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It is shown that the shape of a short pulse that passes through a plasma maser with an unequally 
spaced spectrum can be described in a very simple model by the Haus equations with complex 
coefficients. A quasilinear interaction between waves and particles is found to be equivalent to a 
slow saturable absorber in a laser, whereas a cubic nonlinearity turns out to be comparable to a 
fast saturable absorber. Analytic soliton solutions of the generalized Haus equations correspond- 
ing to a pulse train with a high off-duty factor are obtained. The laws governing the fast drift of 
the wave spectrum within the limits of a single pulse are identified. The theoretical approach 
discussed here can be used to describe the processes that occur in laboratory cyclotron plasma 
masers and in certain types of lasers. This approach can also be used to explain the origin of 
several components of natural electromagnetic radiation in the magnetospheres of the Earth and 
Jupiter. 

1. INTRODUCTION natural electromagnetic radiation in the magnetosphere. 

Passive mode locking, a process in which one or several 
short pulses pass through a cavity resonator, is widely used 
in In such systems the frequency dispersion of the 
refractive index is usually unimportant, and the pulse enve- 
lope changes in accordance with the gain and absorption line 
shapes. In passive mode locking, these effects are offset by 
the saturable-absorber nonlinearity. 

Three theoretical methods for studying passive mode 
locking have by now been developed. The first is mode-de- 
pendent and is used to identify the relationship between the 
phases of the individual resonator modes. In such a study 
one can determine the conditions for individual-mode phase 
locking which corresponds to the pulse that passes through 
the re~onator .~ The laws governing the generation of a short 
electromagnetic pulse against a background of emission 
noise are explained satisfactorily by the fluctuation m ~ d e l . ~ . ~  
The third method, closely related to the stationary-wave the- 
ory, postulates the existence of a pulse, so that one can write 
the equation for a steady pulse-train envelope. As a result, 
one can determine the envelope shape and study its stability 
to some e ~ t e n t . ~ - ~  

The basic difference between plasma masers and laser 
masers is the use of slower electromagnetic waves, which 
have appreciable nonlinearities of their own and an unequal 
spectrum spacing caused by the frequency dispersion of the 
refractive index. 

In the present paper we show that plasma masers can 
operate in a pulsed mode-locked regime even when the fac- 
tors indicated above are taken into account. In very simple 
models, the determination of the shape of a steady pulse- 
train envelope reduces to finding a soliton solution of the 
Haus equation6,' with complex coefficients. In this paper we 
solve this equation and identify certain features of the emis- 
sion spectrum. 

The theory discussed in this paper can be used to de- 
scribe the processes that occur in laboratory cyclotron plas- 
ma masers'' and in certain types of lasers. This theory can 
also be used to explain the origin of several components of 

2. GENERAL EQUATION FOR A PULSE-TRAIN ENVELOPE 

Let us first assume that the maser parameters corre- 
spond to a state below the self-excitation threshold and 
choose an initial point of entry into the system. In linear 
approximation, a maser in which the operating modes have 
the same transverse structure is characterized by a complex 
transmission coefficient G = r + i@ at each input point. We 
should point out that the Kramers-Kronig equations that 
relate the real and imaginary parts of the function G (a) can 
be determined by taking into account the linearity of the 
system and the causality principle.'' 

We assume that the maser receives a short pulse 
+ m 

which is much shorter than the period T of group propaga- 
tion through the resonator. Taking the transmission coeffi- 
cient into account, we can write the following expression for 
the change in the electric field at the system's input: 

