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This paper was stimulated by experiments in which several tens of harmonics were observed in a 
plasma target exposed to powerful CO, laser radiation. High-order harmonics are naturally 
generated when wavebreaking-type discontinuities are periodically produced. The universal 
characteristic features observed as a result of the wavebreaking phenomenon are investigated. 
The spectra of harmonics produced at the time of formation of a discontinuity, during collisions 
between two discontinuities, and during Coulomb and collective "friction" between electrons and 
ions, are examined. The theoretical spectra that most closely resemble experimental distributions 
are those obtained by considering the radiation emitted during the interaction between electron 
wavebreaking and small-scale perturbations in ion density. 

1. INTRODUCTION 

The theory of weak nonlinearity predicts an exponen- 
tial fall in intensity with increasing order number of the heat- 
ing-radiation harmonic,' so that experiments demonstrating 
the heating of targets by C0,-laser harmonics24 up to the 
46th harmonic4 (q = 5 x l O I 5  W/cm2) have not had a satis- 
factory theoretical interpretation. The difficulties in this 
theory are due to the fact that a finite nonlinearity has to be 
considered. One of the natural manifestations of electron 
oscillations with finite nonlinearity is the appearance of 
wavebreaking-type discontinuities. The motion near the 
wavebreaking point occurs practically in the ballistic state, 
so that we have been able to provide5 an analytic description 
of the emission of harmonics for two processes connected 
with wavebreaking. In the present paper, our aim has been to 
give a more detailed description of discontinuities and to 
examine the emission of harmonics due to other processes 
that have turned out to be significant. Our account is largely 
confined to the hydrodynamic approximation that is valid 
for fi)v,, where f i  is the characteristic electron oscillation 
velocity. Allowance for the finite thermal velocity v ,  of 
electrons requires a kinetic treatment and leads to an expo- 
nential reduction in the intensity I, with increasing number 
N of the harmonic for N greater than some N,,, . 

The second part of this paper is devoted to questions 
relating to singularities that occur during wavebreaking. For 
inertial motion (ballistic approximation), for which 
x = a + vt, we have investigated the singularities associated 
with the first appearance of discontinuity, namely, fold and 
crease discontinuities, which are well known in the theory of 
discontinuities of differentiable mappings. Only oscillations 
of sufficiently high intensity are found to break when inter- 
actions between electrons and ions are taken into account. 
When this is so, critical wavebreaking in the nonballistic 
case results in a singularity accompanied by a discontinuity 
in the dependence of the particle velocity on spatial coordi- 
nates, which has been seen in numerical experimenk6 

The structural stability of the above discontinuities is 
exceedingly important for the analytic description of a finite 

nonlinearity. Structural instability is understood to refer to 
the persistence of singularities of this type under a small 
change in the initial and boundary conditions, i.e., this is a 
concept that is different from that introduced in the theory 
of singularities of differentiable mappings.' Structural sta- 
bility of discontinuities ensures that the character of the lat- 
ter does not depend on the wavebreaking conditions and is 
universal for homogeneous and inhomogeneous plasmas, 
both in the case of the breaking of free oscillations and in the 
case of an external periodic field acting on the plasma. This 
enables us to obtain a complete solution for the generation of 
harmonics of incident radiation without introducing the as- 
sumption of small aplitude, which is critical to the theory of 
weak nonlinearity. 

In the third section, we shall calculate the spectra of 
harmonics in certain processes connected with periodic elec- 
tron wavebreaking. In ballistic wavebreaking, the electron 
density becomes infinite at certain points or on certain sur- 
faces, and gives rise to electrostatic field singularities. In the 
next approximation, electrons are accelerated by this field 
and radiate. Each type of singularity or combinations of 
them determine the particular elementary process of emis- 
sion of radiation with a particular (usually of the power-law) 
spectrum of harmonics. These processes include quadrupole 
radiation emitted at the instant of appearance of the singu- 
larity, and dipole radiation emitted during the collision 
between a broken electron wave and an ion density step 
broken by an ion wave, a Langmuir caviton, or a short-wave 
ion-acoustic perturbation of a general form. The same sec- 
tion will examine the kinetic limits for the validity of the 
hydrodynamic description of wavebreaking. 

