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A study is made of the relationship between the specific crystallomagnetic structure of magneti- 
cally ordered crystals and the properties of their domain walls. The magnetic symmetry classes 
are constructed for plane 180-degree domain walls in ferromagnets and antiferromagnets, and the 
coordinate dependence of the magnetization density and antiferromagnetism vector in the do- 
main wall is characterized qualitatively for domain walls belonging to each of the classes. It is 
shown that there are 42 magnetic classes of domain walls in ferromagnets and 134 magnetic 
classes of domain walls in antiferromagnets. It is predicted that phase transitions associated with 
changes in the domain-wall symmetry can occur. A study is made of the change in the symmetry 
and spatial structure of the domain walls due to their motion. 

The static and dynamical properties of the boundaries 
between magnetic domains in magnetically ordered crystals 
have been actively studied of late (see, e.g., Ref. 1). In the 
overwhelming majority of cases the studies have considered 
some model problem without taking into account the specif- 
ic magnetic symmetry of the crystal. At the same time, how- 
ever, individual calculations of the and dynamic4s5 
properties of domain walls in orthoferrites, for example, sug- 
gest that there are a number of important features which 
arise upon the systematic incorporation of the actual struc- 
ture of the particular magnet. 

In this paper we construct a complete symmetry classi- 
fication of stationary and moving 180-degree domain walls 
in ferromagnetic and antiferromagnetic crystals. We consid- 
er only plane domain walls whose widths are much greater 
than,the interatomic spacings. On the basis of our analysis 
we make a number of general statements about the proper- 
ties of domain walls and predict the possibility of phase tran- 
sitions associated with a change in the domain-wall symme- 
try. 

The existence of domain structure in ferromagnets and 
ferrimagnets is mainly due to the magnetic dipole interac- 
t i ~ n . ~  A different situation is found in antiferromagnets, in 
which there is, in addition to the thermodynamically stable 
domain structure (antiferromagnetic, with a weak ferromag- 
netism), a nonequilibrium domain structure associated with 
the kinetics of the phase transition to the magnetically or- 
dered state.' There is also active study of the thermodynam- 
ic-equilibrium domain structure that arises at first-order 
phase transitions in a magnetic field-the intermediate 
state.'-l5 

The theory elaborated below applies to the walls of all 
domain structures in which the ferromagnetism vectors (in 
ferromagnetic and ferrimagnetic crystals) or antiferromag- 
netism vectors (in two-sublattice antiferromagnetic crystals) 
of adjacent domains are antiparallel (i.e., it applies to 180- 
degree domain walls). The generalization to other domain 
walls can be done in an analogous way. 

1. MAGNETIC SYMMETRY CLASSES OF PLANE 180-DEGREE 
DOMAIN WALLS IN MAGNETICALLY ORDERED CRYSTALS 

If the radius of curvature r, of the domain walls is much 
larger than their thickness, segments with dimensions much 
smaller than r, can be considered approximately planar. It is 
thus meaningful to study the symmetry of plane domain 
walls. It is convenient to introduce an orthonormal basis tied 
to the plane wall. Unit vector n is perpendicular to the plane 
of the wall, while unit vectors T, and T, lie in the plane of the 
wall. The coordinate measured along the direction of n will 
be denoted <. 

The magnetic symmetry group of a domain wall in a 
crystal is the set of all operations which do not change the 
spatial arrangement of the magnetic moments of the atoms 
in the magnet with the domain wall. This group is a sub- 
group of the magnetic (Shubnikov) group of the paramagnet- 
ic phase of the crystal." If all translations t are made identi- 
cal to the unit operation, we arrive at the concept of the 
magnetic symmetry class of the crystal with the domain 
wall. 

The properties of domain walls whose width f o  is much 
larger than the dimensions a of the magnetic unit cell can be 
described by macroscopic quantities [e.g., the magnetization 
density M({ ) and the density of the antiferromagnetism vec- 
tor, L(f )]. By introducing macroscopic quantities one is 
averaging over dimensions a(x({,. Consequently, the sym- 
metries of wide domain walls can be characterized by mag- 
netic classes. 

We shall show that the symmetry of plane domain walls 
depends importantly on how the vector normal n and the 
ferromagnetism (antiferromagnetism) vectors in the do- 
mains are oriented with respect to the crystallographic axes. 

Let us first enumerate all the possible magnetic symme- 
try classes G, of plane 180-degree domain walls in ferromag- 
nets." In this case the magnetic moments far from the wall 
are antiparallel, i.e., M(< = CXJ ) = - M({ = - co ). The 
magnetic class of the domain walls in the crystal can only 
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contain symmetry elements which belong to the magnetic 
class of the paramagnetic phase of the crystal, and of them, 
only those which do not change the conditions at { = + w . 
These operations can be of two types. Operations of the first 
type (g"') do not change the direction of either the T-odd 
axial vectors M( f w ) or of the normal n. Operations of the 
second type reverse both these directions: 
g ' , ' ~ (  CQ ) = M( - w ), g','rn = - n. The set of operations g"' 
and g',' forms a group. This group corresponds to the maxi- 
mum possible domain-wall symmetry in the given crystal for 
the chosen direction of vectors n and M( + w ). All the re- 
maining classes for a given crystal at fixed n and M( + CQ ) 
can be obtained by a simple listing of its subgroups. 