+ m  

Using the formula for the sum of a geometric progression, we 
find for r < 0 

1 
E ( t )  = ---- S E0 (a) do. 

(2x1 _ &  

Assume that the electromagnetic pulse changes little 
after a single pass through the resonator, i.e., we restrict the 
analysis to the case in which the gain is small and the phase 
advance is a nearly linear function of frequency. A sufficient- 
ly long time after the arrival of the initial signal, the electro- 
magnetic-radiation spectrum will be concentrated near the 
frequency a,, which corresponds to the maximum of the 
function r (a) ( d r / d a  = 0 and d 'F/aa2 < 0 when w = a,). 
Accordingly, in determining the asymptotic behavior of the 
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field at the system's input, we can substitute an integral of off-duty factor thus satisfies the following equation approxi- 
Eq. (3) the transmission coefficient mately 

G=g+iq+iTQ-AQ2, 

where 

g = r  (o=c.~o),  = I  ( = I )  T=a(D/do, This equation must be solved with the stipulation that the 
fields fall off rapidly as t + f co . 

2 There can obviously be no steady periodic pulse train in 

here all derivatives are taken at w = w,. Since the gain is 
small (lgl< I), and since the second derivatives of the trans- 
mission coefficient with respect to the frequency are also 
small ( / A  10 '<I), we can use (3) and (4) to find the following 
expression for the pulse-train envelope: 

8 ( t )  =E ( t )  eiWo' 
+ m  

If we can differentiate within the integral with respect to 
time, Eq. (5) reduces to the differential-difference equation 

where the envelope 8, corresponds to the field E,. The ini- 
tial pulse (1) attenuates completely in a time much longer 
than the period of the pulse train, and the right side of (6) 
actually vanishes in the asymptotic regime we are concerned 
with. The steady pulse-train envelope therefore satisfies the 
equation 

d 2  
z ) 8 ( t )  - e - " ~ ( t + ~ )  =o. (7) 

Of importance in the explanation of the experimental results 
are the periodic solutions of Eq. (7). We can write the condi- 
tion for the emission periodicity to within the initial rf-car- 
rier phase as 

iF (t+T,) =el(*+Q'B ( t ) ,  (8) 

where T, is the period of the pulse train, and $is a constant. 
Equations (7) and (8) do not contain the initial emission level 
and can, in principle, be written by analyzing a single, rather 
than multiple passes of the wave packet through the resona- 
tor. A more detailed calculation is justifiable because the 
particular features of the approximations used here can be 
traced in more detail by using this approach. Equation (6) 
may also prove to be useful in analyzing the behavior of a 
system operating in the amplification regime. 

We restrict the analysis to a pulse train with a large off- 
duty factor. Among other advantages, this allows us to disre- 
gard the overlap of direct and reflected pulses in the resona- 
tor. In the case at hand, this problem can be reduced, 
following Ref. 6, to determining the shape of a single pulse. 
To this end we must take account of the fact that the period 
of a pulse train, T,, is approximately equal to the period of 
group propagation, T, if the frequency dispersion is weak; 
i.e., T = T, - 6, where IS I <T. Accordingly, we can write1' 

According to Eqs. (7)-(9), the shape of the envelope of a 
single pulse from a steady periodic pulse train with a large 

a linear system in which there is absorption and frequency 
dispersion. For this reason, Eq. (10) does not have a soliton 
solution. Real maser systems are nonlinear systems, and a 
nonlinear analog of Eq. (10) can have soliton solutions. In 
some cases, allowance for a slight nonlinearity reduces to 
replacement of the gaing by an 8-dependent operator which 
takes into account the nonlinear corrections to the gain and 
to the frequency. This substitution is of course justifiable 
only i f r ( t - +  + CO)<O. 

3. NONLINEAR INTERACTION IN AN ACTIVE MEDIUM 

We take into account the nonlinearities of a maser sys- 
tem in a very simple model, assuming that the interaction 
between the waves and particles occurs in a narrow region. 
In a plasma cyclotron maser, the effective interaction of the 
extraordinary electromagnetic waves (whistlers) with the 
electrons usually occurs near the magnetic-field minimum at 
reasonably high energies of the epithermal particles.12 This 
is also true of the interaction of Alfvin waves with protons. 