The harmonic generation mechanism discussed in Sec. 
4 is unrelated to wavebreaking but is close to it in principle: it 
is based on the well-known singularity in collision frequency 
vei - u P 3 ,  where u is the oscillating part of the electron veloc- 
ity in the Langmuir or electromagnetic wave. The emission 
of high harmonics occurs as the velocity u passes through 
zero, when the electron experiences a strong "frictional" 
force. The frequency vei is very low in the C0,-laser corona, 
so that we shall consider the collective emission due to scat- 
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tering of electrons by ion waves. 
Section 5 discusses an alternative mechanism for har- 

monic generation based on the well-known effect of steepen- 
ing of the target density profile under the influence of forces 
due to light pressure. The plasma density behind the critical 
surface may rise by several hundred times as compared with 
n, at short distances, and this provides us with the possibil- 
ity of effective excitation of tens of Langmuir resonances, 
followed by the re-emission of Langmuir waves into trans- 
verse waves. There is a number of very differernt mechanisms 
of resonance excitation. We shall consider Cerenkov emis- 
sion of Langmuir waves by the broken electron wavefront in 
homogeneous plasma. Interest in this process is dictated by 
the fact that its effectiveness has proved to be sufficiently 
high. 

The paper concludes with a discussion of the results and 
a comparison between theory and some experimental data. 

2. ELECTRON WAVEBREAKING 

It is well known (see, for example, Ref. 8) that a nonlin- 
earity in the hydrodynamic equations in which thermal mo- 
tion and interactions between particles have been neglected 
leads to a multistream-type discontinuity in a finite interval 
of time. Let us examine the singularities that occur during 
ballistic wavebreaking. Of course, in the ballistic approxima- 
tion, no emission is produced. Emission will occur only 
when the electrostatic field of the discontinuities is taken 
into account (see Sec. 3). We shall need to find the density 
distribution in discontinuities. We shall transform from the 
Euler variables (x, t ) to the Lagrange variables (a, t ). The 
condition for free motion can be written in the form 

x=a+v (a) t ,  (1) 

where v(a) is the velocity distribution in space for t  = 0. The 
velocity distribution at arbitrary time has the form v(a(x, t ) ), 
where a(x, t ) is the solution of (1). The velocity near a singu- 
lar point is, in general, a multivalued function of x. We note, 
however, that x(a) given by (1) remains a single-valued and 
analytic function of a that can be expanded in powers of 
a - a,, about the singular point a,: 

x i = x o i + t v ~  (a,)  (ak-a,,) + ' / , t q I i  (a,)  (ak-a,,) (a l -ao l )  
(2) 

+'/dvkIk(ad (ah-aok) (a l -ao l )  (am-aom) +. . . 
A singularity will occur at points at which the Jacobian 

-.= a (x) detl16ik+f~ki ( a )  Il=det(16ih+t~ki (ao) 11 
a ( a )  (3) 

ui (ao, t )  (ai--aoi) +uik(ao, t )  (ai-aoi) (ak--a,,) + . . . , 
vanishes, where ui and uik are certain functions of a and t. 

By suitably choosing the four quantities (a,, t ), we can 
ensure that the four functions detllSik + tuki (a,)ll and 
ui (%, t ) will vanish. This singularity corresponds to the on- 
set of wavebreaking. It occurs at a certain instant of time 
t = t, and at a certain point. When t = t, , the flow is still of 
the single-stream type the Jacobian (3) does not change sign, 
i.e., the quadratic form ui(ao, t,) is sign-definite. In the 
neighborhood of the point (a,, t, ), the first term of the expan- 
sion for the Jacobian has the form 