Three distinct orientations of the vectors M( + CQ ) with 
respect to the normal to the wall are possible: 

1. M( f w ) ~ ) T ~ .  The magnetic symmetry classes of the 
domain wall can consist of the following elements: 1, 2,, Z,, 
2,, if, Z;, 2;, 2;. In our notation 1 ,, 2,, 2,-are twofold rota- 
tions about the axes TI, T2, n,respectively, 1 is inversion, and - 
2, = 2, I,?,  = 2, - 7 ,  and 2, = 2, 1 are reflection planes 
perpendicular to the axes T,, T,, and n, respectively. As usu- 
al, a prime on a symmetry element means that a time-rever- 
sal operation is done simultaneously. The primed rotations 

TABLE I. 

are known as antirotations, and i' is known as anti-inver- 
sion. 

From these elements one can form sixteen groups, 
which are written out in the second column in Table I (and 
are numbered k = 1-16 in the first column). It is seen that 
groups G2-GI, are subgroups of G,. Only the generating ele- 
ments of the classes are shown for k = 2442). The third 
column gives the nonzero components of the vectors 
M( + w), and the fourth column gives the qualitative form 
of the coordinate dependence of the components of the mag- 
netization vector M(6 ) (6 is the coordinate along the normal 
to the wall, and the symbols Sand A denote the presence of 
symmetric and antisymmetric parts, respectively, with re- 
spect to the substitution {+ - g ). The last column gives the 
abbreviated international notation for the classes. 

2. M( f w )\In. In this case the magnetic classes of the 
domain walls can include the following operations: 

1, 21, 2 n y  3 n 7  4 n 3  6n7 I',  21'7 2nf7  Sn'7 Z*', En', 
where 3,, 4,, 6, are threefold, fourfold, and sixfold rota- 
tions about the normal n, while 2, denotes twofold rotations 
about axes perpendicular to n. From these elements one can 
make 31 groups which do not reduce to one another by a 

Inter- 
Symmetry elements NT. 'in 1 national 

symbols 
I I I 

mm' 
2' 

m'nz' 
m'm'm' 
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relabeling of the axes T, and 7,. These groups are given in 
Table I in the rows numbered k = 12, 13, ..., 42. 

3. M ( f  m)=M, , ( f  o o ) ~ , + M , ( +  m)n. The sym- 
metry of the crystal with the domain wall is described by one 
of the classes Gk with k = 12, 13, 14. 

Table I thus gives all possible magnetic symmetry 
classes for a domain wall in a ferromagnet that are not mutu- 
ally reducible by a relabeling of the unit vectors T~++T,. 

To find out which types of domain walls can, in princi- 
ple, occur in each particular crystal, one must sort out all 
possible crystallographically different directions of the nor- 
mal n and for each such direction list all the classes Gk 
which, at fixed values of M( co) determined from the sta- 
bility conditions of the spatially homogeneous magnetically 
ordered state, are subgroups of the magnetic class of the par- 
aphase of the crystal. 

In ferrimagnets the domain-wall symmetry is also de- 
scribed by the classes Gk, since the transformation proper- 
ties of the magnetization vectors of the sublattices in a ferri- 
magnet are the same as for the ferromagnetism vector in a 
ferromagnet. There are no additional symmetry operations, 
since the sublattices in a ferrimagnet are inequivalent. 

An essentially different situation occurs in an antiferro- 
magnet. We shall consider only those antiferromagnetic 
structures, including weakly ferromagnetic ones, which can 
be treated in the two-sublattice model16 (a rigorous symme- 
try-based definition is found in Ref. 17). 

As in the ferromagnetic case, the domain-wall symme- 
try classes in antiferromagnets can be obtained by listing the 
symmetry classes of the conditions at infinity and all their 
subgroups. The total number of domain-wall symmetry 
classes in this case is rather large, and we shall therefore give 
only a simple prescription for constructing them. 

Following Ref. 16, let us for convenience separate all 
the symmetry operations included in the magnetic symme- 
try class of the paramagnetic phase of an antiferromagnetic 
crystal into odd and even operations (which do and do not, 
respectively, interchange the sublattices) with respect to the 
given antiferromagnetic structure. The even operations are 
denoted by a plus ( + ) sign, the odd by a minus ( - ) sign. 
Since the magnetic symmetry classes of the domain walls in 
an antiferromagnetic crystal are subgroups of the magnetic 
class of its paramagnetic phase, the operations which they 
contain can also be divided into even and odd operations 
with respect to the given antiferromagnetic structure. 

