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A study is made of the tunneling of holes between the light and heavy subbands of the degenerate 
valence band (described by an isotropic Luttinger Hamiltonian) of a Ge-type semiconductor in a 
static electric field E. The transition probabilities and the flux densities are found for the tunnel- 
ing of holes between subbands, and the results of numerical calculations are presented. It is found 
that the effective tunneling region in momentum space is a torus at the center of the Brillouin 
zone, with axis along E and linear dimensions of the order of (2m*fieE ) ' I 3  (l/m* is the difference 
between the reciprocals of the effective masses of light and heavy holes, and e is the charge of a 
hole). In this region the tunneling probability is close to unity. 

A strong electric field causes tunneling transitions of 
electrons between different energy bands in a semiconduc- 
tor. However, studies of these transitions have dealt mainly 
with the tunneling of electrons between the valence and con- 
duction bands,'-5 which leads to an increase in the total 
number of free change carriers in the semiconductor. 

In the present study we consider the tunneling of holes 
between subbands of the degenerate valence band of a ger- 
manium-type semiconductor. This tunneling does not 
change the total number of free charge carriers but leads 
only to a redistribution among subbands. This redistribution 
must be taken into account in streaming effects, in produc- 
ing inverted hole distributions in semiconductors, and in 
other phenomena pertaining to the hot-carrier region. 

In studying tunneling within a degenerate band one 
cannot use the methods developed for studying band-to- 
band tunneling, as these methods rely on the smallness of the 
tunneling probability due to the finite gap width. 

Let us consider the case when the valence band is four- 
fold degenerate at the point p = 0 in momentum space, neg- 
lecting the presence of the three corresponding twofold de- 
generate subbands split off by the spin-orbit interaction. In 
this case the behavior of the holes in the vicinity of p = 0 is 
described to good accuracy by the Schrodinger equation 
with the isotropic Luttinger Hamiltonian6 for particles with 
spin 3/2: 

all, - A A 

ifi - =H$, H=Ho-eEr, 
at  

h 

where Ho is the Luttinger Hamiltonian, e is the hole charge, 
E is the electric field, _mo is the free-electron mass, fi is the 
momentum operator, J is the spin-3/2 operator, and y, and 
y are dimensionless parameters which are well known from 
experiment for many semiconductors. They are related to 

the effective masses m, and m, of the light and heavy holes, 
respectively, by 

For Ge these parameters are y, = 13.35 and y = 5.1 1. The 
rest of the notation (fi,t,r) is standard. 

For definiteness let us use a coordinate system with x 
axis directed along E. The other axes will be chosenkater. We 
shall work in the representation of the operators Ho and fi. 
The coordinate parts of their eigenfunctions are de Broglie 
waves corresponding to the eigenvalues p and ~ , ( p )  (A = I 
for light holes, A = h for heavy holes). The choice of the 
spinor parts of the eigenfunctions is dictated by the following 
considerations. In the absence of electric field the projection 
of the spin onto the direction of the momentum Jp is con- 
served. The value of this projection (the helicity) is different 
in the light-hole (Jp = + 1/2) and heavy-hole (J, = + 3/2) 
subbands. The electric field, by changing the value of p,, 
alters the direction of the momentum and thereby, by virtue 
of the spin inertia, induces transitions between J, states, in- 
cluding transitions between subbands. In a uniform electric 
field the transitions between subbands conserve the hole mo- 
mentum (they are vertical transitions) but change the aver- 
age hole coordinate by Ax = A&(p)/eE, where 
A E ( ~ )  = E,(P) - E,, ( p). The rate of change of the momentum 
direction is greatest in the region p, -p, ( p, is the value of 
the momentum component perpendicular to the field E). In 
this region there are also relatively intense transitions 
between subbands. If the rate of change of the momentum 
direction is small, then the hole spin is able to follow the 
change, and spin flips and transitions between subbands do 
not occur (this is the case of adiabatically slow change in the 
direction of p). The state with p, = 0 is a special case. For 
this state J, is an integral of motion, and therefore transi- 
tions between subbands do not occur. For motion near p, 
= 0 the momentum direction changes appreciably over a 

time At-p, /eE, during which p, -p. This is the effective 
time over which the perturbation that causes transitions 
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between Jp states acts on the system. Their probability is 
relatively large if At 2 WAe(p). Eliminating At from these 
relations, we obtainp, Zp*, where 

where 

On the other hand, the probability of subband-to-subband 
transitions is also small at large p,, because here the poten- 
tial barrier through which the tunneling occurs is high and 

' 

Consequently, the effective tunneling region in momentum 
p,=p.*ip,, f (r) = (2nh) -' exp (iprlh) . 

space at fixed E is a torus at the center of the Brillouin zone, 

1 
0 

- 31/zp+z,p2 
0 

with axis along E and linear dimensions of the order ofp*. At 
fixed p, the tunneling probability vanishes for E+w be- 
cause the time At spent by a hole in the effective region goes 
to zero and there is insufficient time for the spin state to 
change. 

