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We consider the problem of the stability of a nonlinear one-dimensional chain of coupled oscilla- 
tors. We give an estimate of the limit of stochasticity as function of the parameters of the system. 
We show that below the limit of stochasticity the system can be described approximately by the 
nonlinear Schrodinger equation. We give a numerical comparison of the chain dynamics and of 
the nonlinear Schrodinger equation. 

1. INTRODUCTION 

At the present there is considerable progress in the 
study of the conditions for the occurrence of stochasticity of 
motion in Hamiltonian systems with a finite number of de- 
grees of freedom. As there are, however, no rigorous analyti- 
cal methods for the determination of a criterion for stochas- 
ticity for such systems (an exception are some systems of the 
Sinai billiard type) normally the limit of the transition from 
regular to random motion is found by the use of various 
kinds of estimating considerations with the subsequent in- 
clusion of a numerical experiment. Basically all existing cri- 
teria for the transition to chaos in Hamiltonian systems are 
based upon the estimates of parameters for which bifurca- 
tions occur which are connected with the destruction of var- 
ious kinds of stable One of the most widely used 
criteria for the transition to chaos is the criterion for the 
overlap of nonlinear resonances.' This criterion corresponds 
to the destruction of the quasi-periodic motion of the system 
(i.e., the destruction of nontrivial integrals of motion) due to 
the "tangency" of the separatrix of the different nonlinear 
resonances. This leads to the locally unstable nature of the 
motion. Numerical calculations show that such a kind of 
motion is stochastic.'In Ref. 5 the criterion for the stochasti- 
city for a Hamiltonian system with two degrees of freedom 
was determined from the conditions for the loss of global 
stability of the regular motion. In Ref. 6 an estimate of the 
parameters for which the transition to chaos occurs in a 
chain of nonlinearly coupled oscillator was determined from 
the condition for the loss of stability of a particular solution 
in the form of antiphased nonlinear oscillations. However, 
all these criteria of stochasticity of this kind possess, of 
course, a well known defect-the loss of stability of some 
regular motion may lead not to the occurrence of chaotic 
motion but to the transition to another (possibly, more com- 
plicated) kind of regular motion. As an example of systems to 
which such kind of criterion is inapplicable (although for- 
mally they can be used) we have the instances of completely 
integrable systems. Nonetheless for physical systems with a 
finite number of degrees of freedom the criteria used com- 
bined with numerical experiments turn out in many cases to 
be useful for the study of the features of the transition from 
regular to chaotic motion. When the number of degrees of 
freedom is increased the difficulties connected with the 
study of the conditions for the transition to chaos in nonlin- 

ear dynamical systems appreciably increases. In that case 
there occur in the system new collective kinds of motion 
which may lead to a change in the nature itself of such a 
transition. 

The present paper is devoted to a study of the stability 
properties of the motion of a one-dimensional chain of cou- 
pled nonlinear oscillators with the Hamiltonian 

wherep, and u n  are the momentum and displacement of the 
nth oscillator, N the number of oscillators, ando the nonlin- 
earity parameter. The system (1.1) is apparently the simplest 
physical model which is convenient for a study of the fea- 
tures of the transition from a stable to a chaotic motion for 
different values of the wavelengths which are excited, the 
nonlinearity, and the number N of degrees of freedom. Fer- 
mi, Pasta, and Ulam8 started the numerical study of the sta- 
bility of the system (1.1) in connection with an investigation 
of the conditions for the applicability of the statistical ap- 
proach for the description of such kinds of systems. The nu- 
merical analysis of Ref. 8 led to a rather unexpected result: 
instead of the expected chaotic exchange of energies between 
the modes, the motion of the system (1.1) turned out to be 
almost periodic. Further analytical and numerical studies of 
the system (1.1) led to the establishment of the existence of a 
stochasticity limit separating the regions of stable and ran- 
dom motions.14 The stochasticity limit was determined in 
Refs. 1 to 3 using the criterion for the overlap of nonlinear 
resonances. The negative result obtained in Ref. 8 was thus 
explained by the choice of the parameters of the system (1.1) 
corresponding to the stable regime of motions. 