Thus far we have written equations for an arbitrary en- 
try point into a maser. We can now assume, however, that 
this is precisely the location where the waves interact with 
the particles. If the particles do not move an appreciable 
distance in a magnetic-confinement system in the time it 
takes a short electromagnetic pulse to pass through the inter- 
action region, then calculations can be carried out without 
consideration of dispersion. In the opposite limiting case, we 
can use equations that are averaged over the bounce oscilla- 
tions of particles between the mirror points. If the quasilin- 
ear approximation is correct, the distribution function f (t, v) 
of the energetic particles near the magnetic-field minimum 
inside the electromagnetic pulse will satisfy in both cases the 
following equation12: 

A 

where D (v) is a tensor that determines the nature of the diffu- 
sion in the velocity space. In turn, if the electromagnetic- 
emission spectrum is narrow and the mean-frequency shift is 
relatively small, the buildup of the waves after a single pass 
through the resonator is given by 

where K(v) is a vector, and g and f,(v) correspond to the state 
of the system long before the arrival of the next pulse. If a 
pulse train has a large off-duty factor, the distribution func- 
tion is restored during the time between the pulses because of 
the dispersal of the particles along the magnetic bottle and 
because of their drift across it. Restricting ourselves there- 
fore to the effect of a single electromagnetic pulse on the 
distribution function, we introduce 
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Expanding the distribution function in eigenfunctions of a 
self-adjoint operator 

which satisfies the necessary boundary conditions, we can 
write the solution of Eq. (1 1) as 

m 

If T is small enough, i.e., if the energy in the pulse is relatively 
low, we can simplify Fourier series (14) by expanding now 
the exponential functions accurate to r2: 

exp (-A,%) -1-kn~+'12hn2tZ. 

Using (1 1) and (13), we find in this approximation the follow- 
ing distribution function which corresponds to (14): 

According to (12), quasilinear interaction is therefore a cu- 
mulative process that is slow in comparison with the dura- 
tion of the electromagnetic pulse, since 

g,=g+aa-P~', (16) 

where a ando  are constants. We see immediately from Eqs. 
(1 1) and (12) that the gain (16) depends solely on T. These 
calculations had to be carried out, because Eqs. (12) and (15) 
determine the values of the coefficients a and p, which have 
an appreciable effect on the results obtained below. 

Let us define the conditions necessary for the existence 
of a pulse train and for its stability in a maser with a nonlin- 
ear gain (16). In order for g, to reach positive values and be 
negative in the limit t -+ + W ,  the following conditions 
must hold: 

With these relations between the parameters, the bunching 
of the emission into short clusters reduces the losses in the 
medium and is desirable from the energy ~tandpoint .~ An 
important point in the discussion below is that Bespalov and 
Koval'13 have shown by analyzing a quasilinear system of 
equations that the waves at the leading edge of an electro- 
magnetic pulse can grow if this pulse is long compared to the 
period of the bounce oscillations of particles between the 
mirror points. In other words, the conditions a > 0 andp  > 0 
can be satisfied. We will confirm this conclusion in the Ap- 
pendix, where we use a specific example of cyclotron interac- 
tion between waves and particles in a plasma magnetic bottle 
to determine the signs of a andp. In the case discussed here, 
the approach of the self-excitation threshold and the absorp- 
tion saturation are both caused by the interaction at cyclo- 
tron resonance with epithermal particles having a nonequi- 
librium distribution function. 

Besides quasilinear interaction, an electromagnetic 

pulse may be affected by the nonlinearity of the main plasma. 
If the cubic nonlinearity of the medium appears only locally 
(primarily near the magnetic-field minimum at low tempera- 
ture), then such a fast nonlinearity, according to Galeev and 
Sagdeev,I4 can be taken into account by replacing the gain g 
in (10) by 

where < can be complex. This expression allows us to intro- 
duce a nonlinear correction in both the gain and the frequen- 
cy. 

