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The problem of the coagulation of small particles into large aggregates is shown to have a highest 
critical dimensionality d, = 10. A new self-consistent approximation, analogous to the Flory 
approximation, has been developed. This approximation can be used to find the index Y,  which 
relates the average size of an aggregate to its mass, for d < d, . The results are compared with 
experimental data. 

The problem of coagulation, i.e., of the formation of 
bound clusters from originally free single particles, arises in 
a wide variety of situations: polymerization reactions result- 
ing in the formation of a gel, the coagulation of colloids, the 
coagulation of soot particles, etc. We wish to analyze this 
problem in its most general formulation: The space initially 
contains small particles of unit size, which diffuse; if they 
collide, they become irreversibly attached. The resulting 
clusters also diffuse as rigid bodies, and they adhere to each 
other if they come into contact at even a single point; etc. We 
are interested in the structure of the large clusters which are 
formed as a result of this process. Different functional de- 
pendences of the diffusion coefficients on the cluster mass 
correspond to different physical situations. In the numerical 
simulations by Meakinl and Kolb et al.,' the diffusion coeffi- 
cient was independent of the number of particles in the clus- 
ter, N(D  = 1); or there was a functional dependence 
D = N - '; or only the lightest clusters moved. There can also 
be physical problems in which the particles do not diffuse 
but instead move along linear trajectories with some random 
velocity distribution. We will use the superscripts "dif' and 
"lin" to distinguish between quantities which correspond to 
a diffusive motion and to a linear motion of the particles 
during the coagulation. 

We will show that the coagulation problem has an up- 
per critical dimensionality, i.e., that above a certain dimen- 
sionality of the space the structure of the aggregates can be 
described in a simple approximation. This approximation 
will generally vary with the type of diffusion or linear mo- 
tion. We will show that this approximation is nearly or ex- 
actly the same as the tree approximation. We will then use 
the self-consistent approximation to analyze the structure of 
clusters for d < d, . 

We assume that the dimensionality of the space in 
which the coagulation is occurring is large enough that in the 
collision of two clusters an arbitrary point of one can touch 
an arbitrary point of the other with a probability which does 
not depend on the positions of these points on the clusters. 
We also assume that the clusters move with diffusion coeffi- 
cients (or linear velocities) which are independent of their 
mass. The probability for the linkup of two clusters of masses 
N, and N2 is then simply proportional to N1N2. We know 
quite well that the structures formed in this case are the same 
as those which result from a random branching process (see 
Refs. 3 and 4, for example). The size of these structures de- 

pends on their mass in accordance with R a N 'I4, and their 
size distribution is f (N)  a N -512. Knowing which clusters 
arise in the course of the coagulation, we can then find the 
critical dimensionality above which there can be a mutual 
penetration of the clusters such that an arbitrary point of one 
can touch an arbitrary point of the other. Here one of the 
cluster must be able to diffuse into the other without ever 
grazing it. We treat the motion of a cluster as a sequence of 
random elementary displacements of unit length (we recall 
that we are also assuming that the elementary particles form- 
ing a cluster are of unit size). The probability for a collision at 
each instant is pg2 V, where p ,  and p2 are the densities of 
particles in the clusters, and V is the volume of the space in 
which they intersect. We assume that the numbers of parti- 
cles in the clusters are comparable in magnitude; we then 
havepl -p2 - N /Rd - N 1  - dv and V-Rd -Wd (R a "). We 
multiply this probability by the total number of displace- 
ments of one cluster in the other. For a random walk, this 
quantity would be on the order of R 2. The total probability 
for one cluster to penetrate deeply into the other without 
ever grazing it is then 

W , N Z + 2 v - d v  
7 (1) 

and we have d = 10 with Y = 1/4. If the clusters move 
along linear trajectories instead of diffusing, the length of the 
path traced out by one cluster in the other is on the order of 
R, and we have d = 9. 

We assumed above that the diffusion coefficients (or 
linear velocities) of the different clusters do not depend on 
their masses. More realistically, the cluster mobility would 
fall off with increasing cluster Inass. The small clusters 
would then coagulate more rapidly than the large clusters. 
In this case the size distribution of the clusters changes, so 
that there may be changes in the structure of the large clus- 
ters which arise during the coagulation. We therefore con- 
sider the other limiting case in which the mobility of the 
small clusters is much higher than that of the large clusters, 
so that the small clusters quickly "become extinct." The size 
distribution of the clusters is then comparatively narrow and 
can be characterized at any instant by an average cluster 
mass. We assume that when two clusters collide they have 
nearly the same mass. We call the large cluster resulting 
from this repeated enlargement process (a doubling in this 
case) the "limiting" cluster. We find the structural proper- 
ties of this limiting cluster by using a recurrence relation. 
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Let us assume that in some stage of the coagulation, 
when the average mass of the clusters is No, the resulting 
clusters can be described as the structures which result from 
branching processes (trees) with a radius R - NA'4 and with 
the following correlation function for any two points: 

Here 9,@,, r,) is the connectedness function of the cluster, 
defined by 

I 1 if the points r, and r2 belong to the given cluster, 
9NO(rl9 r2) = 0 otherwise. 
The superior bar means an average over the ensemble of all 
possible clusters, in contrast with the angle brackets (. . .), 
which we will use to denote the average over a cluster. 