In our opinion, one can use as one of the conditions for 
estimates of the stochasticity limit the condition for the de- 
struction of regular collective motions which are realized in 
such systems in well-defined limiting cases. In particular, 
such integrable limiting cases for the system (1.1) are the 
following: the long-wavelength approximation which under 
well defined conditions leads to a KdV type of e q ~ a t i o n , ~  and 
the "narrow packet" approximation Sk /k,( 1, where k,  is a 
characteristic wave number in the packet and Sk the charac- 
teristic size of the packet in k .  

In what follows we present an investigation of the sta- 
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bility properties of the system (1.1) with periodic boundary 
conditions in the case where high modes are initially excited. 
We show that under well defined conditions the narrow 
packet approximation is realized in the system (1.1) which 
leads to the nonlinear Schrodinger equation (NLS). It is well 
known that the latter is a completely integrable system.9 We 
give a numerical comparative study of the dynamics of the 
NLS and of the nonlinear chain (1.1). We show that if the 
conditions for the narrow packet approximation are satisfied 
we have good agreement for the nonlinear chain of the well 
defined integrals of motion of the NLS equation the number 
of which can be enhanced due to the refinement of the condi- 
tions for the applicability of the narrow-packet approxima- 
tion (e.g., through the increase in the number of oscillators N 
while leaving the other parameters of the system un- 
changed). The existence of such additional integrals means 
for the chain the presence of a well defined fraction of the 
regular component of the motion. 

We give an estimate for the conditions for the applicabi- 
lity of the narrow-packet approximation and discuss the pos- 
sibility of using it for an estimate of the stochasticity limit for 
the system (1.1). Such an estimate corresponds to the crite- 
rion for the destruction of regular motions described by the 
NLS equation. We show that the violation of the conditions 
for the applicability of the narrow-packet approximation in 
fact corresponds to the excitation of all modes of the chain. 
We give a comparison of the criterion for the violation of the 
narrow-packet apprcximation with the criterion for stochas- 
ticity obtained from the condition of overlap of nonlinear 
resonances and with the criterion for the loss of stability of 
antiphase motions6 

2. THE NARROW-PACKET APPROXIMATION 

We consider the case with periodic boundary condi- 
tions: u, = u, ,p ,  = p ,  and change in (1.1) to the canonical 
variables a, ,a:: 

0 k = 2  sin ( n k / N ) ,  O<k<N-I. (2.1) 

In (2.1) p, = 0. AS we shall in what follows consider the 
narrow packet case: 

we write the Hamiltonian (1.1) in the variables a,,a: in the 
form 

+O (al'aza3a,+~. c.; a,a,a,a,+c.c. ) , (2.3) 

where 
nki  nkz  nka 

Vk,k,,c = 2( sin sinN sin - sin 
N  N N  

The terms ara:a,a, in (2.3) describe resonance four-wave 
decay processes and under the condition (2.2) they are the 
decisive ones, while by 0 we indicate terms which in this 
approximation can be omitted (we discuss below the condi- 
tions for the applicability of the approximation (2.2)). In the 
same approximation we can considerably simplify the exact 
equations of motion 

We expand w, and Vklk2k3k4 in the point k,: 

3P n k  V ,  = - sin2 2 3nP 2nk0 w=- 
N  N '  

sin - 
4N2 N  ' (2.6) 

Substituting (2.6) into (2.3) we get from (2.5) 

Equations (2.7) represent the nonlinear chain of 6q interact- 
ing oscillators. We get for the function 

from (2.7) the NLS equation: 

To facilitate the further analysis we introduce a dimen- 
sionless time T = at and normalize the function @ (0,t ) to the 
integral of motion of Eq. (2.9): 

21T 

For the function 

we get from (2.9), (2.10) 

We note that since the function $ is normalized to unity, the 
parameter E cannot be eliminated from Eq. (2.11). From (2.7) 
we get an equation for the Fourier amplitude c, = A, / I  ' I 2  

of the function $: 
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It is well known that the NLS Eq. (2.1 I), (2.12) is a complete- 
ly integrable system which has an infinite number of inte- 
grals of m ~ t i o n . ~  We give a few of the first integrals: 

At the same time it is well known that Eq. (2.11) describes 
four-wave decay processes." Indeed, Eq. (2.12) has exact 
solutions in the form of a finite amplitude wave: 

