description of these contributions to 
the thermodynamics in the approximation of binary clus- 
ters, (16), and of 8c-clusters and &-clusters, which apparent- 
ly take into account the most important of the nonbinary 
correlations. The expressions for Dl and pl in approxima- 
tion C are 

Here the prime means that the sum does not contain terms 
with r = 6, 8b, and 106. The expressions for and j i ,  are 
the same as in (16). The partition functions for the clusters, 
2 8 ,  bBc, T )  and Z4, b4,, T 1, are given by 

Z,, (y, T) =1+8y+4y2 (2er+ 2e6+e,f e,,) + 8yS (eL2e8 
+2e,e6e,,+e,2e8) +2y4 (e44e82+4er2e,2e8e,o+2e42e,2e,,2+e,2e,04), 

(28) 
Z4,(y, T) =1+4y+2y2(e,+e6), 
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where 

e~=exp  (-fit',), e6=exp (-five), e,=exp (-pVsb), 

and y,, = y(c, T )  and y,, = J(c, t ) are found from Eqs. (9): 

Phase-equilibrium curves T = T, (x) are found from 
Eqs. (4). The sums over r in (15) and (27) are calculated from 
(16) up to a final r = r, , and the remainder, 0, or p,, is 
replaced by the expression from the mean-field approxima- 
tion in accordance with the comment following Eqs. (16): 

m 

In the calculations for NbH, we set r, = 16, and in 
those for PdH, we set r,,, = 10. In the calculations of the 3- 
cluster contribution, (21), on the other hand, the sums over i, 
j, and k in (20) extend up tor, ',' = 4Rm /af i  = 12 in NbH, , 
while those in PdH, extend up to rm'3' = 2 ~ , a / f i  = 2, 
where R, = max(RU, R jk, Rki ), and a is the lattice constant; 
the remainder is discarded. 

Figure 3 compares the results calculated on T, (x) for 
NbH, in the various approximations for 0, [we use expres- 
sions (26) for a , ,  while for the constants VHH (R ) we use the 
values Vsi (R ) from Ref. 61 with the results of Monte Carlo 
 calculation^,^ which used a finite grid of N, = 384 pores and 
periodic boundary conditions (the presence of large long- 
range forces can slow the convergence of the results of the 
simulation at a finite Np to the statistical limit Np -+ oc, ; these 
questions were not discussed in Ref. 6). Comparison of 
curves A, B, and C shows that the approximation of binary 
clusters gives a sufficiently accurate description of the 0, 
contributions, and the incorporation of multiparticle corre- 
lations results in comparatively small corrections. We also 
see that the results of all the cluster approximations agree 
quite well with the Monte Carlo  result^.^ In contrast, the 
description of f2, in the mean-field approximation, i.e., the 
description by means of Eqs. (22)-(24) with y, = y, = 0 

FIG. 3. T, (x) phase diagrams calculated for NbH, with V,, (R) = V,, (R) 
from Ref. 6.  Dashed l ineMonte  Carlo calculations: Lines A, B, C, and D 
correspond to the use of expressionz6 for 0,, while approximations A, B, C 
(see the text proper), and the mean-field approximation are used for 0,. 

FIG. 4. T, (x) phase diagrams calculated for NbH, with V,, = VSi + V, 
from Table 11, with the GT approximation of ~ ( q ) ,  and withz6 for 0,. The 
curves correspond to the following values ofz, and the following approxi- 
mations for 0, : 1-z, = 3, A; 2-2, = 4, A; 3-2, = 4, C; &z, = 4, C to 
which a 3- and 4-particle repulsion is added {see the text proper). The 
points are experimental.' 

(curve D ), underestimate Te (x) greatly in comparison with 
the cluster approximations. The reason is that for the values 
of PV, under consideration here which are not small, the 
replacement (Sec. 2) of expressions of the type exp( - PV,) 
by their expansion 1 - PV, in the mean-field approximation 
results in a large error. 

In the calculations shown in Fig. 4 we used the more 
realistic interactions VHH = Vsi + Ve with Vsi and Ve from 
Table 11. For Ve we used the linear-screening approximation 
(27) with the GT approximation of ~ ( q ) .  Comparison of 
curves 1 and 2 shows that a variation of the density of screen- 
ing electrons (the switch from ze = 3 to z, = 4) for NbH, 
does not have a great effect on the results, because of the 
relatively large values of Vsi. We also see that the "average 
interaction" y in the last row of Table I1 falls far short of 
giving a complete characterization of the interaction (as in 
the mean-field approximation). For z, = 3, for example, the 
average attraction ( - y) is larger, but the values of Te (x) are 
smaller, than for ze = 4. Incorporating the many-particle 
correlations in the approximation of 8c- and 4c-clusters 
changes the results to a greater extent than in Fig. 3, but on 
the whole the changes are still not great. 