The magnetic symmetry of an antiferromagnet is speci- 
fied by giving the transformation properties of the antiferro- 
magnetism vector L and ferromagnetism vector M. Under 
even operations M and L transform alike, as T-odd axial 
vectors, while under odd operations the vector L is multi- 
plied by an additional coefficient ( - 1). Since we are consid- 
ering only antiferromagnets whose structures in the ex- 
change approximation are collinear and specified by only a 
single antiferromagnetism vector, in constructing the do- 
main-wall symmetry classes it is sufficient to consider only 
the transformation properties of the vector L. 

Let us first consider antiferromagnetic structures 
which are even with respect to all translations. In this case 

the magnetic symmetry classes of the domain walls can be 
constructed (using Table I) on the basis of the same elements 
as for the domain walls in ferromagnets. 

To construct all the magnetic symmetry classes of do- 
main walls in some particular antiferromagnet, one must 
proceed as follows: 

a) determine which of the symmetry operations in the 
classes Gk in Table I are even for the given antiferromagnet 
and which ones are odd; 

b) subject the odd elements in all classes Gk to an addi- 
tional time-reversal operation. 

Let us introduce a practical system of notation for the 
magnetic classes of domain walls in antiferromagnets, mak- 
ing use of the fact that the number of possible combinations 
of the parity of the elements in a given class Gk coincides 
with the number of real one-dimensional irreducible repre- 
sentations of the group 8, obtained from Gk by replacing 
the time-reversal operation with the unit operation. Here the 
characters of the irreducible representations of the group & 
coincide with the parity of the corresponding elements. It is 
therefore convenient to denote the magnetic symmetry class 
of the domain walls in an antiferromagnet by the symbol 
Gk (r ), where r is the symbol of the irreducible representa- 
tion of the group 8, for the given antiferromagnetic struc- 
ture. 

By counting up the number of irreducible representa- 
tions r one can show that there are 134 magnetic classes of 
domain walls in an antiferromagnet with the t ( + ) structure. 

Let us not consider antiferromagnetic structures which 
are odd with respect to some translation t ( - ). In this case 
the magnetic class of the homogeneous antiferromagnet con- 
tains the odd time-reversal operation 1'( - ). This operation 
remains present in the magnetic class of the inhomogeneous 
state if the dimensions of the inhomogeneity are substantial- 
ly greater than the dimensions of the unit cell. It follows that 
the magnetic classes of the domain walls in an antiferromag- 
net with an odd translation are the direct product of the 
classes Gk (r ) with the group consisting of the unit element 
and the odd time-reversal operation: 
G k ( r -  ) =  Gk( r )X( l , l l (  - )). 

2. STRUCTURE OF 180-DEGREE DOMAIN WALLS 

To describe the symmetry of the microscopic properties 
of crystals with plane 180-degree domain walls one must 
construct the magnetic groups which appear in the classes 
found above. It is necessary to know these groups in order to 
study walls of thickness comparable to the dimensions of the 
magnetic unit cell. Here, however, we shall consider only 
domain walls whose thickness is much greater than the di- 
mensions of the magnetic unit cell of the crystal. Such do- 
main walls are described by introducing the macroscopic 
magnetization density M({ ) and the antiferromagnetism 
vector L(6 ). Here we are averaging the spatial distribution of 
the atomic magnetic moments over distances much greater 
than the interatomic distance but much smaller than the 
thickness of the domain walls. In order to find out which 
types ofspatial distributions ofM({ ) and L({ )can in principle 
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occur in each particular cryst'al, it is necessary to indicate 
which of the classes Gk (r ) are contained as subgroups in the 
magnetic class of the paramagnetic phase of the crystal. This 
is because each magnetic symmetry class Gk (r ) of the crystal 
with the domain walls corresponds to a definite type of coor- 
dinate dependence of the components of the magnetization 
density Ma (f ) andantiferromagnetism-vectordensityL, (f ). 
To identify this type one must study how the operations 
which appear in the class Gk (r ) act on the components of the 
T-odd axial vector M and the vector L remembering that the 
vector L has an additional sign change upon interchange of 
the sublattices. 

As in the preceding section, it is reasonable to begin 
with the simplest case-the classes G, of the domain walls in 
a ferromagnet. Separating all the operations in Gk into two 
types (g"' andg'2', see Sec. 1) and seeing what restrictions on 
the form of the functions Ma (f ) and La (f ) (a = T,,T,,~) are 
imposed by operations of each type, we obtain the following 
rules. 

If (f ) = - Ma (f ) then Ma ({ ) = 0; if 
g"'Ma (f ) = Ma (f ), theng'l'does not impose any restrictions 
on the form of this components of the magnetization. 