The conditions necessary for the existence of a pulse 
train and for its stability [conditions similar to those in (17)] 
in a maser with a nonlinear gain (18) can be written as 

In the next sections we will use Eqs. (16) and (18) to 
calculate the characteristics of pulse trains. 

4. SOLITON SOLUTION OF THE HAUS EQUATION WITH 
COMPLEX COEFFICIENTS IN THE CASE OF A SLOW 
NONLINEARITY 

Let us assume that expression (16) is valid. We can then 
reduce the determination of the shape of a pulse-train enve- 
lope to the solution of the generalized nonlinear Eq. (10): 

We recall that here A = A ,  + id, is a known complex 
quantity and that g, a, and /3 are known real values. We can 
choose the real parameters S and $ in such a way that the 
equation will have a soliton solution. In this case, S deter- 
mines the pulse repetition period and $ the phase shift 
between the pulses. If all coefficients in Eq. (20) were real, 
then this equation would be identical to the Haus equation 
for a laser with a slow, saturable ab~orbe r .~  

Let us now analyze the Haus equation with complex 
coefficients. In keeping with the premises on which the deri- 
vation of Eq. (20) is based, we are concerned with soliton 
solutions that decay rapidly at infinity. A direct check clear- 
ly shows that we can seek with success a soliton solution in 
the form 

Z=8, [ch ( t l t , ) ]  '"-I exp {i (btlt ,)  ), (21) 
where %,, t,, a, and b are constants that must be found. 
Substituting (21) into (20), equating the coefficients of identi- 
cal powers of tanh(t /tp ), and separating the real and imagi- 
nary parts, we find an algebraic system of equations from 
which we must determine the characteristics of the pulse 
train: 

a2+3 (A, /Ar)  a-2=0, 

\P ( 8 , t p )  '=A,(2-a2) +3AIa,  

2Arab+2A,b-tpa6 cos $f tp6 sin $=0, 

a (B,t,) 2tp-2A,ab+2Arb-tpa6 sin $-tp6 cos $=2P (8 , t , )  ', 

Arb2-tpb6 cos ++tp2 sin $=ARa-dl, 
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Here the unknown quantities are 8, , t, , a, b, S, and $. 
Since the number of equations equals the number of unk- 
nowns, the equations can be solved for appropriate param- 
eters of the plasma maser. The easiest to analyze are the first 
two equations in (22). We see from these equations that 

where it is taken into account that p >  0 according to (17). 
Equations (23) determine the link between the ampli- 

tude and duration of a pulse and also regulate the frequency 
variation of the emission. The mean frequency (w(t )) of a 
dynamic emission spectrum varies roughly as the derivative 
of the field phase taken with opposite sign. According to (5) 
and (21), we have 

so that the frequency variation within the limits of the pulse 
is 

< m ) = ~ ~ - b l t ~ -  (a l to )  t h ( t l t p ) .  (24) 

It is worthwhile noting that at t = 0 the frequency differs 
from w, at the intensity peak and that the alternating compo- 
nent of the frequency depends on the parameter a. 

These results must, of course, satisfy conditions (17), 
which we can write for the pulse (21) as 

To determine all characteristics of a pulse train we 
must, according to (22) and (23), solve four algebraic equa- 
tions with four unknowns. The simplest way to solve these 
equations is numerically. The effect of a slight frequency 
dispersion on passive mode locking can easily be studied 
analytically. Such an analysis is possible, because when 
A, = 0 one of the solutions of the system (22) has a = 0, 
b=O,and$=2rn(wheren=O, f 1, k 2 ,  . . .),whilethe 
remaining unknowns are found by analogy with Ref. 6: 

where A = (1 + 6gp /a2)'I2; we used the inequalities (25) to 
find the root of the quadratic equation. Let us assume that 
A, is small but nonzero. To determine the characteristics of 
the pulse train, we then need only find the corrections linear 
in A, to the solution. Some simple calculations show that 
quantities (26) have no corrections linear in A,. An approxi- 
mate solution of the system (22), however, yields 