Above we discussed some methodological questions in- 
volving the accuracy of the calculations with the particular 
interaction models chosen. If we now compare the calcula- 
tions with experiment (Fig. 4) we see that at values x Sx,  
(not very large) these models give a fairly good description of 
the observed behavior T, (x). At larger values of x, however, 
the theoretical values of Te in Figs. 3 and 4 fall off more 
slowly with x than do the experimental values. This discrep- 
ancy was also noted by Horner and Wagner,6 who suggested 
that it might be due to theV, (R ) interactions which they ig- 
nored. We have carried out detailed calculations of T, (x) for 
NbH, , varying Ve over a very broad range, using both the 
approximation of linear screening for a wide variety of ~ ( q )  
and z, and also other physically plausible forms of Ve (R ). In 
all cases, the calculated values of T, fell off more slowly than 
the experimental values at large values of x; this situation 
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seems to be characteristic of all models with purely binary 
interactions V H H  (R ). 

We accordingly studied the effect on Te (x) of various 
possible nonbinary interactions of the U3 and U4 type in Ha- 
miltonian (1). Such terms arise, for example, when we take 
into account the anharmonicity of the displacements SR ,,, 
(Ref. 3 1); the results of a numerical simulation16 show that 
this "anharmonic" deviation from binary interactions may 
be significant. In accordance with the comments in Sec. 4, 
there is the possibility that in systems of the NbH, type these 
effects will correspond primarily to a repulsion (in compari- 
son with the results of the harmonic approximation). To ob- 
tain some estimates we modeled this repulsion by setting 
U f k =  U3, Ufk'= U4forR, <R, in(1)and U3= U4=Oat 
R, > R, , where R, in the maximum distance between pores 
i, j, k, I; and U3, U4, and R, are constants. 

We found that even extremely small values of U3 and U4 
noticeably improved the agreement of Te (x) with experi- 
ment. The improvement is illustrated by curve 4 in Fig. 4, 
obtained with U, = U4 = 30 K and R, = 3aQ. Since U, 
and U4 are small, we can calculate these contributions to fl 
and p in the mean-field approximation, i.e., from expres- 
sions like (22) and (23), as we did in the calculations. 

Consequently, at x 5 x, the phase diagrams for systems 
of the NbH, type can apparently be described satisfactorily 
by the models of Sec. 4, while at larger values of x the devi- 
ation from purely binary interactions becomes significant. 

Figure 5 shows T, (x) diagrams for PdH,. A compari- 
son of curves 1 and 2 again reveals a fairly good agreement 
between the results of Monte Carlo calculations9 and the 
results of the 2-cluster approximation. The approximate 
agreement of curves 3 and 4 confirms that for the substantial 
values /? I V, I 5 1 considered here the 2-cluster approxima- 
tion is apparently sufficiently accurate, and many-particle 
correlations are of minor importance. As was mentioned 

FIG. 5. T, (x) phase diagrams calculated for PdH, for the following inter- 
actions V,, (R) and the following approximations for 0: 1-V,, from 
Ref. 9, Monte Carlo calculations; 2-the same V,,, 2-clusters; 3- 
V,, = VSi + V, from Table I11 with ~ ( q )  in the GT approximation with 
z, = 2,2-clusters; 4--the same V,, , 2 -  and 3-clusters, (20); 5-the same 
as for curve 3, but with z, = 3. The points are experimental.' 

above (and also in a previous study9), however, the values of 
V H H  (R ) and the thermodynamic results are less sensitive to 
the form of Ve here than in the bcc hydrides; the situation is 
illustrated by curves 3 and 5 in Fig. 5. At large values of x, 
the calculated values of T, (x) fall off more slowly withx than 
do the experimental results, as in the case of NbH,. This 
result is further evidence that there are important nonbinary 
forces and/or contributions of other, e.g., band, effects, as 
has been discussed by many investigators for the case of 
PdH, [see, e.g., Refs. 8, 16, and 2 (Vol. 2, Chapter 2)]. 

Consequently, again in the case of hydrides of the PdH, 
type the cluster approximation can apparently yield accu- 
rate results on the configurational contributions to the ther- 
modynamics, and a comparison of these calculations with 
experiment can be used to refine the estimates regarding H- 
H interactions. 