For the tree problem we would have 

The normalization is chosen such that 

GNo (r) &=No. 

If the process by which two clusters, with N, and N2 particles, 
join together occurs in such a way that an arbitrary point of 
one connects with an arbitrary point of the other, then the 
connectivity function of the resulting cluster is 

~ N , + N ~  (ri, r2) =sN, (ri7 r ~ )  +3N2(rir r2) + 3 ~ ,  (ri, r*) 3~~ (re, 4 .  

(44 
Taking an average over all possible connection points r* and 
also over all possible clusters with N, and N2, we find the 
following expression for the correlation function of the result- 
ing cluster: 

(4'3) 
We now switch to the normalization 8, = GN/N; with 
N, = N2, in the momentum representation, we find the recur- 
rence relation 

GZN (k) ='I2 [GN (k) +ex2 (k) I. (5) 

Let us calculate 

for the limiting cluster as N /No+ oo : 

( ~ 2 ) = 2 ~ 2  (N/No) (In 3-In z) / ln  2 

(R4) =16N0 (N/N,,) (In '-In z)/ln 2. 
(6) 

We thus find the index value v = 0.295 (R EN''), which is 
close to the value for the tree problem, v = 1/4. The internal 
structure of the limiting cluster which results from this pro- 
cess is generally different from the structure of trees. For ex- 
ample, the dimensionless ratio of (R 4, and (R ')' is 

(R 4, - 2 for the tree problem, 
- I4 for the limiting cluster, 

i.e., the limiting cluster is slightly denser at the periphery. 
If the masses of the clusters which join are not equal and 

are instead distributed in accordance with 

where a is a small random quantity, then by repeating the 
calculations above we find the corrections to v: 

6 v = - P / 3  In 2=-0.96e. (8) 

The two extreme cases of the distributions thus yield sim- 
ilar values, v = 0.295 and v = 0.250. Taking the sign of cor- 
rection (5) into account, we could reasonably assume that the 
index v for intermediate types of cluster mass distributions 
will lie between these two values. 

Since we will be comparing our calculations with the 
results of numerical simulations with D = 1 and D = N - ', we 
set v = 1/4. 

Ford < d, we calculate the index by a method similar to 
that used by Flory.' Flory's method, despite its simplicity, 
yields good estimates of the indices for spaces of low dimen- 
sionality, although near d, it disagrees with the results found 
by the €-expansion method. This approximation has been 
used previously to estimate the size of the coil formed by a 
linear polymer. The idea of this approximation is to estimate 
the minimum of the free energy of the coil as a function of its 
size. The free energy consists of the two terms Fel and Fre,. 
The first component Fe, , is the energy required to stretch out a 
coil of free size Ro = N 'I2 to a size R: 

F,,-RZ/N. (9) 

The second component is the repulsive energy of the mon- 
omers forming the polymer: 

F,,,-p2Rd-N2/Rd. (10) 

Herep is the average density of monomers in the coil. 
Minimizing the sum of (9) and (lo) with respect to R, we 

find6 

Although this formula was derived as a very crude approxi- 
mation (in terms of the spirit of its derivation, it might be 
compared with the formulas for the indices in the theory of 
phase transitions ignoring the small indices a and 77; Ref. 7), it 
yields surprisingly good estimates of v for d = 3 and 2: The 
errors are only 1.5% and 0.3%. At d = 4 and 1, this formula 
is exact (see also the discussion in Ref. 8 of whether this for- 
mula is exact for d = 2). 

The arguments in the case of a branching polymer are 
analogous. The only difference is the Fe, is written9.10 

in excellent agreement with the results of the numerical simu- 
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lations for 2<d<8. The sum ofFeI and Prep has a simple phys- 
ical meaning. The "elastic energy" is none other than 

where K (R ) is the total number of configurations of size R 
(including self-intersecting configurations). The "repulsion 
energy" can be written as - In W(R ), where 

w ( R ) = ~  ( l - p 2 ) ~ e x p ( -  j p ' d r )  (14) 
r 

is the probability that there will be no self-intersections in 
configurations of N monomers. The minimum of the sum of 
(9) and (10) as a function of R corresponds to the maximum of 
the product K (R ) W(R ), which is the number of nonself-inter- 
secting configurations of size R. The minimum of the sum of 
the "energies" in (9) and (10) thus determines the most prob- 
able size of a nonself-intersecting coil. 