We study the stability of the solution (2.14) with respect to 
the decay 2qo+(q, + p) + (go - p). Let initially the follow- 
ing conditions be satisfied: 

Linearizing Eq. (2.12) with respect to cqo ,, , we get the set of 
equations 

idc,+,ld~= [ E- (qo+p) '1 cq,+p+~cq,2cq:-p, 

where according to (2.14) c,(T) zexp  [i(q? - &)TI.  It follows 
from (2.15) that cqo,, aexp(v ,~)  where the instability 
growth rate has the form 

We note that the decay instability in the narrow packet ap- 
proximation for small lql is analogous to the "negative pres- 
sure" kind of instability.'' From (2.14) there follows a condi- 
tion for the decay realization 

3. CONDITION FOR APPLICABILITY OF THE NARROW 
PACKET APPROXIMATION. STOCHASTICITY LIMIT 

Equation (2.11) was obtained in the approximation 
Sq,,, /ko< 1, where Sq,,, is the maximum effective number 
of excited modes (Sq(r) <Sq,,, ). 

We obtain from the energy balance an estimate of how 
Sq,,, depends on E .  To do this we write the Hamiltonian I,, 
(2.13), of the system (2.1 I), (2.12) in the form 

For the sake of simplicity we consider the case when for 

T = 0 in practice a single mode with q = 0 is excited. We then 
have from (3.1) I ,  z ~ / 2  at any time. Using the condition that 
the function $(O,T) be normalized to unity, we get an estimate 
for the sums in (3.1) 

Hence we get the estimate 

which satisfactorily agrees with the results of a numerical 
test (see Sec. 4). The condition for the applicability of the 
narrow packet approximation for the chain (1.1) can thus be 
written in the form 

where we have used Eqs. (2.6), (2.11) and instead of I in the 
definition of the parameter E have introduced the quantity 
Eku = wkoI which characterizes some characteristic energy 
in the packet. 

In sense indicated in the Introduction, the violation of 
the condition for the applicability of the narrow-packet ap- 
proximation (3.3) can be considered as the condition for the 
stochastization of the system (1.1). This gives an estimate of 
the stochasticity limit (6- 1) 

The numerical analysis shows (see also Refs. 2 and 4) that in 
the parameter range (3.4) there occurs a stochastic excitation 
of practically all modes. We shall give in what follows an 
additional discussion of the estimate (3.4) for the stochasti- 
city limit to compare it with the numerical analysis of the 
system (1.1). 

4. PECULIARITIES OF THE DYNAMICS IN THE NARROW 
PACKET APPROXIMATION 

In this section we discuss some characteristic features 
of the behavior of the system (1.1) in the case when the condi- 
tions for the narrowness of the packet are satisfied: 6<1 
w e o )  and the dynamics of the chain can with a good degree 
of accuracy be described by Eqs. (2.1 I), (2.12). We want here 
to draw attention to the following two facts. 

The system (2.1 I), (2.12) is an example of a nonlinear 
system which, being completely integrable, turns out to be 
unstable under the condition E > 1/2. Applied to the chain 
(1.1) condition (2.17) means 

This instability is observed in a numerical experiment with 
(1.1) in the parameter range 

and can erroneously be interpreted as a local instability of 
the stochastic motion (see, e.g., Ref. 6), although in actual 
fact the motion takes place in the region where the narrow 
packet is applicable. 

It is also well known that for completely integrable sys- 
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FIG. 1 .  Form of  the autocorrelation function o f  mode occupations I C , ( T ) / ~  
for the NLS equation, q = 0: a-E = 5 ,  b-E = 10. 

tems an appreciable decrease of the temporal correlation 
functions may be connected with the increase in the number 
of degrees of freedom involved in the dynamics. This leads to 
the fact that in the numerical analysis of such systems it 
turns out to be rather complicated to distinguish the dynam- 
ic motion from the stochastic motion using the shape of the 
temporal correlation functions." In the case of the system 
(2.12) the damping of the temporal correlations with time 
must be amplified even more with an increase in 69 due to the 
instability of the motion in the parameter range (4.2). We 
give in Fig. 1 the form of the temporal auto-correlations of 
the mode populations lcq(~)I2 for the system (2.12), 

( Icq(7+Tr) I Z ( c q ( T f )  12) - (1~q( .6 ' )  
= < I cq('C1) I ')-( (cq('Gf) 1')' 

7 (4.3) 

for different values of the parameter E; (. . .) indicates aver- 
aging over the time T'. It is clear from Fig. 1 that with in- 
creasing~ (increasing the width of the packet) the damping of 
the correlation functions is enhanced. 

