
induced radiation during scattering of channeled electrons and positrons 
by point defects 

A. S. Borovik, V. S. Malyshevskii, and E. T. Shipatov 

Research Institute of the Rostov State University 
(Submitted 28 January 1984) 
Zh. Eksp. Teor. Fiz. 87, 1997-2007 (December 1984) 

In scattering of channeled particles by point defects and in emission of gamma rays in the sponta- 
neous-radiation spectral region conditions are attained where the momentum transferred to the 
defect is taken up by the crystal as a whole. This leads to coherent and interference effects in the 
radiation from the crystal defects. When the longitudinal momentum transferred is zero, an 
induced radiation effect appears in the transitions between the states of transverse motion. 

The occurrence of spontaneous electromagnetic radia- 
ton during the channeling and quasichanneling of electrons 
and positrons in crystals has now been well established (see 
e.g., the reviews, Refs. 1-3). It is usually assumed that the 
interaction of the particles with the electron-phonon subsys- 
tem of the lattice and with defects causes dechanneling and 
broadening of the emission band. However, along with these 
phenomena, upon scattering of the particles by point defects, 
interesting features which are unrelated to dechanneling 
may be observed in the radiation by channeled electrons and 
positrons. In this article we shall investigate qualitatively the 
conditions for and the nature of the effects that arise. 

It is well known that the emission of y rays as a result of 
scattering of free electrons by a nucleus cannot occur unless 
some momentum is transferred to the nucleus (henceforth 
we shall refer mainly to electrons, with the understanding 
that, unless otherwise stipulated, the general results of the 
theory are equally valid for positrons). In the case we are 
considering we have, first of all, not a free electron, but one 
that is governed by channeling, and second, the electron is 
scattered from a nucleus that is bound in the crystal lattice. 
A kinematical treatment shows that when a relativistic 
channeled electron is scattered and causes radiation from 
the nucleus, the longitudinal momentum transferred to the 
nucleus is equal to 

where m is the electron mass, E, and w are the energies of the 
electron and they ray, respectively, and A E ~  = ci -  is the 
change of energy of transverse motion of the electron. 

In contrast to the scattering and radiation of a free elec- 
tron, expression (1) contains the term A E ~ ,  which is related 
to the change in state of transverse motion of the electron. If 
the momentum (1) transferred to a nucleus that is bound to 
the lattice satisfies the condition 

(where 6 is the amplitude of the thermal vibrations of the 
point defect), then, with overwhelming probability, the mo- 
mentum will be taken up by the crystal as a whole. Condition 
(2) can be fulfilled in the spectral region corresponding to 
spontaneous radiation, i.e., when 

The case Ap = 0 will correspond in this case to induced radi- 
ation in the transition i-tJ 

In the reference system that is attached to the longitudi- 
nal motion of the relativistic electron the effect we are study- 
ing has a lucid physical interpretation, namely that the in- 
duced radiation arises as a result of the interaction of 
resonant equivalent photons of the field of the point defect 
with the atomic-like system of the levels of the transverse 
motion of the channeled electron. 

The analogy of the induced radiation effect with the 
Mossbauer effect should be pointed out. Therefore in order 
to describe the radiation that occurs it is necessary to take 
into account the state of the defect as a whole. It is precisely 
the nature of the thermal vibrations of the point defect at the 
minimum of the potential contour of the crystal that deter- 
mines the coherence conditions of the radiation. 

In this paper we investigate the induced radiation in a 
crystal containing intrinsic interstitial atoms or impurity 
atoms. In 4 1 we determine the wave function of the electron- 
defect system. In g52-4 we find the amplitude of the process 
and derive an expression for the number of quanta of in- 
duced radiation. In 45 we examine the effect of dechanneling 
on the magnitude of the effect being investigated. 