Ifg'2'Ma (f ) = - Ma ( - f ), then Ma (f ) is an antisym- 
metric (A) function of the coordinate f if 
g(2)Ma (f ) = Ma ( - c ), then Ma (f ) is a symmetric (S ) fimc- 
tion. 

Let us illustrate this with an example. The operation 2, 
is of the type g'2', since 2,n = - n. We note further that 
since 2, M, (f ) = M, ( - f ), the presence of this operation in 
the magnetic class of the domain walls requires that M, (f ) be 
a symmetric function of the coordinate f .  The functions 
MTI (6 ) and MT2 (5 ), on the other hand, should be antisymme- - 
tric, since2,MTI(5) = - MTI(f) ,  2 , ~ ~ ~ ( 5 )  = - MT2(5). 

The types of functions Ma (6) found by this rule for all 
classes Gk are given in the fourth column of Table I. 

The data in Table I determine the qualitative behavior 
of the magnetization vector within a domain wall not only in 
ferromagnets but also in ferrimagnets and antiferromagnets 
if in these last there is an antiferromagnetic ordering whose 
vector L is even under all the operations in G, . In this case 
the behavior of the vector L in such a domain wall is qualita- 
tively no different from the behavior of the vector M. 

If the magnetic symmetry class of the domain walls in 

an antiferromagnet contains odd elements, the distributions 
L(f ) and M(f ) are determined in the following way. As we 
have said, the classes Gk (r ) are obtained from Gk by replac- 
ing all the odd operations g( - ) by the operations g'( - ). 
Here the action of the operation g'( - ) on L coincides pre- 
cisely with the action of the operation g( + ) on M. Conse- 
quently, all classes Gk (r ) with the same value of the index k 
and different values of r correspond to the same type of 
behavior of L(f ), which is like that of M(f ) in Table I for the 
same index k. As to the behavior of M(f ), it depends impor- 
tantly on r as well as on k. 

As an example, Table I1 gives the symmetry classes and 
structure of the high-symmetry domain walls in antiferro- 
magnets. These classes are constructed from the classes G,, 
G,, and GI, by the method indicated above. It is seen from 
Table I1 that each of the listed classes "multiplies" into four 
classes. To each of the four there corresponds a single type of 
function L(f ) and four different distributions of the magneti- 
zation M(f ). It is particularly interesting that a nonzero in- 
homogeneous magnetization arises in all the domain walls 
regardless of whether the initial phases are weakly ferromag- 
netic or not. For example, M(f ) arises in all structures with 
both even and odd inversions. Since the odd inversion pro- 
hibits the appearance of terms in the free energy which are 
linear in L (the Dzyaloshinskii term, in particular), the ap- 
pearance of inhomogeneous magnetization in such struc- 
tures should be due to invariants containing the spatial de- 
rivatives, e.g., the invariant M VXL. 

Let us make a few general remarks concerning the 
structure and properties of the domain walls. 

If the symmetry class of the domain walls contains ele- 
ments which interchange the places of the magnetic do- 
mains, one can introduce the concept of the "center" of the 
domain wall. Elements of this kind might be the twofold axes 
2, and 21, the center of anti-inversion i', and any of the 
elements 2;, 3;, z; ,z;. The center of the domain wall is the 
plane passing through the indicated symmetry elements and 
perpendicular to the inhomogeneity axis f .  In walls which 
lack a center, every nonzero component of the magnetiza- 
tion has both a symmetric and an antisymmetric part. 

It is seen from Table I that in domain walls correspond- 
ing to the classes with k = 1-6, 14,15, and 19-42 there exists 
a plane f = f * on which L(6) = 0 (antiferromagnet) or 

TABLE 11. Magnetic symmetry classes of high-symmetry domain walls in antiferromagnets and 
the spatial structure of these walls. 
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Symmetry elements 

7 

9 

17 

A  S  0 
S  A  0 
0 0 S 
0 0 A  
A  0 S  
0 A  0 
0 S  0 
S  0 A  
0 S A  

O  O  
0 A  S  
A o o 

A S 0  
A S 0  
A S 0  
A S 0  
A O S  
A O S  
A O S  
A O S  
O S A  
O S A  
O S A  
O S A  

A  
Bi 
B2 
B3 
A i  
Bi 
-42 
Bz 
A i  
Bi 
B2 
- 4 2  

1,22(+), 21'(+), 2nr(+) 
4 2a1(-1, 21 (-1, 2n1(+) 
1,22' (-1 2iJ(+), 2n (-1 
1,22(+), 2* (-1 
1,Zz.'(+),2if(+) Zn(+) 
1,22(-), 21 (-lo tn(+) 
1,22 (-), 2i1(+), Zn'(-) 
1,22'(+)+ 21 (-),Znl(-) 
1,22 (+I, 2i1(+), &'(+I 
1,22'(-), Zi(-), %'(+I 
1, 2z1(-), 2if(+) Zn (-1 
f,22(+),2i(-),Sn(-) 



M(6 ) = 0 (ferromagnet). Since the length of the antiferro- 
magnetism vector in an antiferromagnet or of the magnetic 
moment in a ferromagnet is determined by exchange forces, 
these pulsating domain walls can exist only near the magnet- 
ic ordering temperature or else in magnets in which the rela- 
tivistic interactions are comparable to or even stronger than 
the exchange interaction. The remaining domain walls are 
rotating or quasirotating walls [in the latter case there is a 
rotation of the vector L (in an antiferromagnet) or M (in a 
ferromagnet) together with a simultaneous change of its 
length]. 