The description of the hole behavior in the Jp represen- 
tation, though transparent, is not very convenient, since the 
electric field mixes all four of its states, making it necessary 
to solve a system of four differential equations. Here, how- 
ever, we are interested only in subband-to-subband transi- 
tions without reference to the sign of the spin projection Jp 
and do not care about spin flips within a subband. We shall 

f (r)! 

wide. According to Ref. 3, the corresponding transparency 0 

factor is 1 0 1  

3"'p_2/p2 
O 
1 

show that this problem reduces to the study of transitions 
between two types of states, described by two equations. 
Since the proposed method is applicable to a wide range of 
problems, let us elaborate it ig some detail. 

The total Hamiltonian H is invariant with respect to 
reflections in a plane with n o ~ a l  n along pXE. The corz-  
sponding reflection operator T,, which commutes with H, 
can be represented as a product of the operators for inversion 
and rotation about n by an angle T:  

f @), 

In these states the average value of the hole spin projection 
onto any direction is equal to zero. The states +by) and +bb- ') 

have opposite signs of the average values of J2 and can be 
obtained from each other by the conjugation operation (the 
product of the inversion and time-reversal operations). 
Transitions between states of different parity do not occur 
under E. Moreover, we have excluded from consideration 
the uninteresting spin flips within a subband and reduced to 
two the number of states coupled by E. The nonzero matrix 
elements of the coordinate x (and their conjugates) in the 
representation of eigenfunctions (5) are 

a 
(a, A, p I x ]  a, h, p'>=-ih --;- 6(3) (p-p') ; 

a P= 

( l , l , p ~ x ~ ~ , h , p ' > = - < - I , l , p ~ x ~ - 1 , h , p f ) *  

With allowance for the conservation of integrals of mo- 
tion p, and a, we seek a solution to Eq. (1) of the form 

f ,=i exp [ixJX n] . (4) 

The coordinate part of this operator for states witkp, = 0 is 
the identity transformation. The eigenvalues of T,,  which 
determine the parity of the state with respect to reflection in 
the given plane, are a = f 1, while the eigenfunctions +b( * ') 
(with allowance for the definiteness of the energy) is a linear 
combination of states with spin projections J, = + 1/2 for 
the light holes and Jp = + 3/2 for the heavy holes. It fol- 
lows directly from (4) that these functions are simultaneous- 
ly linear combinations of the eigenstates J, with eigenvalues 
3/2 and - 1/2 for $(I' and - 3/2 and 1/2 for $'-I) .  For 
convenience we take the direction of the normal n to be the z 
axis. In this coordinate system thz ortho~ormal eigenfunc- 
tions common to the operators fi, H,, and T, are of the form 

= C [c:"' (p, t)*"' (p, r) +cia' (p, f)rpY' (P, 1) I (7) 
PI 

The expansion coefficients CY1(p,t) with a = 1 satisfy the 
equations 
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- 
- a 

neEpnp- c!" ( p ,  t )  + [ sh ( p )  - i f t c ~  -1 c:" (p ,  t )  
2 ps a P* 

a (i) =in-ch ( p , t ) .  (9)  at 

The equations for the states with a = - 1 are obtained from 
(8)  and (9)  by the substitution t-t - t  and E+ - E and by the 
operation of complex conjugation. 

Suppose at the initial time t  = to a hole is located in the -r -3 -2 -I o I pz /pA 
light band in the state p = p,, a = 1 ,  i.e., 

FIG. 1.  Probability of finding a hole in the heavy ba?d at p, = oo as a 
!unction of the initial valuep: for y = - 0.2 (curve I) ,  y = 1 (curve 2), and 

c:" (p ,  to)  =6'S)(p-po), CP' (p ,  to) =c:-" (p ,  t0)=0. (10) y = 0.5 (curve 3). 

