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An investigation was made of acoustic relaxation in MBBA and BMOAB liquid crystals in the 
isotropic and nematic phases. A universal dependence of the absorption and of the velocity 
dispersion of sound on the reduced frequency w r  (T is the characteristic relaxation time ) was 
observed in the range w r  = 10-2-102. Selection of the relaxation time (instead of temperature) as 
a scaling factor made it possible to match quantitatively the anomalies of equilibrium and dynam- 
ic properties. 

1. INTRODUCTION 

The nature of the critical phenomena that occur near 
the nematic-isotropic liquid (NI)  phase transition is not yet 
clear, in spite of the apparent simplicity of this transition and 
numerous investigations (for a review see, for example, Ref. 
1) .  The results of recent experimental investigations of the 
specific heat,* order ~a rame te r ,~  and susceptibility4 have 
demonstrated once again the difficulties encountered when 
the NI  transition is described in the traditional way using the 
Landau-de Gennes expansion.' An alternative approach 
has not yet been developed because no reliable information is 
available on the true nature of the asymptotic laws (critical 
exponents). Moreover, it has not yet been possible to match 
the behavior of various equilibrium dynamic properties near 
the N I  transition, so that an acceptable phenomenological 
model is not yet available. For example, the specific heat in 
the nematic phase can be described by the Landau-de 
Gennes expansion including terms of the sixth order and 
also fluctuation corrections. However, a satisfactory de- 
scription of the temperature dependence of the order param- 
eter requires different values of the expansion coefficients. In 
any case, the fourth-order term is anomalously small, so that 
subject to certain qualifications we can speak of "tricritical" 
nature of the N I  t ran~it ion.~ Unfortunately, the tricritical 
hypothesis makes it difficult to obtain agreement between 
the specific heat and susceptibility in the isotropic phase. 
The main reason for these difficulties is that the N I  transi- 
tion is of the first order and the approach to temperature of 
divergence of the susceptibility ( T  *) is limited to the interval 

1 T-T 1 I T.-TNI I t=- > > lo-3, 
T* TNI  

where T,, is the temperature of the N I  transition. Experi- 
mentalists therefore have to determine the nature of the 
asymptotic laws within just one order of variation oft. More- 
over, there are no grounds for assuming that these will be 
simple power laws linked by universal relationships, as in the 
vicinity of a second-order phase transition. We can use the 
following analogy with the critical point of the liquid-gas 
transition. If the density of the sample differs from the criti- 
cal value, the transition is of the first order. In this case the 
temperature dependences of the physical quantities cannot 

be described by simple power laws (critical exponents cannot 
be deduced from them). Nevertheless, it is possible to retain a 
universal description if instead of temperature we use the 
susceptibility or specific heat as the scaling factor (for a re- 
view see Ref. 6). In the case of dynamic properties a natural 
scaling factor is the relaxation time T and the second variable 
linked to this factor is the frequency w. 

We carried out an experimental study with the aim of 
determining the nature of the critical dynamics near the N I  
transition without making any a priori assumptions about 
the nature of the anomalies of the equilibrium properties and 
not using T *  as a fitting parameter. With this in mind we 
posed the following questions. 

1. Do there exist homogeneous functions of variables w  
and T describing acoustic relaxation in the isotropic and ne- 
matic phases? 

2. Are these functions universal and what is their form? 
3. What are the requirements that are imposed on the 

critical anomalies of equilibrium properties by the universal- 
ity and asymptotic (wr( 1 and 1) behavior of the dynam- 
ics? 

The answers can be summarized as follows. 
The critical dynamics of the isotropic and nematic 

phases of the two investigated substances (MBBA and 
BMOAB) is governed wholly by the actual characteristic 
relaxation time, which is in one-to-one relationship with the 
susceptibility. The anomalous parts of the absorption and 
dispersion are described by homogeneous universal func- 
tions. The explicit form of these functions for the isotropic 
phase is similar to that in the model of Imura and Okano.' 
Retention of the homogeneities by the functions for the ne- 
matic phase imposes serious restrictions on the relationship 
between the fluctuation mechanism of acoustic relaxation 
and the contribution of the relaxation of the order param- 
eter. Selection of the relaxation time as the scaling factor 
instead of T - T * makes it possible to match, within the 
scaling framework, the equilibrium and dynamic properties 
near the NI  transition. 