The classes G, (r) describe, among other things, the 
symmetry of the Bloch and NCel domain walls. The Bloch 
walls correspond to the classes G,(r),  the NCel walls to 
G,(r).  Consequently, the Bloch domain walls can form only 
in those magnets whose crystallographic class contains the 
class D2 as a subgroup, while the formation of NCel domain 
walls requires that the class C2, be included among the sub- 
groups of the crystallographic class of the magnet. If these 
conditions are not satisfied, the domain walls will have other 
structures. 

The classes G,,(r ) describe high-symmetry rotating do- 
main walls of the NCel type, but with other conditions at 
infinity. 

The domain walls with k = 8 are of the Bloch type in 
terms of rotation but do not have a center, while those with 
k = 12 are of the Niel type without a center. 

The symmetry classes G, (r ) which we have found de- 
scribe the symmetry of the magnet only in the place where 
the domain wall is found, while far from domain walls the 
symmetry is that of the spatially homogeneous magnetically 
ordered state. 

We also note that the number of qualitatively different 
behaviors of M(6) or L(6) is substantially smaller than the 
number of classes G, (r). Nevertheless, domain walls with 
the same behavior of M(6 ) or L(6 ) but belonging to different 
classes G, (r ) will differ substantially in their other proper- 
ties-the distribution of the electric charge density and elec- 
tric polarization, lS and their elastic, magnetoelastic, and op- 
tical properties, etc. 

To conclude this section let us discuss the possibility of 

phase transitions associated with a change in the domain- 
wall symmetry upon changes in the thermodynamic param- 
eters. 

First, we note that by virtue of what was said above, not 
all of these are spin-reorientation transitions. 

Second, the change in the domain-wall symmetry can 
be caused by a reorientation of the atomic magnetic mo- 
ments in the interior of the domains. 

Third, the symmetry of the domain wall can change 
without a change in the magnetic ordering inside the do- 
mains. In particular, such a change could be the transforma- 
tion of a Bloch domain wall (G,) into a wall with symmetry 
G,, GI,, GI,, GI,, or the lowering of the symmetry of a NCel 
domain wall (G,) to one of the groups G,,, GI,, G,,, GI,. It is 
just such symmetry transitions that are the most interesting 
from the standpoint of studying the domain wall properties. 
A spin reorientation of this kind has apparently been ob- 
served experimentally in Ref. 19 (a theoretical discussion of 
this question for domain walls in orthoferrites is given in 
Refs. 3 and 5). 

3. KINEMATIC SYMMETRY OF DOMAIN WALLS 

Let us now turn to the problem of steadily moving do- 
main walls. We shall consider a plane domain wall moving 
uniformly with velocity v = vn. To describe the symmetry of 
the momentum distribution in such a domain wall at any 
given instant, we introduce the concept of the kinematic 
magnetic symmetry class. The kinematic magnetic class is 
obtained from the magnetic class of the stationary domain 
wall by removing from the latter all operations which change 
the direction of the T-odd true vector v. 

We use the term kinematic symmetry because we are 
not considering the causes of the domain-wall motion. Here, 
of course, we do not take into account the change in symme- 
try of the magnet due to applied external forces. Clearly, 
each of the kinematic classes of domain walls in ferromag- 
nets coincides with one of the classes G, given in Table I, 
while in antiferromagnets it coincides with one of the classes 
G, (r ) constructed by the prescription given in Sec. 1. There- 
fore, the kinematic class is specified by giving the index k in 

TABLE 111. Change in the magnetic symmetry of domain walls in ferromagnets due to their 
motion (of the number k of the classes G, corresponding to the same wall for v = 0 and v#O). 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

25 
42 
30 
31 
30 
30 
31 
35 
35 
37 
38 
37 
37 
38 
42 

15 
15 
16 
18 
18 
19 
20 
19 
19 
20 
24 
25 
24 
24 

4 
6 
6 
4 
15 
6 
10 
16 
10 
10 
16 
16 
16 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 



TABLE IV. Symmetry and structure of moving domain walls in antiferromagnets. 

v = o  I v # 0 

Symmetry I I I I dements I M71 I L ~ I  L ~ s  'TI 

A S S  
S A S  
0 0 S  

O  O  AhS A S  
0 AhS ; 
0 

S S A  
S S A  
S O 0  

S A S  
A , S  0 0 

the case of ferromagnets and by giving the pair of indices k, T 
in the case of antiferromagnets. The change in symmetry of a 
domain wall due to its motion can be found in Table I11 (for 
ferromagnets). Knowing the index k of the kinematic class, 
one can use Tables I and I11 to find the qualitative form of 
the function M(6 ) in a moving domain wall for each particu- 
lar case. 