With the aim of checking the &-dependence (3.2) of the 
width of the packet Sq we integrated the system (2.12) nu- 
merically for different values of the parameter E. A control 
on the accuracy of the calculations was given by the condi- 
tion that the normalization I, and the integral I, retained 
their values. We chose as initial conditions cr)  in all experi- 
ments we did the following: Ico(0)12 = 0.998, 
l ~ , ( 0 ) 1 ~  = I c -  ,(0) l 2  = 0.001 with random phase distribu- 
tions. The numerical calculations show that the packet of 
excited modes is localized in q and the population drops ex- 
ponentially with increase of the mode q. The average width 
of the packet in that case increases with increases E accord- 
ing to a law which is close to the linear law (3.2). 

5. NUMERICAL ANALYSIS OF THE CHAIN 

With the aim of ascertaining the possibility of using the 
narrow packet approximation for a description of the dy- 
namics of the chain, we performed direct numerical calcula- 
tions of the equations of motion of the chain. To compare 
with the solution of the system (2.12), we expressed the dy- 
namics of the chain in the slow variables (see Sec. 2): 

cq ( 7 )  =ah+q ( t )  exp [ i  (w&+ hq) t ]  , T=W. (5.1) 

We chose our initial conditions as before: 
l ~ , ( 0 ) 1 ~  = I C _ , ( O ) ~ ~  = 0.001, J C , ( O ) ) ~  = 0.998. We chose the 
values of k, and I in (5.1) as follows: k, = N /2, I = N, which 
corresponds to the initial excitation of the chain approxi- 
matelyintheformu,-1, ul- - 1,u2-1,u3- - 1,andso 
on. Our calculations show that when conditions (3.3) for the 
narrow-packet approximation are satisfied the characteris- 
tic dynamic properties (oscillation time and packet width of 
the NLS equation and of the chain agree qualitatively. 

Moreover, it follows from the results of Sec. 2 that in the 
range of parameters where the narrow packet approxima- 
tion is valid the chain must possess the approximate addi- 
tional integrals of motion (2.13). We calculated numerically 
several first integrals of motion of the NLS equation for the 
system (1.1). As an example we give in Fig. 2a the time de- 
pendence of I, for a chain of N = 64 particles and the value 
E = 10.0. The anomalous large oscillations of13 in the region 
of T = 0.6 correspond to the moment of largest spreading of 
the packet of excited modes. We note that notwithstanding 
the fact that in the given case the condition for the narrow 
packet approximation was satisfied poorly, we did not ob- 
serve an irreversible change in I, at large times. For instance, 
for the case depicted in Fig. 2a we observed a periodic de- 
struction and re-establishment ofI, at times 7 ~ 2 0 ,  approxi- 
mately 40 times longer than the characteristic time of the 
packet oscillation due to the exchange of energy between the 
modes. Figure 2b corresponds to the value E = 20 and the 
integral I, is completely destroyed. Figure 2c corresponds to 
a chain of N = 128 particles and E = 10. As one should ex- 
pect in comparison with the case depicted in Fig. 2a, the 
integral I, is much better conserved. Fixing the value of E 

and increasing the number of oscillators N for the chain (1. l), 
can thus achieve good conservation of the integrals of mo- 
tion of the NLS equation. 

The calculations show that for fixed N for the chain (1.1) 
the integrals (2.13) with low numbers are better conserved. 
This property may be explained on the basis of the spectra 

FIG. 2. Time dependence of  I ,  for the chain: a-E = 10, N = 64; & 
&=20,N=64;~-&=10,N=128.  
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FIG. 3. Spectrum of c f '  for the NLS equation: a--q = 0; b---q = 5 .  FIG. 4. Spectrum of c v '  for the chain, N = 64: a--q = 0; = 5 .  

c,(A ) of the NLS and of the chain: 