2. EXPERIMENTAL INVESTIGATION 

We carried out a detailed study of the temperature de- 
pendence of the absorption coefficient and of the dispersion 
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of the phase velocity of sound in the isotropic and nematic 
phases of unoriented samples of two liquid crystals: MBBA 
(4-methoxybenzylidene-4'-n-butylaniline) and BMOAB (4- 
n-butyl-4'-methoxyazoxybenzene). In the case of MBBA 
there are extensive experimental data on various properties, 
including the temperature dependence of the viscosityS and 
of the line width of scattered light,9 as well as on acoustic 
relaxation.''," The second liquid crystal (BMOAB) is char- 
acterized by a high chemical stability and a low concentra- 
tion of impurities." The most important point is that preci- 
sion data on the specific heat were obtained earlier for our 
samples.' Previously evacuated cells were filled with liquid 
crystals in an atmosphere of an inert gas (helium or nitro- 
gen). 

A cell with a sample was a stainless-steel cylinder in an 
isothermal copper can. The volume of the cell was - 70 cm3. 
A source and a detector of sound, both made ofX-cut quartz 
plates (disks 20 mm in diameter), were attached to acoustic 
guides with a total length 1 15 mm and also made of stainless- 
steel. A rod was used to displace the upper mobile acoustic 
guide with the source by a distance of up to 20 mm relative to 
the lower one. The acoustic base length was measured in the 
clockwise direction. 

A thermometric bridge and a heater both connected to a 
temperature stabilization system were placed on the isother- 
mal can surrounding the cell. The cell was also surrounded 
by a copper screen the temperature of which followed auto- 
matically the temperature of the cell. The transfer of heat to 
the cell was minimized by ensuring that the leads and the 
acoustic guide drive rod were in thermal contact with a cop- 
per block the temperature of which was kept equal to the cell 
temperature; the whole enclosure was evacuated. Tempera- 
ture was measured with a platinum resistance thermometer. 
The thermostatting error did not exceed 3 mK during one 
measurement. The details of the apparatus were described 
earlier. l2  

The main distorting factors near the phase transition 
were the temperature gradients and the nonequilibrium state 
of a  ample.^ We stirred a liquid crystal to eliminate inhomo- 
geneities and to reduce the time taken to reach equilibrium. 
The stirring was performed by repeated rapid motion of the 
mobile acoustic guide. The temperature gradients did not 
exceed 0.5 mK/cm. The time taken to establish equilibrium 
in a sample after a change in temperature did not exceed 1 h. 

The temperature dependences of the phase velocity and 
of the absorption coefficient of ultrasound were determined 
at frequencies in the range 0.9-26.5 MHz at temperatures 
from 20 to 100 "C. This range of frequencies and tempera- 
tures made it possible to vary the product wr by four orders 
of magnitude. 

The velocity of sound was measured by a phase-pulse 
method. An amplified rf pulse crossed the investigated sub- 
stance and interfered with a reference signal oscillating at 
the carrier frequency. The error in the determination of the 
phase velocity did not exceed 0.15%. The absorption coeffi- 
cient of sound was deduced from the change in the amplitude 
of an rf pulse which traveled a known distance. The error in 
the absorption measurements was 1-5%, with the exception 
of the frequency 0.9 MHz at which the scatter of the results 