In the case of antiferromagnetic crystals we shall give 
only the kinematic symmetry tables for the high-symmetry 
rotating walls (see Table 11). The kinematic classes of these 
domain walls and the corresponding forms of the functions 
L(6 ) and M({ ) for these classes are given in Table IV. 

It is seen in Table I11 that in the motion of Bloch (G,) 
and NCel (G,) domain walls in ferromagnets their symmetry 
is lowered to GI,, i.e., the distribution of the magnetization 
in the moving wall is a superposition of the distributions of 
walls G, and G,. This familiar result was obtained by a direct 
calculation in Ref. 20. 

A substantially different situation obtains in antiferro- 
magnets (see Tables I1 and IV). Here, if the domain wall 
belongs to the classes G7(B2), G9(A2), G17(B,), its motion does 
not lead to a change of symmetry. In all the remaining cases 
the kinematic class of the high-symmetry domain wall con- 
sists of only two elements, and the structure of the moving 
wall is therefore qualitatively different from that of the sta- 
tionary domain wall. 

The change in the domain-wall structure due to motion 
affects the value of the effective mass and the limiting veloc- 
ity of the wall." 

4. DOMAIN WALLS IN PARTICULAR FERROMAGNETS AND 
ANTIFERROMAGNETS 

Let us consider some examples of domain walls in var- 
ious magnetically ordered crystals of the monoclinic, rhom- 
bic, and tetragonal systems. 

Depending on the relationship between the constants 
which determine the energy of the magnet, it can have a 
great diversity of magnetic configurations. We shall consid- 
er only those cases in which the ferromagnetism (or antifer- 
romagnetism) vector occupies some preferred direction in 
the crystal. 

A S S  
A S A  
A S 0  

A , S  A, S  0 
A S S  

A , S  0 A , S  
A O S  

A A S  
S  S  A  
O S A  

A S A  
A.S 0 A . S  

Ferromagnets of class C,,(2,,5,) 

If the vector M in the crystal is directed along thez axis, 
the possible domain-wall symmetries are described by the 
classes with k = 4, 6, 10, 15, 16 for n l z ( ~ ,  llz) and the classes 
with k = 15, 16, 18, 19, 20 for nllz. 

If the vector M is perpendicular to the z axis, domain 
walls belonging to the classes k = 5,8, 1 1, 15, 16 can exist for 

nllz. 
The walls with k = 4,5,6, 15, 19,20 are pulsating walls, 

while walls with k = 8, 10, 11, 16, 18 are rotating walls; of 
these, only the wall with k = 8 can be characterized by a 
single rotation angle 6(z) of the magnetic moment: 
M = M,(T, cos 6 + -r2 sin 8 ). This domain wall is of the 
Bloch type but without a center, i.e., the function 6 (z) has a 
symmetric (with respect to z - +  - z) part as well as an anti- 
symmetric part. The symmetric part is due to the term 

in the invariant expansion of the energy density w of the 
magnetic subsystem of the crystal in powers of the ferromag- 
netism vector and its derivatives. Here the variational equa- 
tion 

contains a term AIM i(8 '' cos 26 + 6 " sin 26 ) which 
breaks the invariance of this equation with respect to inver- 
sion of the coordinate z. 

Ferromagnets of class C,,(2,,5,2,) 

The domain walls in crystals of this class can have the 
following symmetry. 

IfM( + ~ ) l l z ,  thenk = 9-12,16fornlzandk = 12,16, 
19, 22 for nllz. 

I fM( * ~ ) l k ,  then k = 2, 6, 8, 12, 16 for nllz, k = 3,6, 
11, 13, 16 for nllx, and k = 13, 14, 16, 17, 18 for nlk. 

It is seen that the NCel domain wall (k = 9) in the ferro- 
magnetic class C,, can exist only for M( + ~ ) l l z .  For the 
other directions of the magnetization vector in the crystal 
only centerless rotating domain walls of the Ntel (k = 12) 
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and Bloch (k = 8) types can exist. For nllz, M( f oc)lly, for 
example, theantisymmetry of the function 8 (z) in the domain 
wall with k = 8 is broken by the following term in the free 
energy density w: 

h2 d3M,, d3M, dM, d2M, 
w*= (M, ,  - - M z y + - - - - -  dz3 dz dz dz2 

The variational equation accurate to derivatives of third or- 
der is 

Owing to the presence of invariant (3), viz., w, =A, 
Q - sin 28, this equation acquires a term 

with the result that inversion disappears from the symmetry 
group of Eq. (4). An analogous result for domain walls with 
k = 12 follows from the invariant obtained from (3) by the 
substitution M, +MZ. 