81. WAVE FUNCTION 

The wave function of the "channeling electron + point 
defect" system obeys the stationary Dirac equation 

( a p + m p f  V+H,+ V a )  I Y >=El Y>. (3) 

The Hamiltonian of the interaction in (3) contains 7, the 
potential part of the interaction of the electron with the crys- 
tal averaged over the longitudinal direction (the Lindhard 
potential of atomic strings or planes4) and a part V, which 
describes the interaction of the electron with a point defect; 
H, is the Hamiltonian of the point defect, which is located at 
some minimum of the potential contour of the crystal, and E 
is the total energy of the electron and the energy of thermal 
vibrations (phonon excitations) of the defect as a whole. 

Writing the spinor components of the bispinor I Y ) in 
terms of I$) and I$'), we can, in the high energy approxima- 
tion, obtain from (3) the equations for I$) and I$') 

(H,+H,+Vg) I $ > = E  I$>, Iqf>=E,-'apl*), (4) 

A ~ ~ ~ z r n ~ a / 2 E ,  (E,-O) . where 
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He=-A/2E,+V, E =  (E2-m2)  / 2 E z E / 2 .  

In the derivation of Eqs. (4) we discarded the term qua- 
dratic in the quantity V +  Hg + Vg and the term which is 
proportional to the gradient of the latter and which describes 
the interaction of the electron spin with the field of the point 
defect and of the crystal. The coefficients of these terms are 
of the order of magnitude WE,. 

Let us examine the solution of Eqs. (4) without taking 
into account the interaction of the electron with the point 
defect. First we note that the longitudinal motion in the aver- 
aged potential V  is described by a plane wave. Second, the 
large value of the longitudinal momentum in comparison 
with the transverse momentum allows us to replace the mo- 
mentum operator in the second equation of (4) by its longitu- 
dinal value and eliminate from the wave function ( P ) the 
constant spinor component. Therefore, the subsequent in- 
vestigation will be carried out for the wave functions I*), 
which obey the first of Eqs. (4), which is formally identical to 
the Schrodinger equation 

(H,+Hg) I $o)=e ] $ a ) .  (5) 

The solutions of Eq. (5) describe the states of the continuous 
spectrum, and for axial channeling have the following struc- 
ture: 

IQ~>=IE, h, s>=(2n) -" lh) l s>  exp { i [ 2 E ( ~ - E ~ - o , ) ] ' ~ z ) ,  ( 6 )  

where 

E>>E*, as, [2E ( ~ - ~ n - o , ) ] ' ~ E - e r - ~ o ~ .  

The transverse component (i.e., the one that does not 
depend on the coordinatez) of the electron wave function l i l  ) 
and the wave function 1s) of the point defect as a whole obey 
the equation 

where E~ is the transverse energy of the electron in the state 
I i l  ) (the indexil includes the band number and the quasimo- 
mentum of the states of transverse motion in the averaged 
potential of the atomic strings, and w,  is the quantized ener- 
gy of thermal vibrations of the point defect as a whole. 

For the following analysis it is convenient to transform 
Eq. (4) into an integral equation 

I$*>=l*,>+G*V,l$*). (8) 

In the representation of the Hamiltonian of (5) the Green's 
function of Eq. (8) in the high electron energy approximation 
is equal to 

G+ ( E )  =-i0 (2-2') exp ( iE (2-2')) 

We have an analogous expression also for G -(E):  

G- ( E )  =i0 ( z f - z )  exp {iE (2-z') } 

series constructed by the iterations of Eq. (8) converges well. 
Then an approximate solution of Eq. (4) can be given in the 
form 

N 

To estimate the magnitude of the effect that we are in- 
vestigating, we shall use the first Born approximation in the 
expansion (1 1). The condition of applicability of this descrip- 
tion in the case of single scattering is obvious; specifically, it 
is necessary that the following inequality be satisfied: 

Zge2<l ,  

where Z, is the atomic number of the defect. If we consider 
emission with a small transfer of longitudinal momentum in 
a crystal containing point defects, then the interaction with 
the defects will be coherent, and the condition for the appli- 
cability of the Born approximation is different (see, e.g., Ref. 
1): 