far from the transition point (where the absorption was 
weak) increased to 20% as a systematic error appeared; in 
the calculation of the excess absorption we regarded this er- 
ror as the fitting parameter and included it in the regular 
part. Measurements of the absorption coefficient and veloc- 
ity of sound were carried out simultaneously. The results 
obtained for MBBA were in qualitative agreement with the 
published data.'' The transition temperature T,, was taken 
to be the value corresponding to an abrupt change in the 
absorption coefficient and in the velocity of sound in a sam- 
ple. Our prolonged investigation involving repeated heating 
and cooling reduced the value of TNI by 0.3-0.5 K in the case 
of MBBA and by 0.05-0.1 K in the case of BMOAB. An 
objective analysis of the results belonging to different series 
and a comparison with the published data on acoustic and 
other properties required selection of a consistent tempera- 
ture scale. It was natural to select T - T,, as the scale for all 
the anomalous properties and the absolute temperature T for 
the quantities which changed only slightly in the vicinity of 
the transition point, such as viscosity, regular part of the 
velocity of sound, etc. 

The excess absorption coefficient a' was deduced from 
the experimental data by subtracting the regular part asso- 
ciated with the shear viscosity (7) and the noncritical part of 
the volume viscosity (vv):  

where u is the velocity of sound and p is the density of the 
crystal. The values of the shear viscosity for the isotropic 
phase of MBBA (Ref. 8) were approximated by the depen- 
dence v (T)  = 0.594x 10W6exp (4040/T) P and the value of 
the noncritical part v v  was employed as the fitting param- 
eter. The criterion of validity of any theoretical model is the 
condition (a'A )-wr (A is the wavelength of sound) in the 
hydrodynamic range (wr< 1). In view of the absence of data 
on the viscosity of BMOAB, the regular part of the absorp- 
tion in this substance was determined entirely from the crite- 
rion given above and was found to be close to the value for 
MBBA. The experimental dependences of the absorption co- 
efficient and of the velocity of sound on the frequency and 
temperature can be seen in Figs. 1 and 2. 

The homogeneity of the dispersion of the velocity of 
sound and of the anomalous part of the absorption coeffi- 
cient (considered as functions of the frequency and tempera- 
ture) indicates that 

where v ,  is the velocity of sound2) extrapolated to the limit 
w + w from the critical relaxation region (it is represented 
by a regular function which is not affected by the proximity 
to TNI); p, and p, are functions of the reduced frequency 
w.r(T); A ( T )  depends only on temperature. If the homogene- 
ity does indeed exist then the excess absorption and the dis- 
persion can be represented in the form 

Ig (a'hln) =a,++, (lg o f b , ) ,  
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FIG. 1 .  Absorption coefficient of sound divided by the square of 
the frequency (in units of 10'') recorded near the NI transition in 
MBBA (f = o/2v andT,, = 3 14.913 K): X ) 1.5 MHz; W) 3.8 
MHZ; A) 9.4 MHZ, a) 15.1 MHZ; 0) 20.9 MHZ. 

wherea, = logA (T, ); b, = logr(T, ); n is the number which axis. Such a procedure was carried out for both phases of 
labels an experimental point. Then a series of experimental MBBA and MBOAB. The additional fitting parameter in 
curves, such as the dependences of log(af/2 ) on log w (Fig. 3), the analysis of the dispersion was the quantity v, (Fig. 1). It 
should reduce to the same dependence @, = log p, (or was found that in all cases the dispersion and the excess ab- 
@, = log p2) if the individual curves are displaced by an sorption were (within the limits of the experimental error) 
amount a, along the log(alA ) axis and by b, along the log w homogeneous functions of the temperature and frequency. 

FIG. 2. Velocity of sound near the NI transition 
in MBBA (notation as in Fig. 1) .  The lower and 
upper continuous curves represent the tempera- 
ture dependences of u ( o  --* 0) and 0,. The dis- 
continuity of u, at the transition point is due to 
a density discontinuity, 
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3. DISCUSSION OF EXPERIMENTAL RESULTS. LANDAU 
THEORY OR SCALING? 