Ferromagnets of class D,, 

Let the magnetization in the crystal be parallel to one of 
the twofold axes. In this case domain walls with the follow- 
ing types of magnetic symmetry can occur: k = 1-16 for 
nlM( + W )  and k = 12-23 for nllM( 03). Thus in the fer- 
romagnetic class D ,, both the Bloch (k = 7) and NCel (k = 9) 
domain walls can be stable. 

In antiferromagnetic' crystals we consider only the 
high-symmetry rotating domain walls. As we have noted, 
the symmetry of these domain walls is determined by the 
particular magnetic structure of the antiferromagnet and the 
position of the domain walls with respect to the symmetry 
elements of the crystal. 

Antiferromagnets with the orthofewit& structure (2,( + ), 
2 x (  -1, i( + I ,  d + 1) 

The energy density of the magnetic subsystem of these 
antiferromagnets can be approximated3' by the standard 
expression16 

Depending on the relationship between the phenomenologi- 
cal parameters appearing in this expression, three symmetric 
homogeneous phases are possible in zero magnetic field1? 

I .  L=*L,e,, M=O. 

The signs f refer to different domains of the same phase. 
Phase I is antiferromagnetic, while phases I1 and I11 are 
weakly ferromagnetic. 

The domain wall in orthoferrites have been well stud- 

ied.,~~ In each of the phases a domain wall can be situated in 
three different crystallographic planes, and each fixed posi- 
tion of the wall can correspond to two rotation planes of the 
vector L. Thus eighteen different domain walls can exist. Let 
us list them. For all domain walls the rotation of the vector L 
within the domain wall is given in the leading approximation 
in the ratio of the relativistic forces to the exchange force by 
the equation 

sin 0 (l) =* [ch (+)I . (8) 

Let us first consider the domain walls in phase I: 

a1 nllx, go2~ccJ(p,--p;) ,  (9) 
du L=Lo (e, cos 0+e, sin 0 ) ,  M = -Lee, 6 sin 0. 

b1 nllx, E02=d (PI-PI*), 
a. 

(10) 

L=Lo (e,  cos 0+e, sin 0 )  , M = - Loe, sin 8. 
6 

C I  nllz, Eo2=a,/ ( B z - B x ' ) ,  
a* 

(1 1) 
L=Lo (e,  cos 8+e, sin 0 )  , M -- -Lee, siq 8. 

6 

In addition, a;nll y is obtained from a, by the substitution 
x-y in formula (9); b ;rill y is obtained from b, by the substi- 
tution~* y in (10); c;nllz is obtained from c, by the substitu- 
tion xcty in (1 1). 

Phase 11: 

aI1 nllz, t,oZ=azl(Bx*-B,'), L=Lo (ex cos 0+e, sin 0 ) .  (12) 

M=Lo (dxe, cos O+d,ex sin 8 )  /6.  

brI nllz, E,02=~az/(P2-Bz), (13) 

dz 
L=Lo (ex cos O+ez sin 0 )  , M=Lo - e ,  cos 0. 

6 

axI' nlly, E o 2 = ~ d  (Px'-Bz), 
d, 

(14) 

L=Lo (e, cos 0+e, sin 8 ) ,  M=Lo - e ,  cos 0, 
6 

b11' nlly, t , ,2=d(Bz'--B,') ,  (15) 
L=Lo (e, cos 0+e, sin 0 ) ,  
M=Lo (dxe, cos @+due, sin 0 )  16. 

C I I  nllx, Eo2=&/ (BXo-$4, (16) 
a 

L=Lo (a cos 0+e, sin 0 ) ,  M= - Lee, cos 0. 
6 

L=Lo (e ,  cos 8+e, sin 0) , 
M=Lo (d,e, cos B+d,e, sin 8) /ti. 

The domain walls in phase I11 are obtained from expres- 
sions (12)-(17) by the substitution xcty. In formulas (9)-(17) 
we have used the notation 

px*=p,+d2/6, P;=gy+d,2/ti. (18) 

In walls of type a or a' the rotation of the vector L oc- 
curs in the plane of the domain wall (Bloch walls), while in 
walls of type b, b ', c, c' the rotation occurs in a plane perpen- 
dicular to the plane of the domain wall (NCel and head-to- 
head walls). 

The distribution of these domain walls over magnetic 
classes is given in Table V. 
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TABLE V. Magnetic symmetry classes of domain walls in orthoferrites. 

For moving domain walls in antiferromagnets with the 
orthoferrite structure, the kinematic symmetry class and, 
hence, the distribution of the vectors M and L, are given in 
Tables V and IV. 