((. . .) indicates as before averaging over the time). It is clear 
from Fig. 3 (E = 5) that the spectrum c, (A ) for the NLS equa- 
tion is well resolved irrespective of the value of the quantity 
q. The evaluation of the spectrum of the chain c,(A ) for 
N = 64 is given in Fig. 4. The value E = 5 which we chose is 
at the limit of the applicability of the narrow packet approxi- 
mation. It is clear from Fig. 4a that the spectrum of the chain 
is as before well resolved for q = 0 but when q is increased 
(Fig. 4b) the spectrum of the chain becomes appreciably dif- 
ferent from that of the NLS equation. Since, as follows from 
the explicit form of the integrals (2.13), the role of c , ( ~ )  in- 
creases with large Iq/ when the number of the integral in- 
creases, the fact of the destruction ofjust the higher integrals 
becomes understandable. 

We also note here that the integral I ,  (normalization) is 
satisfactorily conserved up to very high values of E which 
allows us practically always to eliminate one of the param- 
eters of the chain. In particular, for N = 64 the integral I ,  is 
conserved with a 5% accuracy up to E = 100. 

6. CONCLUSION 

The results show that the stochastization of the chain 
(1.1) in the case of a large number of degrees of freedom N 
and an initial excitation in the region of the high modes pro- 
ceeds as follows. The first necessary condition for stochasti- 
zation is that the nonlinearity parameterp exceeds the value 

pR = ?/3EkoN of (4.1). When P >PR there occurs in the 
system a decay of modes and the characteristic size of the 
packet of the excited modes will be determined by the quan- 
tity E = 3EkoN/2& We note that when P > P R  there will 
occur decays in the system (1.1) in contrast to the system 
(2.12) also in the case when a single mode is populated, as 
small perturbations due to nonresonant terms are able to 
"push" the system out of the unstable solution (2.14). 

The existence of the instability limit (4.1) was noted in 
all numerical experiments on the dynamics of the chain (1.1) 
(see Refs. 2,4). We note also the recent Ref. 6 where from a 
completely different approach a similar estimate (up to re- 
placing r2/3tt3.226) was obtained for the instability limit of 
antiphase oscillations. 

The further dynamics of the system (1.1) will depend on 
the ratio of the parameters E and k,. In the case ~ /k , ( l  
(region of validity of the narrow packet approximation) the 
dynamics of the chain will remain stable and can approxi- 
mately be described by the NLS equation. As fi increases, 
i.e., as the narrow packet approximation worsens, there oc- 
curs a gradual destruction of the additional integrals (2.13), 
and at @-Po [Eq. (3.4)] practically all nontrivial integrals 
turn out to be destroyed. Condition (3.4) can thus be consid- 
ered to be the upper limit of the stochastization of (1.1). One 
shows easily that the limit of stochasticity in the form (3.4) 
means in fact that the interaction energy in (1.1) must be of 
the same order as the energy of the unperturbed system. 
Complete stochastization of the motion of the chain must 
thus be expected at sufficiently high excitation energies. 

We compare the results obtained here for the estimate 
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of the stochasticity limit for the chain (1.1) with an estimate 
for the stochasticity limit using the criterion of the overlap of 
resonances which in the region of an initial excitation of high 
modes has the form1.' 

where E is the total energy of the system, m an empirical 
parameter which has the meaning of the number of excited 
modes. One should note that the criterion (6.1) is obtained 
for zero boundary conditions (u, = u, = 0, 
a, = 2 s in (~k /2N) )  so that the comparison can only be 
made to order of magnitude. Putting in (6.1) k, - N) 1, we 
have 

It follows from (6.2) that when m - 1 the parameterp, agrees 
with the estimate of the stochasticity limit obtained from the 
condition for destruction of the narrow packet approxima- 
tion: p, -Po (with k, = N/2 in (3.4)). 

In conclusion we consider the possibility of using the 
scheme given above for the estimate of the stochasticity limit 
for other systems. It is well known that in discrete systems of 
the kind considered here and also in systems of fields various 
approximations are possible which lead to an important 
class of completely integrable sy~ tems .~  The study of the 
conditions for applicability of such approximations (of the 
kind of the narrow packet approximation considered here) 

can turn out to be useful to determine the conditions for the 
transition from dynamic to stochastic motion. Studies of this 
kind are now underway (see, e.g., Ref. 12). 
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