FIG. 3. Excess absorption per unit wavelength iri the isotropic phase of 
MBBA, plotted for the following reduced temperatures T - T,, : 1) 0.019; 
2)0.092; 3)0.601; 4) 1.066; 4) 1.066; 5) 1.493; 6)  2.467; 7) 3.580; 8) 5.383; 9) 
8.179; 10) 11.585; 11) 15.373; 12) 21.953; 13) 26.604; 14) 32.839. 

However, these functions were identical for the two sub- 
stances, but different for the isotropic and nematic phases 
(Figs. 4 and 5). 

We can thus see that a search for the homogeneity yield- 
ed the relaxation times at each temperature, the functions 
A (T) (they were indeed found to be the same for the velocity 
dispersion and the absorption of sound), and the functions 
q~,(or) and p2(or). It should be stressed that the existence of 
homogeneous functions of the (2) and (3) type automatically 
means that there is one (and only one) time ~ c a l e , ~ '  which is 
the temperature-dependent relaxation time 7. 

The dispersion of the velocity and of the absorption of 
sound are governed respectively by the real and imaginary 
parts of the complex adiabatic compressibility Bs which are 
frequency-dependent: 

where 

(Pis the pressure and S is the entropy); A82(w,r) is a complex 
quantity describing the critical absorption and the critical 
dispersion: 

Im (A52/v,2) =alh/n, Re (Av"2/u," =I- (v lv , )  '. 
The critical absorption and dispersion in the nematic 

phase are governed by at least two mechanisms: relaxation of 
the order parameter (Qg) and relaxation of the correlation 
function of fluctuations of the order parameter ((QV Qji )). In 
the isotropic phase the fluctuation mechanism is the only 
one acting. The existence of two mechanisms of the critical 
relaxation makes it possible to answer, in principle, the fol- 
lowing question by an experimental study: do the fluctu- 
ations reduce to just small corrections (Landau theory) or are 
they so large that they determine the nature of the effect 
(scaling)? 

A. Self-consistent field approximation (Landau theory) 

In this approximation the complex adiabatic compress- 
ibility can be found by expanding the pressure and entropy 
as a series in terms of the order parameter (up to quadratic 
terms inclusive) and in terms of the equilibrium temperature 
(see, for example, Ref. 13). Substituting in these expansions 
the values of the order parameter and of the correlation func- 
tion found from the relaxation equations,14 we obtain 

FIG. 4. Universal functions q, and q, for the 
isotropic phase of MBBA (0) and BMOAB ( + ). 
The continuous curves represent the Imura- 
Okano functions [Eq. (29)l. 
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FIG. 5. Universal functions p, and p, for the nematic phase 
of MBBA (0) and BMOAB ( + ). The scales for p, and p, are 
shifted relative to one another to avoid crossing. 

where x = i w ~ ,  

Pi  (x) = (l+x) -', 

Pz (x) = ( ~ / 2 ) - ' ~  [(2/x-1)'"- (2/x)'"l. (8) 

Here A,(T)'and A,(T) are real functions of temperature: 

A i  (TI = (aPIaQ) s, 0 (aQlap) S, (9) 

(Vm is the volume per one molecule; in the case of MBBA, 
this volume is Vm ~ 4 7 0  A3). 

The quantities occurring in Eqs. (9) and (10) can be 
found by expanding the molar thermodynamic potential 
@ (T, P, Q ) in terms of the modulus of the order parameter: 

A@/RTNI=i/zatQV+'/3BQ3+i/4CQ4f 1/5DQS+i/,,EQG+i/Zb (VQ) 

(11) 

(R is the universal gas constant). In this approximation the 
reciprocal susceptibility is 

and the correlation length is r ,  = (bx )'I2. The correlation 
length for the isotropic phase is r ,  = (b = rot -'I2. 
The expansion (1 1) is obtained ignoring biaxial and trans- 
verse fluctuations of the tensor QU which clearly do not con- 
tribute significantly to the critical absorption and disper- 
sion. 