NZge2 < 4, (12) 

where Nis the number of defects in a length l/Ap. As Ap-0 
for N = N,,, , it is evident that we have (generally, the lower 
bound of Ap is of the order of the uncertainty of 1/L( 1) 

nRzl,n,, L>l, 
={ nR2Lng, L<lg 

where TR is the area per atom chain, L is the thickness of 
the crystal, I, is the dechanneling length, and n, is the con- 
centration of the defects. Inequality (12) sets a limit on the 
possible thickness of the crystals and the defect concentra- 
tion; for example, ng 5 5% for L 2 1 pm. 

52. AMPLITUDE OF THE RADIATION 

Assuming that the conditions for the applicability of 
the Born approximation are satisfied, we shall examine the 
amplitude of the radiation that arises when an electron is 
scattered from a single point defect. Under the conditions E, 
)m and E, &w we obtain, analogously to Ref. 5, for the am- 
plitude of the radiation in the transition A, s--+A ',s' without 
change of electron spin orientation, the following: 

1 1 
M, = - (lp, 1 e-ixrp I$,), M+ = - (gf  1 e-". pG+ ( E )  VgI 

E. Ee 
1 

M- = - <$, 1 V , {G- (E'))'e-'"'p 1 $i>, 
(13) 

Ee 
Jlpi)=JE, h, s ) ,  J $ , > = J E f ,  h', s f > ,  

where x is the wave vector of the y ray. The amplitude M, in 
(13) describes ordinary spontaneous r ad i a t i~n ,~  while M+ 
and M- describe the investigated effect. Simple calculations 
for axial channeling, allowing for (6), (9), and (lo), show that 
the amplitude M+ and M- are respectively 

In most cases the interaction V, is such that the Born 

1152 Sov. Phys. JETP 60 (6), December 1984 Borovik eta/. 1 1 52 



The operator p in formulas (14)-(16) operates only on the 
wave function of form (6)  standing to the right of it. 

53. INDUCED RADIATION WITHOUT TRANSFER OF 
LONGITUDINAL MOMENTUM OR ENERGY TO THE DEFECT 

Let us examine the induced radiation effect when the 
intermediate state (A " , s W )  in (14) is the same as the initial 
state IA,s) and in (15) the same as the final state Jil ',sf). This 
separation is completely admissible, since the energy levels 
E,  and w, as a rule are not equidistant and interference 
between transitions does not occur (see also $4). We shall 
show that, in accordance with the above discussion, the radi- 
ation process in this case occurs with conservation of longi- 
tudinal momentum and without transfer of energy to the 
defect. 

Thus, from (14) and (15) we obtain for the case under 
consideration 

2 

r 
xexp (ipA,z) I X ,  s )  dz' ( V h s - V A , s ~ ) ,  (17) 

where 

v , ,=(a ,  slV,!h, s ) ,  V~r,r=(h', sflVg'glX', s f > .  (18) 

Because of the orthonormality of the state vectors Is) of the 
point defect as a whole, it is clear that (17) will be nonzero 
only for s  = s', since the operator p operates only on the 
states 1A ). Thus, from (17) and (18) it follows that 

If condition (2) is satisfied, then we have the equality 
(see the Appendix) 

m m 

the use of which allows us to obtain an expression for the 
longitudinal and transverse components of the radiation am- 
plitude 

where, in accordance with (16), p , = E - E , ,  
p;. = E l -  E , . .  

The laws of conservation of energy E  = E ' + w and of 
longitudinal momentum, the latter defined in (21) and (22) by 
the S functions, gives the well-known expression6 for the 
frequency of the radiation. In particular, for radiation in the 
forward direction, i.e., in the direction of motion of the parti- 
cle, 

0 0 ~ 2  (&n-&a,,)E,2/m2. 