6. CONCLUSION 

We have discussed primarily methodological and quali- 
tative aspects of the theory for H in Me. We have shown that 
the form of the cluster approximation which has been pro- 
posed combines simplicity with high practical accuracy and 
is convenient for calculations of statistical properties. The 
methods which have been developed are evidently applicable 
not only to H in Me but also to any other thermodynamically 
equilibrium interstitial systems. We have also estimated the 
stress-induced and electron contributions to the H-H inter- 
actions, and we have carried out calculations with these in- 
teractions V H H  for the gas-liquid phase transitions in NbH, 
and PdH, . These estimates and calculations indicate that 
anharmonic Me-H interactions are important (especially in 
the bcc hydrides), apparently giving rise to both blocking 
effects at small values of R and significant nonbinary inter- 
actions of the protons. 

More-detailed information on the H-H interactions 
can be acquired by applying these methods to other prob- 
lems of the physics of H in Me. We might single out as the 
most important of these problems a description of the ther- 
modynamic characteristics of H in Me: p(x, T) ,  the entropy 
sH (x, T ), and the enthalpy h , (x, T ), on which we have exten- 
sive experimental i n f o r m a t i ~ n . ~ * ~ * ' ~  These methods can also 
be used to describe ordered phases of H in Me and the phase 
transitions to these phases, e.g., the a-/? (or a'-/? ) phase tran- 
sition to the MeH structure in NbH, (Refs. 1 and 2). Equa- 
tions (6) and (12) in this case are generalized to incorporate 
the existence of several nonequivalent H sublattices in the 
ordered phase. Preliminary results for the Td (x) and T,;, (x) 
equilibrium curves [as forp(x, T )  in the thermodynamic cal- 
culations] again point to the importance of may-particle or 
concentration-dependent interactions in NbH, . For purely 
binary interactions, for example, the concentration interval 
in which the MeH phase exists turns out to be very narrow: 

I 1 - x (  5 0.03. However, the use of the small admixture of 3- 
and Cparticle interactions as mentioned above leads to a 
natural description of the wide range of existence which has 
been observed experimentally7 for this phase: 11 - ~ 1 ~ 0 . 3 .  

The methods described above can also be used to study 
the short-range order and correlations of H in Me, which 
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have so far been discussed only in the mean-field approxima- 
t i ~ n . ' ~  The cluster method makes it possible to study these 
questions at a more quantitative level and to obtain informa- 
tion about the H-H interactions from data on diffuse scatter- 
ing by hydrides. All these questions will be discussed in other 
papers. 

We would also like to comment on the possible use of 
the results of Sec. 3 to predict certain features of the phase 
diagrams of hydrides of the NbH, type. As was mentioned 
above, at x > x,,, these systems may not remain disordered 
as the tetrapores are filled and as blocking occurs; the same is 
evidently true when the nonblocking interactions are taken 
into account more accurately than in the mean-field approx- 
imation. Accordingly, the range over which "liquid-like" 
phase a' exists in these systems must be bounded by the con- 
dition x < x,,, =: 1.07. The experimental NbH, phase dia- 
gram agrees with this prediction, revealing in particular a 
sharp-nearly vertical-increase in the boundary of the a' 
phase at x ~ 0 . 9 .  However, for TaH, , for example, this part 
of the phase diagram has not yet been ~ t u d i e d . ~  In accor- 
dance with the discussion above, here again we should ob- 
serve a sharp increase in the right-hand boundary of the a' 
phase, and an experimental test of this prediction, i.e., of the 
applicability of this blocking model to the case of TaH, also, 
appears to be extremely interesting. 

We deeply thank V. A. Somenkov, S. Sh. Shil'shteyn, 
and A. V. Irodova for many discussions which have stimu- 
lated this study. 

APPENDIX 

Calculation of f2 andp in the cluster approximations for the 
"lattice hard-sphere model" in crystals of the NbH, type 

In this model, blocking occurs in the first three coordi- 
nation spheres, with coordination numbers m, = 4, m, = 2, 
and m3 = 8 (Fig. I), and the exact expression for E' in (6) is 

Here the pores are numbered in accordance with Fig. 1, and 
we are assuming V Ps T. We wish to describe the calculations 
of f2 and p [i.e., of the functions f, and g, in (24)] using 
clusters of various types. As in Sec. 2, we call a cluster of v 
pores a "v-cluster," and we set the index k in Eqs. (6)-(12) 
equal to v. The results are listed in Table IV. 

a) 2-clusters. The quantities 0 and p are given by (15) 
and - (16), in which we have f, = - 1 for r(3 and 
fi =a2,, =p2,, = Ofor 0 4 .  

b) A 4-cluster of pores l ,2 ,  3,4 and a 2-cluster of pores 
1, 6 (Fig. 1). The fields $k in the clusters are related by 
$1 = 9 1  + 2p2 + 8p3, $2 = $1 - p3, $4 = $1 - 2 ~ 1 -  p2. 