We shall now give approximate (to within one constant 
factor g) estimates of A, and A, which can be used to carry 
out direct calculations with the aid of the expansion given by 
Eq. (11): 

The first term in Eq. (6) is related to relaxation of the 
order parameter (Landau-Khalatnikov mechanismI5), 
whereas the second is associated with relaxation of the corre- 
lation function (Ornstein-Zernike approximation) and is 

proportional to the fluctuation part of the molar specific 
heat: 

where n is the number of fluctuating components of the or- 
der parameter. For the nematic phase we can assume that 
n = 1, which corresponds to an allowance for just the longi- 
tudinal fluctuations. In the isotropic phase, considered in 
the approximation of one correlation length, we find that 
n = 5. The condition of homogeneity [Eqs. (2) and (3)] can be 
satisfied only if the temperature dependences of A, and A, 
are the same. We can easily see that the form of the functions 
A, and A, is governed by the ratio of the constants of the 
expansion (1 1) and the same temperature dependence can be 
obtained only for a special selection of the constants (for 
example, if B = C = D = 0). We shall try to match the 
acoustic data with the specific heat of the nematic phase of 
MBBA using the following set of the expansion coefficients 
i n E q . ( l l ) : a = 1 . 4 , B =  -0.06,c=O.l ,D=O,E=0.33,  
and b /a = rg = 36 A2, which makes it possible to describe 
satisfactorily the temperature dependences of the specific 
heat, as well as the discontinuities of the entropy [(AS/ 
R ) z 0.1 - Ref. 21 and of the order parameter (A Q=. 0.3 - Refs. 
3 and 16). The temperature dependence of the order param- 
eter is described less satisfactorily, but the experimental data 
of different  author^^,'^ differ greatly. We can see from Fig. 6 
that the departure from homogeneity is slight and, generally, 
it is of the same order as the error in the description of the 
equilibrium properties [corresponding to a different set of 
the coefficients of the expansion in Eq. (1 1) for BMOAB- 
see Ref. 41. Nevertheless, it is not very likely that the homo- 
geneity found experimentally for the two samples, which is 
indeed a universal property of the NI transition, is the result 
of a random (and fairly fine) interplay of constants. More- 
over, it is worth noting the large value of the fluctuation 
contribution to the properties of the nematic phase: A,/A, 
varies from 0.2 for T,, - T =  15 K to 0.33 for 
T,, - T = 0.1 K. At high frequencies the fluctuation mech- 
anism is practically the only one, because 

lim F, (x) -x-', and lim F ,  (x) -x-'". 
I+ m x+ - 
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FIG. 6. Results of a calculation of the absorption coefficient of the nema- 
tic phase of MBBA, carried out in the self-consistent field approximation 
using Eqs. (6)-(8), (12), and (13) (here, p, = ImF,,p, = I d , ) :  1 )  
T,, -T=0 .1K;2 )TM - T =  1.0K;3)A,.ImF2(forTM - T=O.lK);  
4)A,.ImF1 (for T,, - T = 0.1 K). The points are the experimental values. 

In the case of the isotropic phase, for which the pretran- 
sition effects are entirely due to fluctuations, the experimen- 
tal temperature dependence of the specific heat is not de- 
scribed by Eq. (14) and in the case of the susceptibility we 
need to include the fluctuation corrections that go beyond 
the Ornstein-Zernike approximation (see Ref. 4). 

It is possible that by including the higher orders of per- 
turbation theory and varying the resultant additional fitting 
parameters we may finally be able to match the existing ex- 
perimental data. However, this approach seems artificial to 
us and in conflict with the very essence of the Landau theory. 