We note that to obtain this relation, as well as the formulas 
(34) it is necessary in the determination of the longitudinal 
momentum to retain also terms of order m/E,. 

The corresponding components of the amplitude of 
spontaneous radiation according to (13), as (see also, e.g., 
Ref. 6) 

1 
{ M , ) ,  = - <A' I exp (-ix,p) p, I h)G ( p ~ - p ~ , ' - % ~ ) .  (24) E. 

From a comparison of (21), (22), and (23), (24) it is easy 
to establish that the spectral-angular and polarization char- 
acteristics of the induced radiation are identical to the corre- 
sponding characteristics of the spontaneous 
The relation between the numbers of quanta of spontaneous 
and induced radiation per unit time and unit length without 
transfer of longitudinal momentum has the form 

(EN# dNo - ( A ,  s-th', s') =G,,,q - 
do d o  do d o  

( h + ~ ' ) ,  (25) 

where 

dz ( v ~ . + v A , . )  I ' . 
dw is the frequency interval and do is the solid angle. 

Figures 1 and 2 show the results of numerical calcula- 

FIG. 1. Ratio of the number of induced radiation photons to the number 
of spontaneous radiation photons per unit time and unit length of a silicon 
crystal (the ( 110) axis, Z, = 14). 1) e - ,  20 Mev, 3p - 1s transitions; 2) e - ,  
5 Mev, 2p - 1s transition; 3) ep, 5 Mev, 3p - 1s transition; 4) e + ,  20 Mev, 
1 - 0 transition; 5 )  e', 5 Mev, 1 - 0 transition, 6) e', 5 Mev, 2 - 1 transi- 
tion; x, is the distance from the defect to the atomic string in units of the 
Thomas-Fermi screening radius. 
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FIG. 2. The same as in Fig. 1, for 20 Mev positrons in the 2 - 1 transition 
but for various kinds of defects. 1) Z,  = 81; 2) Z,  = 70; 3) Z,  = 14. 

tions from formula (26) for various transitions in axial chan- 
neling of particles. The potential of the atomic string was 
approximated by a Coulomb  ell,^-^ and the potential for 
positrons by a harmonic well." For the potential of the point 
defect we used the approximation of Moliere. We call atten- 
tion to the dependence of the magnitude of the effect on the 
location of the defect relative to the atomic string. The maxi- 
mum value of ?;l is attained in those cases when the displace- 
ment of the defect coincides with the quasiclassical radius of 
the orbit of transverse motion of the electron or positron. 

In the case of radiation with zero transfer of longitudi- 
nal momentum the amplitude (21) and (22) of the process 
does not contain a phase factor that depends on the longitu- 
dinal coordinate of the defect. Ifit is assumed that the displa- 
cements of the point defects relative to the crystal axis are all 
the same, then there will be interference of the radiation 
from the different defects. In this case the amplitudes of the 
radiation processes at the various defects located within a 
dechanneling length (if L > I,) or within the thickness of the 
crystal (ifL < I,) will sum in phase, i.e., there will be an inter- 
ference enhancement of the radiation power. 

Thus, for the order of magnitude number of photons per 
unit time of induced radiation by channeled electrons in a 
crystal with a volume density n, of defects we obtain from 
(25) the estimate 

dN, (L)  dNo(L) (h*h'), 
( h ,  s+h', s') m6s.*Nmazq - 

d o d o  d o d o  
(27) 

FIG. 3. Spectral density of radiation by channeled particles. 1) crystal 
without defects; 2) crystal with point defects; 3) difference of curves 2 and 
1. N is the number of collisions of particles with defects. 

where N,,, is the maximum possible number of collisions of 
the electron with defects, as determined in $1. 

The qualitative character of the spectrum of the radi- 
ation arising in a thin crystal with defects (L <I,) during the 
channeling of particles is shown in Fig. 3. It can be seen from 
this figure, in the difference spectrum (curve 3) in the fre- 
quency region of the spontaneous radiation, that structure 
appears which differs from the spectrum of the Bethe- 
Heitler bremsstrahlung spectrum. Numerical calculations 
from the formulas presented here are given in $5. 