a (x) / a  ( a )  =a ( t - t , )  +uik(ai-aoi) (ak-a#) + . . . 
Without loss of generality, we may conclude from this that, 
when t < t, , there will not be any singularities anywhere: for 
t = t, we have the only singular point a = a,; for t > t, the 
singular points lie on an ellipsoid in a-space of dimension of 
the order of (t - tC)'l2, the interior of which corresponds to 
three-stream flow. The transformation (2), which is degener- 
ate (for t = t, ) in the linear approximation in a - a,, trans- 
forms an ellipsoid into an ellipse on a certain degenerate 
plane in x-space, and inclusion of terms of the order of 
(a - and (t - t,) (a - a,) leads to a "thickening" of the 
ellipse to the state where it takes the form of a "plate" of 
diameter a ( t  - t, )'I2, thickness cc (t - tc)3'2, and sharp se- 
micubic edge. In terms of the normal cylindrical coordinates 
(r, z), the three-stream region is described by 

where R and b are, respectively, the characteristic transverse 
and logitudinal dimensions of the initial velocity perturba- 
tion and tomb / v  is the characteristic wavebreaking time. 
This picture corresponds to the first appearance of the singu- 
larity and its development immediately thereafter. 

If we demand that only the zero-order term in the ex- 
pansion for the Jacobian (3) must vanish, we find another 
singularity that is almost independent of time and lies on the 
surface in a-space defined by the equation det))Sik + tv- 
, ' (a)ll = 0. Its map in x-space is a surface moving with veloc- 
ity of the order of v.  This singularity is quasione-dimensional 
and corresponds to the broken wave front. 

The above simple discontinuities are well known in the 
theory of singularities of differentiable mappings.' Thus, the 
broken wave front and the smooth surface of the plate are 
"fold singularities." Lines with singularities of a more com- 
plicated form may lie on a fold: the sharp edge of a plate is a 
"crease9'-type singularity. Folds and creases are structurally 
stable discontinuities in the sense defined in Ref. 7, i.e., dis- 
continuities of this kind are nonremovable under small 
changes in the mapping of three-dimensional space onto it- 
self. The first-wavebreaking singularity is removable by a 
small change in time but, in the course of its motion, the 
system necessarily passes through this type of state, with its 
completely determined physical consequences (for example, 
radiation). We shall therefore refer to this instability as 
structurally stable (in a wide sense of this phase). We note 
that Arnol'd et a/.' have pointed out the importance of un- 
stable (in the narrow sense) discontinuities in applications. 

For us, structural stability is important because the 
above discontinuities appear "routinely" in all differentiable 
motions a-tx of three-dimensional space that are not forbid- 
den by violation of mutual single-valuedness, e.g., ballistic 
motion of a continuous medium. We shall show below that, 
if electrons and ions interact, the discontinuities examined 
above will remain and, as a discontinuity is approached, the 
ratio of electrostatic and kinetic energies tends to zero, i.e., 
the ballistic condition is more readily satisfied, and the dis- 
continuity has the same character as in the ballistic case, 
although discontinuities in the higher derivatives of the 
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mapping x(a) appear after wavebreaking. Any smooth plas- 
ma-inhomogeneity profile, or external fields that vary 
smoothly in space and time, will not affect the differentiabil- 
ity of the motion x(a), so that wavebreaking singularities are 
universal in character, subject only to the condition that the 
wavebreaking itself takes place. This enables us to apply the 
results obtained for discontinuities to ballistic motion. In 
particular, we shall be interested in electron-density singu- 
larities where, in terms of Lagrangian coordinates, the den- 
sity has the form 

n (a, t )  =no (a) 1 a (x) / d  (a) I-'. ( 5 )  
Using expansions (2) and (3),  we can readily show from (5) 
that, for the first wavebreaking singularity, the density tends 
to infinity at the singular point in accordance with the 
expression 

n ( t )  -noto/ I t-t, I, (6) 
whereas, for the fold, we have a density discontinuity of the 
form 

n ( x ,  t )  -no [b l  ( v t - x ) ]  '"13(ut-x), (7) 
where the x axis is perpendicular to the quasiplane wave 
front. 