We shall estimate the Ginzburg criterion (see Ref. 14) 
representing the range of validity of the self-consistent field 
approximation (t%Gi) by using the constants given above. 
Comparing the specific heat discontinuity (a2/2C), obtained 
from the expansion (1 1) ignoring the cubic term, with the 
fluctuation part of the specific heat [Eq. (14)], we find the 
following expression for the isotropic phase: 

n2 VmZ Cz Gi =--- - 10-3. 
64n2 roe a4 

Since ( V F / r , )  2 1 (intermolecular short-range interaction), 
the smallness of Gi is governed by the anomalously small 
constant Cz0 .1  (tricritical behavior). This estimate shows 
that the limit of validity of the Landau theory (t- Gi) is in 
any case close (in respect of the order of magnitude) to the 
transition temperature. Therefore, near T,, we can expect 
crossover (from the average-field to the fluctuation case) be- 
havior of the physical properties. 

6. Scaling 

Dynamic scaling describes the universal dynamics of 
systems with highly developed fluctuations. The critical part 
of the complex adiabatic compressibility is then a homogen- 
eous function of temperature (see, for example, Ref. 17), 

Av""vw"z" ( x )  , (15) 

where y = a/z; a and z are, respectively, the critical expo- 
nents of the specific heat (AC, a t -" ) and of the relaxation 
time (T a t -' ). We shall find the dispersion and absorption 
of sound in the hydrodynamic range (x( 1), where $(x) is an 
analytic function 

$ ( x )  =$ (0 )  +*I ( 0 )  x+'/z$" ( 0 )  x2+. . . , (16) 

a'h 
-= 

A FZ 
Im ---- z"' ( 0 )  o z .  

n U ,  

Near the critical region ( x )  1), we have 

where A ,  is a real quantity, 

a ' h / n = A , ~ - ~  sin ( n y / 2 ) .  (21) 
The relationships (17), (1 8), and (20), (21) allow us to formu- 
late the following conclusions which apply to the nematic 
and isotropic phases and which can be checked experimen- 
tally. 

1. The asymptotic behavior of the absorption and dis- 
persion in the limiting cases of low and high frequencies is 
governed by the same critical exponent y: 

vmZ-uZ a'h ---- A ( T )  -zY,  0 z < 1 ;  
vm2 O't 

V , ~ - V ~  a'h 
------ =cp,((uz) - -=qz(o't)  - (0't)-Y, o z W l .  
vwZA ( T )  A (TI 

2. In the limit WT + oo the ratio of the dispersion to the 
absorption tends to a constant value: 

Re II,(x) vW2-v2 (P, ( O T )  -=-==- n 
- ctg - y. 

Im 11, ( x )  vw2a'h rp, (o't) 2 (24) 

It is clear from Figs. 3,4,5, and 7 that both conclusions 
deduced from dynamic scaling are borne out by the experi- 
mental results. The values of the critical exponent y are the 
same for the dispersion and absorption in both substances, 
but they differ slightly between the nematic and isotropic 
phases (Table I). The value of the ratio Re$/Im$ = p,/ 
p2 = 1 + 0.2 applies to both substances in the isotropic and 
nematic phases, which is in agreement with the critical expo- 
nent yz0.5.  

It is worth noting the value of the exponent y =a/ 
zz0.5,  which is obtained for the nematic phase. We are not 
convinced that the lower valueyz0.4 for the isotropic phase 
is asymptotic and does not increase to 0.5 in the limit 
w r  -+ co . The value y = 0.5 corresponds to the self-consis- 
tent field approximation, but it is important to note that the 
critical exponents of the specific heat (a < 0.5 - Ref. 2) and of 
the relaxation time (z < 1, see the next section) do not agree 
with the corresponding exponents obtained in the self-con- 
sistent field approximation (a = 0.5, z = 1). 

Clearly, these values, which require introduction of a 
fitting parameter T * in the definition, cannot be regarded as 
the real (asymptotic) critical exponents and only selection of 
the relaxation time as the scaling factor gives the true power- 
law behavior. 

The scaling description of the acoustic relaxation pro- 
cess is attractive if only because it makes it possible to avoid 
the use of a large number of fitting parameters in the expan- 
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sion (1 l), the validity of which is doubtful. It is worth noting 
only that the critical exponent y is close to the average-field 
value 0.5. 