The results for f2 and p are found by substituting the solu- 
tions of (9) into (10) and (12): y,=c(l-2c)- ' ,  
y, = c(1 - & ) - I .  

c) 4-clusters of pores 1, 2, 3, 4 (k = 4a) and 3, 4, 5, 5' 
(k = 4b ) and an 2-cluster of pores 1, 6 (Fig. 1). The calcula- 
tions (as for Subsection d below, are analogous to those in 
Subsection b. 

d) A 5-cluster of pores 1, 2, 4, 5, 5' and a 2-cluster of 
pores 1, 6 (Fig. 1). 

e) A 24-cluster consisting of pores lying on all six faces 
of the unit cube of the bcc lattice of the Me atoms in Fig. 1 
(the 2-cluster corresponds to pores 1,2). The blocking condi- 
tions allow no more than five protons in the 24-cluster, and 
ZZ4 is given by 

Z2,=  1+24y+180y2+472y3+366y4+48y5, (A21 

where y = y2,(c) is determined by Eq. (9): 

f )  An 8-cluster of pores 1, 2, 3, 4, 5, 5', 8, 8' and a 3- 
cluster of pores 1,2,3 (Fig. 1). The 8-cluster contains pores of 
three nonequivalent types with the fields $f' = $!I, 

= I,@), and $f) = vf') = $PI = @'I, while the 3-cluster 
contains two types, with the fields = and $(,2). Since 
there are five nonequivalent pores, the number of variational 
parameters of the problem can be increased, and we do not 
have to assume a simple additivity of the fields p,, p,, p3 
acting on a pore along each of the bonds [formally, this in- 
crease is required, since for the five equations (9) to be solv- 
able with a given c we need at least four variables p in addi- 
tion top]. Along with the "one-particle" fields p,, p,, p,, we 
introduce the field p,, which is the field exerted on a given 
pore, (I), by the triad ofbonds (1-2, 1-3, and l a ) ,  under the 
general assumption p, # 2tp, + p,. We then have 

TABLE IV. 
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C 

d 

e 

f 
g 
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Number of B (n, - n,) = I I B (Mb - W') = 
pores in the Values of A, in (lo) = f b  (c) - I,, (1 - c) 3 g b  (c) - I,, [c,(i-c)y 
clusters 1 
2 ,  1 
4 ,  2 ,  

7 f 2  
4 f z f  ' l z f r  

- 2 f ~ + ~ / 2 f 4  

2fz+'/zfs  

- f ~ + ' / j ~ L 2 4  
- 2 f 3 f  ' l z f r + f s  

- ~ Z - ~ / ~ L ~ + ~ I ~ L ~ ~  

- 
{ A~=' i z t  

Az=4, A,=-9 

7 g 2  
4gz+'lzg4 

-2g2+312g4 

2g2+'/2g5 

-2  In y2+2 ln yz4 

-2gs+'/zgr+gs 
-g2-4 h y6+4 ln y~ 

2--2,  h i = - I  
5, 2 ,  1 

24,  2 ,  1 

8, 3 
24,  6, 2 ,  1 

{ A5='/z, A2=2, 
A*=-"/2 

{ ~ ; ~ 1 ' 1 i 2 ,  Az=-I.  

ha='/z, As=-I 
24-'16, A6=-21ar { 
- 

Az=-I,  h i = 3  



Solving Eqs. (9), we find 

Now using (10) and (12), we find the results in row f in 
Table IV. 

g) A 24-cluster which is the same as in Subsec. e; a 6- 
cluster of pores 1, 2, 5, 6, 7, 8; and a 2-cluster of pores 1, 3. 
The values ofZ,, andy,, are given by (A2) and (A3), while Z,  
and y, are given by 

The resulting expressions for 0 andp are listed in Table 
IV, where we have used the following notation: 

l -kc I-c 
f*=ln (i-e)* . g,= k l n  - L,=-In 2,-k ln(1-c). I-kc' 
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