54. INDUCED RADIATION WITH TRANSFER OF MOMENTUM 
AND ENERGY TO A DEFECT 

As was noted in $3, radiation with the transfer of longi- 
tudinal momentum to a defect is described in (14) by the 
terms with A ",sl#A,s and in (15) by the terms with 
A ",sU # A  ',st. In this section we examine the process of in- 
duced radiation with the simultaneous excitation or relaxa- 
tion of the thermal vibrations of a defect. These processes are 
described by the terms in (14) with s" # s  and in (15) by the 
terms with s" #s l .  

For the reason stated in $3, the amplitude M+ will be 
different from zero only for s" = sf and M- will be different 
from zero only for s" = s. Thus, excluding the case that we 
have already considered (i.e., A ",so =A,s in (14) and 
il ",s" = il ',st in (15)), we write 

x p exp (ip,, r l ~ )  I hN) J dz' 
- rn 

X e x p  {i ( p l s - p ~ ,  c S , )  z ')  Vns;r.g=', (28) 

x p  exp ( i p , . ~ )  I h> j 
- - 

where V,,, .,. = ( A  ',sf 1 V, lA,s). The characteristic spatial 
scale S of the variation in the matrix elements of the operator 
V, in (28) and (29) (i.e., the amplitude of the thermal vibra- 
tions of the point defect) is such as always to satisfy the ine- 
quality 

(6 -0.1 A, IE, - E,. ( - I  2 100 A). Therefore we can write 
I 

J dz' esp{ i (pA, - -p~, . , )  z ' }  VA.;~,.. 
- m 

=exp{i(p,.-p,~,.) Z J  j d z f  li,.,,,,,, 
- m 

where z, is the longitudinal coordinate of the point defect. 
When condition (2) is satisfied, we obtain, from equality (20), 
for the longitudinal and transverse components of (28) and 
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{M,}, = $ ~exp{i(pk.-p,r.t)r} (A' 1 eap (-ix,p) (A") 
k ' 

(M+), = zg  exp {i (PA.-PA~..~) z,} (h' 1 exp (-ix,p)p, 1 h") 
2Ee ,.. 

i l  
{M-), = - e~p{i(~~~.--~~,~) z,} (A"] exp (-ixlp) Ih) 

2 k r ,  

From (30)-(33) it can be seen that, in agreement with the 
observation made in 93, there is no interference between the 
various terms in ( 1  4) and ( 15). 

From the laws of conservation of energy and longitudi- 
nal momentum one can obtain expressions for the maximum 
frequencies of radiation in the direction of motion of the 
electrons: 

Thus, in the A-tA ' transition caused by scattering from a 
point defect with the transfer of longitudinal momentum (2) 
there will be generated a number of emission bands which 
arise in the intermediate transitions A-+A " and A "--+A ' with 
simultaneous excitation or relaxation of the thermal vibra- 
tions of the point defect. The analogous effect of the conver- 
sion of crystal phonon excitations into elecromagnetic radi- 
ation has recently been studied in Ref. 1 1 .  

We call attention to the fact that each of the amplitudes 
(30)-(33) has a phase factor that depends on the longitudinal 
momentum transferred to the defect and on the coordinate 
zg of the defect. These factors, generally speaking, suppress 
the interference of the radiation from the different defects, 
which was not the case for Ap = 0 [see (21) and (22)l. Inter- 
ference enhancement of the radiation power in the case 
Ap#O will occur only from those defects that are located 
within the range l/Ap. Moreover, the magnitude of the ma- 
trix element of the form V,,;, , is determined by the spatial 
overlap of the wave functions (il,s) and )A ',st), and for the 
subbarrier states /A ) the following obvious inequality holds: 

Keeping these circumstances in mind, we conclude that 
the process, studied in $3, of induced radiation by well-chan- 
neled particles is dominant. 