4. DISCUSSION OF EXPERIMENTAL RESULTS. EXPLICIT 
FORM OF FUNCTIONS DESCRIBING ACOUSTIC 
RELAXATION 
A. Relaxation time 

We shall compare the relaxation time, found by us by 
deriving homogeneous functions, with the results of direct 
measurements. In the case of the isotropic phase of MBBA 
there are data on T(T) obtained from measurements of the 
line width of the anisotropic Rayleigh scattering of light9 
and from induced birefringence.18 The results are qualita- 
tively close to one another and give the value T- lpsec for 
T=: TM. It is clear from Fig. 8 that the temperature depen- 
dences of our results are in agreement with those reported in 
Ref. 18, which are clearly the most accurate. Therefore, the 
results from Ref. 18 will be used to link our values of T to the 
absolute time scale. 

We shall represent the relaxation time by 

wherex is the susceptibility and v is some kinetic coefficient. 
If we assume that the coefficient u is independent of the prox- 
imity to the transition point and that its temperature depen- 
dence (like that of the shear viscosity) is 

we find that the relaxation time calculated from Eq. (25) 
agrees with the experimental data. We then obtain 8 = 4200 
K. The temperature dependence of the susceptibility of 
MBBA was taken from Ref. 19. It was found that MBBA, 
like BMOAB (Ref. 4), did not satisfy the Curie law cc t -': 
the susceptibility and, consequently, the relaxation time had 

a characteristic "beak" in the isotropic phase close to T,, 
(z < 1). In Ref. 4 the deviations from linearity were described 
by fluctuation corrections going beyond the Ornstein-Zer- 
nike approximation. The difference between the values of 
the relaxation times of MBBA and BMOAB (approximately 
a factor of 2) was clearly due to the corresponding difference 
in the shear viscosity. 

Since independent data on the relaxation time in the 
nematic phase were not available, the linkage to the absolute 
time scale was made by matching the experimental depen- 
dence p2(mr )  to that found by calculation (see Fig. 6). The 
relaxation time in the nematic phase of both substances was 
several times greater than the relaxation time in the isotropic 
phase. The reasons for this difference were not clear. 

B. Amplitude of the critical absorption and dispersion 

We shall compare the amplitudes of the critical absorp- 
tion and dispersion [see Eqs. (2) and (3)] with the anomalous 
parts of the specific heat (AC,') taken from Ref. 2. It is clear 
from Fig. 9 that, within the limits of the experimental error, 
the temperature dependences of A (T)  and ACP/(Cp), are 
identical [(Cp ), is the regular part of the specific heat]. More- 
over, the coefficient of proportionality g is close to unity. 
The values of the coefficient g = A  (CP),/ACp are listed be- 
low: 

MBBA BMOAB 
isotropic phase: 0.85 5 0.08 1.06 + 0.05 
nematic phase: 0.70 + 0.17 0.75 + 0.10 

The product A (T )  (CP),/ACp for the isotropic phase 
was calculated by Imuro and ~ k a n o , '  who followed Fix- 
man2' and postulated identical values of the anomalous 
parts of the specific heats Cp and C,. As shown in Ref. 21, 
this corresponds to neglect of the pressure dependence of the 

'TABLE I. Values of critical exponent y 
1 

Isotropic phase 1- MBBA I ,BMOAB 
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Nematic phase 

MBBA 1 BMOAB 

oz<< 1 (absorption) 
07 >> 1 (dispersion) 
WTBI (absorption) 
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0,36*0,05 0,40i0,05 
0,45*0,10 I 0.18*0,10 

=0,4 1 =0,4 

0,50*0,05 
0,43*0,05 
0,50*0,05 

0,50*0,05 
0,50*0,05 
0,50*0,05 



transition temperature. If dT,, /dP = 0, then 

An allowance for the dependence of T,, on P gives, in the 
first appro~imation,~' 

g= (yo-1) +2yo (dP/dT)  v (dT~ , ldP) .  (28) 
Using the experimental values of the paraqeters occurring 
in Eq. (28), which are (aP/aT), z 1 MPa/K, yo= 1.2 (Ref. 
22), and dT,,/dP = 0.35 k/MPa (Ref. 8), we obtain an esti- 
mategz 1 ( with an error of the order of 10-20%), which is in 
good agreement with the experimental results. 