Since the hole momentum changes in accordance with the 
p, = co . We see from equations (13) and (14) that if a,  =f,@) law p = po + eE(t - to) and the parity of the hole state is 
and a ,  = f ,  g )  are solutions of these equations, then conserved, the solution of the system of equations (8 )  and (9)  

can be written a,  = f X K )  and a ,  = - f :g )  are also solutions. Conse- 
quently, the probability of the transition la,l,p)-tla,h,pl) is 

2 *= equal to the probaiility o f̂ the transition (a,h,p)+la,l ,pl) .  
c!" (p ,  t )  = ~ ( ~ - p , - e ~  ( t - to ) )  exp [ = ( e l  ( p )  dp,] a A ( p ) .  The invariance of H and T, with respect to the reversal and 

reflection in the xz plane implies equal probabilities for the 
transitions: 

( 1 1 )  

Substituting ( 1  1 )  into (8)  and (9)  and introducing the dimen- la, h, P X ,  pV)+ la, 1, p i ,  P,), 
sionless variables la, 1, -PC, pV)+l a,  h, -p,, p,). 

(12) 
Consequently, the probabilities for the tunneling of a hole 

we obtain a system of two ordinary differential equations from one subband to another in moving from p(: = - co to 
p, are described by the curves in Fig. 1 with the substitution 

- p(:+p,. We note that the curves shown in dimensionless var- 
iables in Figs. 1 and 2 are identical for all semiconductors 
described by the isotropic Luttinger model, and are there- 
fore universal. 

(13) 
4 

Let us find approximate expressions for D ( y )  for 1 yl( 1 
d 13 (<l+i&) C' and 171 % 1 .  For y = 0 the solutions of Eqs. (13), (14) with 

-ah(%)+-j-  d% ( 4 + , ~ 2 ) ~ ,  exp [ - ~ T E  ( i +F)]  ah(E) -0 boundary conditions ( 1  5) are of the form (lo+ - a, ) 

with boundary conditions 

Equations describing the evolution of the holes in the state 
Dl 7) 

with parity a = - 1 are obtained from (13) and (14) by the 
substitutions I*,?+ - y. We shall therefore carry out our 
study for positive and negative y with allowance for this in- 
terpretation of the solutions. 

Figure 1 shows the results of a numerical calculation of 
the probability of a hole tunneling from the light subband to 
the heavy subband as a function of the initial value p:, for a 
final value p,+m and for y = 0.5 and y = 1 (a = 1 )  and 

:b, 
- 
y = - 0.2 (a = - 1 ) .  Figure 2 shows the transverse-mo- 0 1 J . - 
mentum dependence of the total probability 

FIG. 2. Total probability for the tunneling of a hole into the heavy band in (?) = Iah ( + co ) 1' of a the light sub- moving frompx = - a. top, = + a. as a function of y (curve 1 is for odd 
band to the heavy subband in moving from p(: = - co to states, curve 2 for even). 
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Using (16) to find a first approximation in y, we obtain 

where r ( x )  is the gamma function. For % 1 the functions 
a , ( l )  are not very different, but their derivatives oscillate 
rapidly. Using boundary conditions (15) as the zeroth ap- 
proximation in - l ,  we obtain 

Evaluating the integral in (18) by the saddle-point method7 
(we note that the saddle point coincides with a branch point), 
we finally get 

Let us now estimate the tunneling flux of holes between 
subbands, making some simplifying assumptions. Let us 
suppose that in the effective tunneling region with dimen- 
sions p* the hole distribution function varies slowly and is 
equal to Wy). In order to exclude the effect of scattering on 
the tunneling, we shall assume that the relaxation time r of 
the hole distribution function is longer than the time re- 
quired for the holes to traverse the regionp*, i.e., r ) [ h * /  
(eE In this case the number of holes which tunnel from 
the heavy to the light subband per unit time in a unit volume 

of the semiconductor is 

The first integral in (20) is approximately equal to 1.8, and 
the second to 0.21. Over a time r ,  (dn/dt ).rholes appear in 
the light subband. This quantity is a measure of the deviation 
of the population of the light subband from its equilibrium 
value. In Ge, for example, with Wf) - WP)- 1, r- lo-" 
sec, and E=: 300 V/cm we have r(dn/dt ), - 1016 ~ m - ~ .  This 
rather large value indicates that the subband-to-subband 
tunneling must be taken into account in considering effects 
which are governed by hot charge carriers. 

In closing, we are grateful to the participants in the se- 
minar led by A. A. Andronov for useful comments, to S. Yu. 
Potapenko for helpful discussions, and to E. V. Demidov for 
assistance in the numerical calculations. 
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