55. THE EFFECT OF DECHANNELING 

To estimate the magnitude of the investigated effect in a 
crystal with defects, it is necessary to take into account the 

possibility of electron dechanneling during scattering from 
point defects and from the electron-phonon system of the 
crystal. In this study we limit the discussion to thin crystals 
for which the effect of the electron-phonon system on the 
dechanneling is still small and the dechanneling is due to 
scattering at point defects. 

For the dechanneling length I, in this case when there is 
a uniform distribution of defects we obtain the estimate (see, 
e.g., Ref. 12) 

where ~ ( 8  > 8,) is the cross section for scattering of an elec- 
tron at a point defect where the deflection through the angle 
8 is larger than the critical angle 8, -- I V / E ,  ( ' I 2 .  

From (27) and (35) it is easy to determine the qualitative 
dependence of the relative magnitude of the induced radi- 
ation effect on the defect concentration. Its maximum value 
is attained at that defect concentration at which the dechan- 
neling length becomes equal to the thickness of the crystal. 
For L > I, the relative magnitude of the effect is independent 
of the concentration n,, since in this case the number of 
collisions of a particle with defects does not change and is 
equal to the maximum number possible up to the instant of 
dechanneling. The character of the dependence of the rela- 
tive magnitude of the effect on Z, and E, also differs sub- 
stantially in the regions L > I, andL < I , .  Thus, for L > I, is 
follows from (27) and (35) that 

which is accounted for by an increase in the dechanneling 
length and thus by an increase in the number of possible 
collisions with defects as the energy increases. On the other 
hand, for L < I, it follows from (27) that there is a very weak 
dependence on the energy. 

In addition, for L > I ,  the relative magnitude of the ef- 
fect decreases with increasing Z,: 

dN,  ( L )  -4%- dodo zg-41 vgI2, 

which is explained by a decrease in the dechanneling length 
and consequently by a decrease in the number of possible 

FIG. 4. Probability of dechanneling of 20 Mev electrons (1-3) and posi- 
trons (4-6) at point defects in a silicon crystal ((1 10) axis). 1 )  x, = 1, Z, 
=14;2)x ,=2,Z,=14;3)x ,=1.4 ,Zg=83;4)~,=11,Z,=14;5)~ ,  
= 9, Z, = 70; 6) x, = 8, Z, = 8 1 .  The transverse energy is expressed in 

units of the critical Lindhard energy. 
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collisions with defects. On the other hand, for L < I ,  it fol- 
lows from (27) that 

TABLE I. Ratio of the number of induced radiation photons to the number of photons of 
spontaneous radiation by channeled particles in a silicon crystal for N = Nm,,/2 (particle energy 
20 Mev, ( 1  1O)axis). 

dN (L) d N ,  ( L )  
Transition 1 z. I .. 1 Nmax 1 q 1 

dN,  (L) -1% dodw vg12 

To obtain numerical estimates we have carried out com- 
puter calculations for the probability of dechanneling of rel- 
ativistic particles as a result of single scattering by a point 
defect. We considered defects consisting of isolated intersti- 
tial atoms displaced from the axis of the atomic string. In the 
calculations we used the Thomas-Fermi potential in the Mo- 
liere approximation for V,, while the field of the atom chain 
was determined using the averaged Moliere-Erginsoy poten- 
tial. The dechanneling probability was calculated with the 
model described in Ref. 13. At the plane ahead of the dis- 
placed atom the directon of motion of the particle was as- 
signed with a given value of transverse energy &, lying within 
the channeling interval. At the plane behind the displaced 
atom the coordinates of the scattered particle and its direc- 
tion of motion relative to the atom chain were determined. 
From the distribution in transverse energy after scattering 
from the displaced atom the dechanneling probability P (E, ) 
was determined for all initial energies within the above-men- 
tioned interval (Fig. 4). 