Here are some other examples of the way in which the 

system in (22) can be used. We can easily show with these 
equations that even if the frequency spectrum is equally 
spaced (A, = 0), there are two other solutions in addition to 
the pulse solution (26). One of these solutions has b = 0 and 
$ = 1 ~ + 2 ? m a n d t h e o t h e r b # O a n d S ~ c o s $ + 2 4 ~  =O. 
We can also draw some definite conclusions about systems 
with a strong frequency dispersion by setting AR = 0. In this 
case, we would have a = 2'12 sgn A, and (8, tp)4 = 3A,a/p. 

5. SOLITON SOLUTION OF THE HAUS EQUATION IN THE 
CASE OF A FAST NONLINEARITY 

We assume now that the maser nonlinearity is described 
by Eq. (18). The pulse envelope will then satisfy the equation 
derived from (10) by substituting g, for g: 

8 ' 8  8 8  A -+ 6 e i * - + ( l + g + ~ 1 8 1 2 - e i * ) 8 = 0 .  
atz at 

(28) 

If the coefficients are real, Eq. (28) can be reduced to the 
Haus equation for a laser with a fast saturable absorber.' 

We will seek a soliton solution of Eq. (28) with the com- 
plex coefficients A = AR + id, and 5 = 5, + ic, in the 
form in (21), which we have already tested. Substituting (21) 
into (28), we find the following algebraic system of equations 
for the characteristics of the pulse train: 

8, ( a p t p )  '+AI (a2-2) +3ARa=0, 

2A,b+ tp6 sin ~ I = O ,  2Arb-tp6 cos $=0, 
(29) 

G I  (8ptp)2+ARa-A,b2+tpb6 cos $-tp2 sin $=AI, 

bR (8ptp)2-AIa-ARb2-tpbi3 sin 9-tp2 cos $+ tP2 ( I f  g )  =AR. 

Here $, and t, are the amplitude and duration of a pulse, a 
and b are the parameters used in the solution of (21), and S 
and $ determine the repetition period of the pulses and the 
phase shift between them [see Eqs. (8) and (9)]. 

If b # 0, we can write a general solution of the equations 
in (29): 

1 
b2=l - - [ ~ r ( ~ p t p ) 2 + A R ~ - t p 2  sin $1, 6=-2ARb/tp sin $. 

A r 

Equations (30) are not the only possible solutions of 
Eqs. (29). There are also solutions in which b = 0, S = 0, a 
and Z?, t, are determined by Eqs. (29), while the correction 
to the phase shift $ and the pulse length t, can be found from 
the simple system 

sin $ - - 
Ar(a2-I)  +2ARa 

cos 9- ( I + ~ )  ' a '  
2A,a-A, ( ~ " 1 )  

tp2 = 
cos 9- (I+&?) 
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In the solution of Eq. (30), we assumed that the determi- 
nant 

If the coefficients in Eqs. (29) correspond to a situation in 
which this determinant vanishes, we can find from (29) and 
(3 1) the following expression, instead of (30): 

AR 
- arcsin lpZarcsin 

( ~ ~ 2 + A ~ 2 ) b  (AA2+A12)  'I' 

'h  1 2AR '12 
(32) 

AR 
""= [ cos 4,- (I+&?) ] 3 ( )  t~ %R 

. 

Equations (32) can be used to determine the link between the 
new results and the existing solutions of Eq. (28) with real 
coefficients. For example, if the transition from AI = 0, 
{ I  = 0 to small but finite quantities results from the solution 
(30), this transition is hard. A fast frequency drift (character- 
ized by a) appears in this case in the dynamic spectrum of the 
emission, and the phase shifts immediately by ~ / 2 .  We recall 
by way of comparison that according to (26), in a maser with 
a slow, saturable absorber a small inequality in the spacing of 
the spectrum produced a soft change in the characteristics of 
the pulse train. 