The electrostatic interaction does not forbid electron 
wavebreaking but leads to a threshold condition for the ener- 
gy of the oscillations. The simplest way to verify this is to 
consider free one-dimensional Langmuir oscillations in cold 
homogeneous plasma. It is well known that the correspond- 
ing equations in terms of the Lagrange variables (a, t ) pre- 
serve linearity right up to the moment of wavebreaking (they 
are nonlinear in Euler coordinates). For the problem with 
initial conditions 

v (a,  0 )  =C(a), n, (a ,  0 )  =no ( a )  

the solution for the density is 

1 &(a )  
n.(a, t )=n,(a)[l+--  o, da sin o p t  

where ni = const is the ion density andw, = (4?ini e2/m)'I2. 
Equation (8) shows that, if the condition 

is satisfied, the density will become infinite at a certain time, 
i.e., wavebreaking will take place. 

We shall now show that, as we approach the singularity, 
the condition for the validity of the ballistic approximation 
becomes less stringent. For example, in the case of one-di- 
mensional wavebreaking, we have a density singularity 
n(x, t , )  and, consequently, a potential discontinuity 
p a x4I3. On the other hand, the kinetic energy of the particle 
is u2 a x2I3. AS x 4 ,  it frequently exceeds the potential ener- 
gy. For a fold, p a x312, u2 a x, and the ballistic approxima- 
tion is also valid. 

The existence of the threshold condition (9) leads to the 

appearance of a new nonballistic singularity to which we 
shall refer as the critical singularity. This appears when the 
energy of the oscillations becomes exactly equal to the 
threshold value [this corresponds to the equality sign in (9)]. 
The system will assume this state either as a result of a slow 
increase in the amplitude of the weak external pump, or 
when the wavelength b decreases because of plasma inhomo- 
geneity. This wavebreaking was examined in Ref. 6 in the 
one-dimensional case. The exponents corresponding to this 
singularity can be found analytically. Flow is possible be- 
cause electrons do not affect one another up to the point of 
wavebreaking in the one-dimensional case, whereas, in the 
ballistic case, the Euler coordinate x remains an analytic 
function of the Lagrange variables a, t, as before. The expan- 
sion for this function is 

x=b, (a,, t )  (a-a,) +b,(a,, t )  ( ~ - a , ) ~ + b ,  (a,, t )  (a-ao) 3+ . . . 
The vanishing of b, and b, corresponds to the critical discon- 
tinuity. The electron density is then 

and becomes infinite in the same way as in the ballistic case. 
The function u(x) can be found by equating the kinetic and 
electrostatic energies, u2 -p a x4I3, whence 

umxZ'9 (11) 

(the velocity was higher, u ax1'" in the ballistic case). The 
function vax2I3 is a good representation of the edges ob- 
tained numerically and shown in Figs. 2 and 3 of Ref. 6. 
Expressions (10) and (1 1) can also be obtained as a result of a 
rigorous solution of the equations for electron oscillations in 
homogeneous plasma. 

Finally, let us consider the wavebreaking conditions for 
electrons in a target illuminated by laser radiation. We note 
that the electron trajectories cannot cross in the field of a 
purely transverse plane electromagnetic wave in vacuum. In 
fact, an exact solution9 can be obtained for the motion of a 
charge in the wave, and it follows from this solution that the 
amplitude of the longitudinal displacement of a charge per- 
forming helical motion in the magnetic field of the wave is 
always less than a quarter of the wavelength for any wave 
intensity. Hence it follows that wavebreaking processes can 
occur only in the region of the plasma corona with density of 
the order of the critical value n,, in which the light wave is 
strongly distorted and a longitudinal electric field appears. 
Wavebreaking occurs when the displacement of electrons 
becomes greater than a characteristic dimension. If the plas- 
ma is cold, the breaking of Langmuir oscillations will neces- 
sarily occur as a consequence of the reduction in the charac- 
teristic dimension (wavelength) due to plasma 
inhomogeneity. When there is a steep density jump on a scale 
of the order of the Debye length, wavebreaking is unavoid- 
able for trpu,. In the numerical experiments reported in 
Ref. 6 and 10 (in which u, = O), the breaking of the plasma 
resonance occurred not later than after a few periods of ex- 
ternal field oscillations, and then recurred periodically.6 
Here, we must stipulate that there is a sufficiently fast trans- 
fer of electrons from the cold core to the resonance region, 
which replaces electrons that were accelerated during wave- 
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breaking," and this ensures that the condition Bsv, is al- 
ways, satisfied. 