It is seen from these tables that only the domain walls in 
the antiferromagnetic phase do not change their symmetry 
upon motion, and the distribution of M and L in them is 
determined, as before, by formulas (9)-(11) with the definite 
functional form 8 = 8 (5 - ut ). In weakly ferromagnetic 
phases, there is a lowering of the symmetry of the domain 
walls upon their motion. 

Although each of the six domain walls in a weakly fer- 
romagnetic phase has its own symmetry, only two of the 
domain walls have qualitatively different distributions of M 
and L. 

The first type includes the walls a,, , b ;, , and c;, , in 
which the vector M rotates in the same plane as the vector L 
as one goes from one domain to another. Upon the motion of 
domain walls of this type the vectors M and L leave the 
plane, and the component of M which arises thereby is a 
symmetric function of the coordinate, while the component 
of L is antisymmetric. It is important to note that these do- 
main walls retain their center upon motion. 

The second type includes the walls b,, , a;, , and c,, , in 
which the transition from one domain to the next occurs by 
means of a plane rotation of the vector L, but the magnetiza- 
tion vector here has only a single nonzero component, which 
is perpendicular to the plane of rotation of the vector L and 
varies only in modulus. New components of M and L do not 
arise upon the motion of these domain walls, but the walls 
become less symmetric-they lose their center. 

The features of the motion of domain walls in weak fer- 

TABLE VI. Magnetic symmetry classes of domain walls in antifer- 
romagnets with the structure of fluorides of transition elements. 
Thez axis is directed along the principal crystallographic axis, the x 
axis along an even twofold axis. 

romagnets were studied in Ref. 5. The theory developed in 
that study is in basic agreement with the results of the above 
analysis. There are slight differences due to the model ap- 
proximations used in that study5 for the form of the equation 
of motion and the energy (6). 

L ( f  m) 

Loex 

Antiferromagnets with the structure of transition-element 
fluorides (4,( - ),2,( + ),2,( - 1, i( + 1, Y + 1) 

The magnetic classes of the high-symmetry rotated do- 
main walls in antiferromagnets with this structure are given 
in Table VI, from which it is seen that all the domain walls 
listed in Table I1 can occur here. Using Tables VI and IV, we 
arrive at the conclusion that in the easy-plane phase (Lle, ) 
the motion of a domain wall always lowers the symmetry of 
the latter and, accordingly, changes its spatial structure. As 
to the domain walls in the easy-axis phase (Llle, ), here there 
are two fundamentally different possibilities. If the rotation 
of the antiferromagnetism vector in the domain wall occurs 
in a plane passing through the principal axis and an even 
twofold axis, the structure of the moving domain wall is 
qualitatively different from its structure for v = 0 (here the 
domain walls of both the Bloch and Ntel types are trans- 
formed for v#O into a "superposition" of Bloch and NCel 
walls). If the antiferromagnetism vector in the domain wall 
rotates in a plane passing through the principal axis and an 
odd twofold axis, the structure of the moving wall is qualita- 
tively similar to that of the stationary wall. 

A calculation of the static and dynamic properties of 
domain walls in easy-axis antiferromagnets having the struc- 
ture of fluorides of transition elements was done in Ref. 21. 
The conclusions of the symmetry analysis agree with the 
results of this study. The only difference is that by virtue of 
the approximations made in Ref. 2 1, the calculated theoreti- 
cal structure of the domain walls turned out to depend im- 
portantly on the particular crystallographic plane in which 
L rotated but was completely insensitive to a change in the 
direction of the normal n. This result is a consequence of the 
neglect of the inhomogeneous relativistic interactions. 

It is especially noteworthy that, as was shown in Ref. 
21, the limiting domain-wall velocity depends strongly on 
whether the spatial structure of the domain wall changes 
upon motion or remains unchanged. This is a good indica- 
tion of the importance of taking into account the particular 
symmetry of ferromagnets and antiferromagnets in studying 
their domain structure. 

We are grateful to I. E. Dzyaloshinskii and I. M. Vi- 
tebskii for consultation and to B. A. Ivanov for a stimulating 
discussion. 

n 

er 

e ,  

"This is always true except for those rare cases in which the magnetic 
symmetry group of the magnetically ordered phase is not a subgroup of 

Magnetic classes 

G7(A), Go(AI! 
G7(A), Gg(Ail 
Gi7(A,) 
G7(B1), G9(Bij 

ez 

Lee, 
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G7 (B3), G9 (Bz) 

GI, (A,), GI, (B2) 

G17(Ai)? Gt7(BJ 

G7 (BJ, G9 (Ad 

G7(-4), G9(Ai) 



the magnetic symmetry group of the paramagnetic phase. 
"Such domain walls can occur in crystals with any symmetry, since in the 

absence of field the energy of the crystal is time-reversal invariant and, 
consequently, has a ground state which is at least twofold degenerate. 

3)Here we are not treating the problem of domain walls in the presence of 
spin reorientation, so invariants of higher order are not needed. 
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