An important distinction in our case is that the forma- 
tion of a branching cluster results from an irreversible pro- 
cess, but we can still write estimates for the "free energy." In 
contrast with Flory's method and also in contrast with Refs. 9 
and 10, we will write an expression not for the total free ener- 
gy but for the change in free energy upon the connection of 
two clusters: 

AF=R2 (N) /N"-R2  ( N , )  /Nil* -R"N-N,) / (N-N, )"  
+ N21 ( N ,  d )  /Rd .  (15) 

The sum of the first three terms is the change in the configura- 
tional entropy upon the attachment of two clusters at some 
single point. Since the clusters are assumed rigid, this change 
inentropy canbeunderstoodas - In k (R ), wherek (R )is the 
number of different ways to form a cluster of size R (N)  from 
two clusters R (N,) and R (N - N,). The last term in (1 5) differs 
from the ordinary term describing the potential energy, N '/ 
Rd, by a factor (in the diffusion case) 

ldii ( N ,  d )  = [ R  ( N )  adif ( d )  ] , 

which is the average number of configurations assumed by 
overlapping clusters before they connect; ad" (d ) is the relative 
depth to which the clusters penetrate into each other. It is 
clear from similarity considerations that a ( d  ) does not depend 
on N; it can depend on only the dimensionality of the space, 
1 >a(d )>O. If the colliding clusters move along linear trajec- 
tories, the factor Idif (N, d ) must be replaced by 

lzin ( N ,  d )  = R  ( N )  a"" ( d )  . 

The last term in sum (15) can be written as - In i?. '(~ ), 

TABLE I. 

where W(R ) is the probability for one cluster to move to a 
relative depth a (d  ) into the other without any linkup on the 
way. The minimum of free energy (15) with respect to R thus 
determines thesaddle point oftheproductk (R ) F(R ), i.e., the 
number of real methods for forming a cluster of size R. Mini- 
mizing the free energy, we find 

Rdif ( N )  m p / Z d  Rlin ( N )  mN5/2(d+l). (16) 

These formulas change only very slightly if v is not exactly 1/ 
4 at d > dc : The terms R '(N )/N ' I 2  in (1 5) must be replaced by 
R '(N )/R (N ), where R,(N ) is the functional dependence ofR 
on N at d > dc . The 5/2 in (1 6) must then be replaced by 
2 + 2v, and since we have 0.250<v < 0.295 at d > d,, there 
will be only a very slight (less than 4%) change in the final 
answer: the exponent on N in (16). With ddif = 10/3 and also 
with dlin = 7/3 the index is v = 3/4, and the sum of the first 
three terms vanishes. The fact that the entropy does not 
change when two clusters attach means that they do not 
"mix." This case is possible if a ( d )  = 0, i.e., if the clusters 
penetrate no further into each other upon connection. 

At d = 10/3 and dlin = 7/3 there is accordingly a 
transition from a region of volume penetration of clusters into 
each other to a region of surface connection. The total free 
energy of a cluster is linear in the number of constituent parti- 
cles. In order to compare our results with experiment, we 
write the final expressions for the quantity g = l / v ,  the frac- 
tal dimensionality of the clusters: 

Let us look at the experimental results available. The 
diffusion-controlled coagulation has been simulated numeri- 
cally for various functional dependences of the diffusion coef- 
ficient on the cluster mass. The results imply that the fractal 
dimensionality of large clusters is insensitive to the functional 
dependence D (N), in agreement with our general conclusion 
that the structure of the limiting cluster depends only weakly 
on the particular distribution in the mass of the colliding clus- 
ters. The results found for the fractal dimensionality in the 
simulations of Refs. 1 1 and 12 are compared with the theoreti- 
cal predictions of (17) in Table I. We see that the values of g 
found in the simulations are 10-20% higher than those pre- 
dicted here. '' There are two possible reasons for the discrep- 
ancy. First, there is the uncontrollable error of Flory's ap- 
proximation. In all the simulations carried out, the clusters 
which arise for d = 2 and 3 are greatly stretched out in one 
direction, so that for spaces of low dimensionality the approx- 
imation of the clusters as random branching structures char- 
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acterized by only a single dimension is not really successful. 
Second, the scaling behavior sets in very slowly. Expression 
(15) contains, in addition to the terms shown, a term which is 
the same as (10) and which is responsible for the absence of 
self-intersections in the final state. This term was discarded 
since at large R it is small in comparison with the term 
N21 (N, d )/R. At R < a-'(d ), however, it is the leading term! 
Since a (d  ) is equal to one at d = 10 and vanishes at d = 10/ 
3 and d lin = 7/3, it should be small at low dimensionalities of 
the space. It is thus quite possible that the numerical simula- 
tions have covered only a transition region between the behav- 
ior typical of branching polymers, (13) (see the last column in 
Table I), with R < a-'(d ), and the true asymptotic behavior in 
the limit of large R . 

"While this paper was being written, only the data on gdif ford = 2 were 
a~ai1able.l.~ The data from Refs. 1 1 and 12 shown in Table I were added in 
a revision of this paper. 
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