3. RADIATION ACCOMPANYING WAVEBREAKING 

Let us now consider the radiation emitted when elec- 
trons are accelerated near singular points. Each type of sin- 
gularity can be placed in correspondence with its own parti- 
cular elementary emission process, where the radiation 
produced as a result of this decreases with frequency in ac- 
cordance with a power law in which the exponent is deter- 
mined solely by the nature of the discontinuity. A well- 
known example of this kind is the transition radiation 
emitted by a charge crossing a jump in permittivity. Its fre- 
quency dependence is wP4 (Ref. 12). We shall consider the 
stronger collective emission. 

We begin by considering the radiation emitted at the 
instant of the first electron wavebreaking in homogeneous 
plasma. The time t will be measured from the time t, at 
which the singularity appears. The density singularity given 
by (6) produces a burst of electrostatic field Ez2n-enob (t / 
to)1120 (t ) which gives rise to radiation by plasma electrons 
located in the region around the plate, the size of this region 
being of the order of the plate diameter I- R (t /tO)'l2. Since, 
in this process, the electrons exchange momentum only with 
one another, the center of the charge is at rest, and we have 
quadrupole radiation. In the ballistic approximation, the 
quadrupole moment Dik = Z ex, xk is given by the expres- 
sion 

e2 fii,= -J n(x, t) [ 3 u i ~ * +  (uit+z.)hk]d3x+ (i-k), 
m 

which corresponds to the estimate 

~ ( t )  -enoR400,e2v"(t/to)"20 ( t ) ,  K t o .  

Assuming that this singularity appears in each period 2n-/wo 
of the incident radiation, let us expand the function that pul- 
sates in this way into a Fourier series. The high Fourier har- 
monics (Nwo)to-I) are wholly determined by the behavior 
of the function in the small neighborhood of the singular 
point (t(to), and the spectrum corresponding to a singularity 
of the form f (t ) = t9 0 (t ) is 

It is then a relatively simple matter to estimate the intensity 
of radiation emitted into the Nth  harmonic in this process: 

The upper bound imposed on N appears as a result of the 
requirement that the multipolarity parameter is I /A< 1, 
where I = R (t /tO)'l2, A = Ao/N, and A, is the wavelength of 
the laser radiation. If the dimension I of the radiating zone is 
greater than the wavelength, the intensity of the emitted ra- 
diation is sharply reduced by interference. 

Expression (12) for the radiation emitted by a single 
plate predicts a rapid reduction in intensity with increasing 
number of harmonic, which is of the power type but still very 

rapid. Experiment shows that the spectrum is almost N inde- 
pendent and has a sharp cutoff for N >  N,,, . The spectra 
emitted in processes with stronger singularities fall off more 
slowly with increasing N. For example, an inhomogeneity in 
the ion background leads to a momentum exchange between 
electrons and ions and, consequently, to the appearance of 
dipole emission. l3 The variation in the dipole moment can be 
calculated from the formula 

where p, is the potential due to electrons and ni is the ion 
density. 