The results of the numerical calculations allow us to 
estimate the relative magnitude of the effect from formula 
(27). The results of these estimates are shown in Table I. The 
maximum number of collisions with defects was determined 
from the relation Nmax - l /Pmax .  

It can be seen from Table I that first, the magnitude of 
the effect is great enough to be observed experimentally. Sec- 
ond, the effect is more marked for positrons (we note that 
Nmax for positrons lies at the limit of applicability of the Born 
approximation). This latter result is due to the fact that the 
dechanneling probability is much smaller for positrons than 
for electrons and therefore a positron can undergo a larger 
number of collisions with defects before it leaves the chan- 
neling regime. The magnitude of the effect is about the same 
for the impurity atom sites and the intrinsic interstitial atom 
sites given in the table. This is due to the strong dechanneling 
that takes place at an impurity atom and compensates for the 
increase in the effect that results from the increase in 
77- I vg 1 2 .  

0,012 
0.08 
0,56 
0,18 
0,18 
0,19 
0,12 

CONCLUSIONS 

1 .  The radiation by channeled electrons and positrons 
during scattering with small momentum transfer at point 
defects has a coherent nature. Because small momentum 
transfers correspond to the spectral region of spontaneous 
radiation during channeling, in this spectral range scattering 
at point defects in thin crystals leads to interference en- 
hancement of the radiation power. 

2. Radiation with zero transfer of longitudinal momen- 
tum is interpreted as an effect of induced radiation in a tran- 
sition between states of the transverse motion, caused by 
scattering at a point defect. In this case the amplitudes of the 
radiation from different defects displaced the same distance 
from the atomic string have the same phase, and as a result 
the power of the additional radiation is proportional to 
N H a , .  If the transferred momentum Ap = 0, but condition 
(2) is satisfied, then additional bands (34) appear in the radi- 
ation spectrum. 

3. The magnitude of the effect depends on the location 
of the point defect in the channel, on its atomic number, and 
on the energy of the particles being scattered. If one varies 
the populations of the different states of the transverse mo- 
tion by varying the angle of incidence of the particles on the 
crystal, one can locate the impurity atoms in the lattice. 

4. The ratio of the number of induced photons to the 
number of photons of spontaneous radiation from the crystal 
per unit time is a maximum when the thickness of the crystal 
is equal to the dechanneling length and the displacement of 
the defect is equal to the radius of the orbit of the channeled 
particles. We note that the question of the variation of the 
absolute yield of quanta in thick crystals containing defects 
(L > 1,) requires a separate treatment. 

The authors are grateful to M. A. Kumakhov and N. F. 
Shul'ga for helpful discussions. 

5.10-3 
0,6.10-3 

6.10-2 
1,5.10-& 
1,6.10-& 
1,1.10-~ 
0,8.10-3 

APPENDIX 

Let us demonstrate the correctness of equality (20). We 
introduce the notation 

I 

e-, 3p-Is 
e-, 3p-Is 
e-, 3p-Is 
e+, 1-0 
e+ ,  2-1 
e+, 2-1 
e+, 2-1 

First making the limits of integration large but finite, we 
integrate the left hand side of (20) by parts: 

1 
2 
1,4 

11 
11 
9 
8 

14 
14 
83 
14 
44 
70 
81 
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5 
25 

7 
70 
70 
27 
25 



We shall assume that the inequality IApl4 l/S is satisfied, 
where S is the spatial scale of the variation of the matrix 
elements (1 8), i.e., the amplitude of the thermal vibrations of 
the point defect in the state Is). Then the exponential in the 
integral on the right hand side can be expanded in a series 
and truncated at the first term. Keeping in mind that 

lim F (-T) =O, 
T-co 

we obtain 

In the limit as T--+a it follows from this result that equality 
(20) is correct. The phase factor exp(iApz,) can be dropped, 
since for Ap # 0 expression (20) vanishes. 
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