In the solutions (30)-(32), we must take into account the 
conditions (19) necessary for the existence of the pulse train 
and for its stability. In particular, if g < 0, the inequalities 
necessary for the solution (32) are satisfied. 

6. DISCUSSION 

We have found that there are analogs of slow and fast 
nonlinear saturable absorbers in cyclotron plasma masers. 
After some simplifications, the Haus equations with com- 
plex coefficients can be used to study passive mode locking 
and to determine the shape of the electromagnetic pulse that 
oscillates between resonator ends. In this paper we found 
soliton solutions of these equations and determined the char- 
acteristics of pulse trains with a large off-duty factor, includ- 
ing the frequency variation of the electromagnetic emission 
spectrum which does not correspond to the linear dispersion 
equation. These results are probably of interest in the re- 
search not only into plasma masers but also into certain 
types of neodymium-glass15 and dye lasers. The effect of an 
unequally spaced frequency spectrum on active and passive 
mode locking in lasers was studied in Refs. 16 and 17. These 
studies used a mode-dependent approach that did not deter- 
mine the shape of the electromagnetic pulse. 

The theory we developed can be used to accurately de- 
scribe the processes occurring in laboratory maser systems 
considered in Ref. 10. Passive mode locking in open magnet- 
ic bottles can be used to form an electromagnetic pulse train 
with a scale considerably smaller than that of besters detect- 
ed in Ref. 18. In such experimental studies, it is advisable to 
focus attention on the phase shift of electromagnetic signals 
observed near the coupled ends of a magnetic bottle. The fact 
that the signals are out of phase indicates in this case that 
passive mode locking has been established. 

The theory of cyclotron instability in the Van Allen ra- 
diation belts is an important area of application of the results 
obtained by us. An important problem of this theory, which 
has so far not been solved completely, is how to interpret the 
excitation of the fine "chorus" structure of the whistlers. 
Chorus emissions usually have several time scales. A quasi- 
periodicity with a time scale of several tenths of a second 
seems to be caused by the bounce-resonance effects.19 On the 
other hand, a quasiperiodicity with a time scale of several 
seconds, which roughly corresponds to the period of group 
propagation of whistler waves along a resonator, is attribut- 
able to the processes we have analyzed in this paper. In the 
geomagnetic-fluctuation range, this study may prove to be 
useful in refining the theory of pearl production.20 This fluc- 
tuation range probably corresponds to pulses of AlfvCn 
waves that propagate through the proton radiation belt that 
lies between the coupled regions of the ionosphere. 

Wave propagation in Jupiter's radiation belts may be 
another interesting area of application of our theory. The 
density of background plasma in the Jupiter's magneto- 
sphere is relatively high only in the equatorial region because 
of the planet's high angular velocity.21 This circumstance 
automatically leads to a small region of cyclotron interac- 
tion between whistlers and energetic electrons. Under these 
conditions, the electromagnetic emission can be modulated 
near the self-excitation threshold with a period approxi- 
mately equal to the period of group propagation of the whis- 
tlers. Near the 10 plasma torus, for example, this period is - 100 s. Thus far, there have been no continuous spectral 
measurements carried out in the Jovian magnetosphere. 
Only some isolated experiments have been carried out at 
particular moments during the flight of space probes. These 
experiments have revealed the presence of a fine chorus 
structure in the  emission^.'^ This structure seems to corre- 
spond to the bounce oscillations of energetic electrons. 

We wish to point out in conclusion that the analogy 
between the operating regime of masers and lasers is not 
restricted to the process considered here. Cyclotron plasma 
masers, just as lasers, can operate even under slower quasi- 
periodic regimes, in which the electromagnetic radiation in 
the resonator is distributed approximately uniformly. Even 
in this case, however, the processes occurring in cyclotron 
plasma masers have unique features that are discussed in 
Refs. 12 and 13. 