Let us now consider the radiation emitted when an elec- 
tron singularity, such as a fold, collides with an ion-density 
perturbation created during a Langmuir collapse. l4 In order 
not to have to deal with the evolution of sound after the 
collapse, we shall suppose that it is rapidly damped out. We 
then find that ni (x) is an even function and $ ni (x) d 3x = 0, 
i.e., from the standpoint of quasi-one-dimensional long- 
wave perturbations, ni is similar to the second derivative of a 
S function. We shall suppose that the electron singularity is 
one-dimensional and will omit numerical factors. The elec- 
tron-density singularity (7) produces a potential singularity 
of the form 

Substituting pe and ni = S"(x) in (13), we find that 
d (t ) = t -312 0 (t ), which yields 

I,=const N, 1<<N<5/woL, (14) 

where L is the dimension of the caviton. When N,b/w,,L, 
the intensity falls exponentially. 

The collision between a broken electron wave and an 
ion-density step (approximating a steep plasma density pro- 
file) or a broken ion wave can be considered in an analogous 
manner. The resulting radiation spectra depend on Nas N - 7  

and N -6, respectively. 
It is interesting to consider the radiation emitted during 

periodic electron wavebreaking in plasma with short-wave 
ion-density perturbations of a general form. The emission 
spectrum does not then reduce to the power-type expression 
but depends on the spatial spectrum of ion fluctuations, w(k), 
which we shall introduce through the phase average 

<nknkv*>=no2w (k) 6(k-k'), (15) 

where n, is the spatial Fourier component of the ion-density 
perturbation. 

According to (13), the N th  harmonic of the dipole mo- 
ment is given by 

where the integral with respect to time is evaluated between 
zero and 2n-/wo. Substituting ni (x) = .r n, e'"" d k, 
p(x, t ) = 2n-enob 'I2 (6t - x ) ~ ~ ~  0 (5t - x), in (16), and using 
(IS), we find that the intensity of the N th harmonic for N, 1 
is given by 
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where S is the cross-sectional area of the laser beam incident 
on the target. The spectrum of sound was taken to be isotrop- 
ic: w(k) = w(k ). It follows that the emission of harmonics 
with N>1 per unit illuminated area can be estimated from 
(WO -Ope 

The efficiency of re-emission into the harmonics can be esti- 
mated from the formula 

where kt =wo/c, k, is the characteristic (maximum) wave- 
number in the spectrum of ion perturbations, and Sn, is the 
variation of ion density. The maximum number of harmon- 
ics that can give rise to this process can be estimated from 

The emission spectra obtained in the hydrodynamic ap- 
proximation are valid in a range that depends on the thermal 
spread of the particles. To take into account the low thermal 
velocity uT (6, we shall use instead of (1) the one-dimension- 
a1 transport equation for the distribution function f (u, x, t ) 
of the interacting particles (because the main wavebreaking 
singularities are quasi-one-dimensional): 

Its solution expressed in terms of the initial distribution 
function has the form 

If we assume that the initial distribution function is Maxwel- 
lian, with ordered velocity 6(x), the particle density is given 
by 

u-5(x-ut) 
n (x, t) = A  jexp {- [ ] 2 } d v ,  A - -  

U r  
. (20) 

UT 

When there is a thermal spread, the singularity is smeared 
out and the density at the singular points does not become 
infinite but is bounded (for uT(6) by some large but finite 
quantity. The density is a maximum at points at which the 
functions u and 6(x - ut ) have second- or third-order points 
of contact. It is readily seen that the former case corresponds 
to a fold-type singularity. We then have u - fi(x - ut ) -u2/6 
and (20) gives 

n--no (B/vT) '". (21) 

The case of a cubic point of contact occurs at the single point 
(x, t )  and corresponds to the instant of breaking. We then 
have u - fi(x - ut ) - v3/G2 and 

Comparison of (22) with (6) leads to the conclusion that the 
hydrodynamic description of breaking is valid at times that 
are not too close to the time of formal onset of discontinuity, 
i.e., for It l%t0(u,/6)2'3, which corresponds to frequencies 
~ w ~ ~ t ~ - ~ ( ~ / u , ) ~ ' ~ .  Hence, we find that the range of validity 
in N for (12) is 

Similarly, comparison of (21) with (7) shows that, for pro- 
cesses involving the participation of a fold [the spectra (14) 
and (17)] 

For N exceeding the right-hand sides of inequalities (23) and 
(24), the radiation intensity decreases exponentially with in- 
creasing N. We note that motO- 1 when the wave amplitude 
exceeds the value corresponding to breaking by an amount 
of the order of unity. 