C. Explicit form of universal functions 

The explicit forms of the functions p,(wr) and p,(wr) for 
the isotropic phase are close to those given in Ref. 7 (Fig. 4), 
which are based on the Ornstein-Zernike approximation [see 
Eq. (811: 

FIG. 8. Relaxation times of MBBA and BMOAB 
near the NI  transition: a), .) MBBA; + ), A) 
BMOAB; a) + ) Iphase; m), A) Nphase; 0) results 
taken from Ref. 18; the continuous curve repre- 
sents r calculated using Eqs. (25) and (26). 

It should be noted that even near the usual critical point, 
where the self-consistent field approximation does not ap- 
ply, the correlation function differs little from the Ornstein- 
Zernike correlation function.I4 The form of the universal 
functions p,(wr) and p2(wr) for the nematic phase can be 
approximated by the expressions 

9, (0'6) =m Re F ,  ( x )  + ( I - m )  Re F ,  ( x ) ,  

9, ( o ~ )  =m Im F ,  (I) + ( I - m )  Im F ,  ( 2 ) .  
(30) 

The best agreement is obtained form = 0.75. This value 
is close to the results of calculations carried out in the self- 
consistent field approximation (see Sec. 3 and Fig. 6), but in 
contrast to the latter it is independent of proximity to the 
transition point. This corresponds to the same temperature 
dependences ofA, and A,  in Eq. (6), providing an additional 
argument in support of the scaling description. 

6. CONCLUSIONS 

The universality of the critical dynamics of nematic liq- 
uid crystals and the nature of the asymptotes of the universal 
functions make it possible to put forward new ideas on the 
nature of the NI transition. Clearly, the tensor nature of the 

FIG. 9. Relationship between the amplitude of the critical 
absorption and the anomalous part of the specific heat: the 
continuous curves represent the specific heat of MBBA and 
BMOAB; A (T): a) MBBA; + ) BMOAB. 
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order parameter and the associated first-order character of 
the NI transition are the main reasons for the difficulties 
encountered when an attempt is made to describe this transi- 
tion in the self-consistent field approximation in spite of the 
relatively small value of the Ginzburg number (Gi- lop3) 
obtained ignoring the cubic invariant in the Landau expan- 
sion. The existence of this cubic invariant causes breakdown 
of the universal relationships between the temperature de- 
pendences of the anomalies of the physical quantities. The 
use of the relaxation time as the scaling factor restores the 
universality. This universality can also be restored if in place 
of T - T * we select the susceptibility or the specific heat as 
the scaling factor. This selection of the scaling factor is more 
natural in the description of equilibrium properties. Al- 
though the reconstructed universal picture is characterized 
clearly by the average-field critical exponents, the approach 
used is characteristic of the scaling procedure. 

In particular, there is no need to separate the fluctu- 
ation contribution to the anomalies of physical properties 
from the contribution associated with the temperature de- 
pendence of the order parameter and in this sense an 
allowance for fluctuations cannot be reduced simply to small 
corrections. 

''Both substances were prepared from materials supplied by the Scientific- 
Research Institute of Organic Intermediate Products and Dyes, Moscow 
without any additional purification. 

"The quantity u, may, in principle, differ from the velocity of sound at 
very high frequencies, since critical relaxation mechanisms are active 
when 0 ~ ~ 1 .  

3'As a result of this procedure, which does not imply the use of a specific 
theoretical model, the relaxation time is determined accurately apart 
from a factor which is the same for all the experimental points. 
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