I wish to thank Ya. I. Khanin, V. Yu. Trakhtengerts, 
and I. I. Matorin for a discussion of the results. 

APPENDIX 

Absorption saturation in the case of a cyclotron interaction 
between whistlers and energetic electrons 

The cyclotron interaction between whistlers and ener- 
getic electrons and the mathematical description of this in- 
teraction depend in many respects on the ratio of the period 
of bounce oscillations of particles between the mirror points, 
T, = 21i-I, / v ,  (I, is the scale of the longitudinal nonunifor- 
mity of the magnetic field) to the period of group propaga- 
tion of whistlers along the resonator, T =  kl/w (1 is the 
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length of a magnetic tube of force). We assume that the dis- 
tribution function anisotropy is moderately large, so that, 
according to Ref. 12, the dominant whistlers are those whose 
frequencies w are lower than the gyrofrequency w, . Using 
the cyclotron-resonance condition w - k vi l  = w, , we easi- 
ly see that 

T*= ( 2 3 ~ 1 ~ ~ / 1 ~ ~ )  T K T .  (All 

This ratio of time scales allows us to use an expression for 
whistler-wave enhancement, averaged over the particle- 
bounce oscillation periods.12 For low-energy pulses, we can 
use expression (16), in which the linear gain is given by 

where R is the effective coefficient of reflection of waves 
from the magnetic-bottle ends; this coefficient also takes 
other linear losses into account. The nonlinear corrections to 
the gain, in accordance with (12), (15), and (16), are given by 

Equations (A2)-(A4) automatically take account of the fact 
that in the case of waves of relatively low frequencies, the 
particles diffuse in the velocity space not in accordance with 
the velocity modulus u, but primarily at pitch angles charac- 
terized by x = lull I/u, at the center of the magnetic bottle. 

The distribution may be arbitrary in many respects if a 
system is operated below the self-excitation threshold. To 
shorten the equations, we assume that the distribution is 
characterized by a small velocity spread and that it is non- 
zero only when x, < x < x, , where x, = (B,i,/B,,,)1'2 
corresponds to the loss-cone limit in the velocity space, and 
x, 4 1. In this case, the smooth positive functions, which 
appear in (A2)-(A4) as the coefficients 

D ( x ,  U )  =Do%, K ( H ,  v ) = K o x Z ,  (As) 
according to the conclusions of Ref. 12, can be simplified 
considerably. 

Our goal in this Appendix will be reached if we can give 
an example of a distribution in which a and f l  are positive. 
Furthermore, according to (A2), the self-excitation thresh- 
old can be approached at a reasonably high resonator Q if the 
contribution to cyclotron linear gain (A2), characterized by 
the integral 

,,= j K(Bfo /dx )dx  d", 

is positive. Since quasilinear relaxation may be appreciable 
in the magnetic tubes of force adjacent to the tube under 

study , we will slightly complicate our problem by requiring 
that the distribution function satisfy the boundary condi- 
tions: f, = 0 for x = x, and Ddfo/dx = 0 for x = x, . 

We can write the distribution function with the proper- 
ties of interest in the form 

1 
j.=AE [ (I-S)'(P-EL) +Q(2-E) IE(F  - I )  6 (u-uo). (6) 

where E and S are the unit-step function and the delta-func- 
tion; f = (x - x, )/(x, - x, ); and A,  P, and Q are positive 
constants, with P> 1. The distribution function (A6) is posi- 
tive, localized in the chosen part of the velocity space, and 
satisfies the given boundary conditions. We can now easily 
show that this function can ensure positive values of a, p, 
and the integral J with the coefficients (AS) that we intro- 
duced above. If, for example, the loss cone is sufficiently 
narrow, we will have P = 4 and Q = 3. 

"The second derivative with respect to time can also be taken into account 
in this expansion essentially without complicating the calculations that 
follow. 
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