4. EMISSION DURING "FRICTION" BETWEEN ELECTRONS 
AND IONS 

Since dipole emission is due to momentum exchange 
between electrons and ions, it is natural to consider momen- 
tum transfer in Coulomb collisions with frequency 
vei = A u - ~ .  Assuming that the thermal velocities are small 
and the velocity v is due to oscillations in the field of a linear- 
ly polarized electromagnetic wave, the momentum transfer 
to a single ion is given by 

~ = ~ A v / u ~ ,  v=vo sin sol. (25) 

The asymptotic behavior ofp at high frequencies (important 
for N> 1) is determined by the singularity t -2, which imme- 
diately yields p, a w and 

The ratio vei /ape is small in the experiments reported in Ref. 
4, so that we shall consider stronger "friction" with ion- 
density fluctuations due to ion-sound-type oscillations. 
When these oscillations have short enough wavelengths, we 
find that, as shown by Zavoiskii and Rudakov,15 there is 
complete analogy with Coulomb collisions, and the role of 
the ion charge is taken by the charge of the ion perturbation, 
i.e., q-eSnA 3. As a result, we obtain 

The radiation intensity emitted per unit volume is then given 
by 

Inclusion of long-wave ion-density perturbations gives rise 
to spectra that grow less rapidly. 

5. CERENKOV EXCITATION OF LANGMUIR WAVES DURING 
WAVEBREAKING 

The appearance of high harmonics was ascribed in Ref. 
4 to the presence near the plasma resonance point of a region 
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in which the plasma density was several times greater than 
the critical value. No mechanism was proposed in Ref. 4 for 
the excitation of oscillations in the region nsn,,  so that we 
now note one effective provcess for the excitation of plasma 
resonances. This is the Cerenkov emission of Langmuir 
waves by a breaking electron wave front. Consider the one- 
dimensional linear problem of the response of cold plasma to 
the "extraneous current" of a fold 

j (x, t )  =en,F[b/ (Bt-x) I"% (Bt-x) . (29 
The Fourier component of this current 

gives the Fourier transform of the electric field 

and hence 

E (x, t )  = 3 Ekweikx-iwt d k  d o  

(30) 
The rate of energy loss by the fold is given by 

The ratio of this power to the characteristic energy of the 
broken wave mS2nob gives the following expression for the 
frequency corresponding to the fold lifetime: 

where m,, is the plasma frequency calculated from the char- 
acteristic density of the fold no, and m,, is the local plasma 
frequency (m,,, >a,, ). The result given by (3 1) indicates that 
the efficiency of Cerenkov excitation of longitudinal waves 
by the electron singularity is very high. The fold may lose 
energy in a time greater than or of the order of the period of 
the Langmuir oscillations. When the fold passes periodically 
through the region of a high concentration gradient, the 
maximum amplitude of the Langmuir oscillations is estab- 
lished at points where m,, is a multiple of m,. To calculate 
the steady-state Langmuir field, we must know the mecha- 
nisms that restrict the field at the  resonance^.^ Moreover, the 
spectrum of harmonics emitted by the plasma depends on 
the nature of the plasma density distribution no(x) and the 
coefficient of the transformation from Langmuir into elec- 
tromagnetic waves. This coefficient may be quite large since 
S/c is not very small. 

6. DISCUSSION 

Other mechanisms for the generation of high harmon- 
ics have been proposed in addition to the above wavebreak- 
ing processes. The authors of Ref. 4 had already noted the 
presence near resonance of a region with high plasma den- 
sity, but did not propose cny mechanisms for wave excita- 
tion in this region. The Cerenkov emission of Langmuir 

waves by an electron fold, discussed in Sec. 5, seems to us to 
be an effective mechanism in this context. 

The radiation emitted by an electron crossing a steep 
density jump has also been considered (see, for example, Ref. 
16). This single-particle emission is too weak as compared 
with collective emission, and cannot explain the large coeffi- 
cients of transformation into harmonics, which can be4 of 
the order of The zero exponent of the power function 
representing the fall in the radiation intensity in Ref. 16 is 
due to an error and, when this is corrected, the result be- 
comes I,,, -N -4, as should be the case for transition radi- 
ation.12 We also note that, when there is a sharp density 
jump, a Langmuir wave of arbitrary amplitude will always 
be broken in a time of the order of the period of the oscilla- 
tions, and the collective effects that we have examined come 
into play. 

The authors of Ref. 10 use numerical methods to con- 
sider the emission of N = 2-30 harmonics. They say nothing 
about the mechanism responsible for the generation of these 
harmonics. In our view, this is connected with wavebreaking 
which undoubtedly occurred in these calculations (the auth- 
ors themselves mention this). Unfortunately, the equations 
used in Ref. 10 are valid only up to the wavebreaking point 
even though they were used after this point as well. 

All the harmonic generation mechanisms proposed 
here and in other papers demand that the condition S)u, be 
satisfied. The condition S 2 up, (up, is the phase velocity) is 
not absolute for waves with such large amplitudes, and 
wavebreaking is quite natural. If we suppose that, at plasma 
resonance, the longitudinal field is of the order of the exter- 
nal transverse field, and the characteristic temperature of 
the corona is Te = 1 keV, the oscillation velocity becomes 
comparable with the thermal velocity even for intensities 
9-5 X 1013 W/cm2 (for A = 10.6 pm). This figure becomes 
much lower when we allow for the possibility of field en- 
hancement at resonance. 

The number of radiated harmonics is determined by the 
characteristic frequencies of the processes occurring on 
wavebreaking. For example, at the time of appearance of the 
singularity, the characteristic time is to = b /fi. Ifwe suppose 
that b-r , ,  the frequency corresponding to this motion is 
given by Nmo-moS/vTe. For processes involving the partici- 
pation of a fold, the characteristic number of harmonics is 
given by (19). If we substitute k, -rD - ' into this expression, 
the result is the same, namely, 

and this is in qualitative agreement with the experiment re- 
ported in Ref. 4 if we take S/v, =; 30. We note that the elec- 
tron temperature in the corona can be even lower than the 
temperature of the core because of adiabatic cooling as the 
electrons flow out of the dense core plasma into the more 
tenuous corona, in the opposite direction to that of electrons 
accelerated by wavebreaking. This means that the condition 
Z)vTe is not too stringent. 

The number of harmonic-generating processes occur- 
ring during wavebreaking is too large to enable us to use 
existing experimental data to identify reliably the dominant 
mechanism. The observed weak dependence of intensity on 
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the number of the harmonic can result from a collision of a 
fold with a collapsing caviton, or with an ion-density-pertur- 
bation w(k ) a k 3, but this can also be produced by the process 
discussed in Sec. 4. 

Wavebreaking processes may play an important role 
not only in the laser corona but elsewhere as well. We note 
that the generation of harmonics that fall off slowly with 
harmonic number has also been observed in laboratory ex- 
periments in the radiofrequency range during the excitation 
of oblique Langmuir wave in magnetic fields. l7 

Our principal conclusions are as follows. 
1. The character of the singularities that occur during 

wavebreaking can be examined analytically despite the fact 
that the amplitude is finite. 

2. The generation of the higher harmonics observed ex- 
perimentally4 is most likely due to the crossing of electron 
trajectories (wavebreaking). 

3. If the second of the above two conclusions is valid, 
wavebreaking is an important mechanism for the absorption 
of powerful electromagnetic waves as observed experimen- 
tally,4 with all the consequences for the hydrodynamics of 
targets that follow from this. 
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