
Theory of transverse runaway of hot electrons 
Z. S. Kachlishvili and F. G. Chumburidze 

State University, Tbilisi 
(Submitted 8 June 1984) 
Zh. Eksp. Teor. Fiz. 87, 1834-1841 (November 1984) 

A theory of transverse runaway is developed. It is shown that it is related to the dependence of the 
heating field E on the scattering mechanism. General conditions for the development of the 
transverse runaway are identified and they are analyzed to find the specific combinations of the 
scattering mechanisms which cause this effect to appear. 

The problem of the dependence of the nonequilibrium 
distribution function on the scattering mechanisms has been 
considered on many occasions. In all the published treat- 
ments the heating field E is assumed to be given and the 
attention has been concentrated entirely on a corresponding 
dependence of the heating function representing the devi- 
ation of the nonequilibrium distribution function from equi- 
librium. It is true even of the work of Levinson,' who was the 
first to introduce the concept of runaway of hot carriers in 
semiconductors. Levinson provided a classification of the 
possible types of runaway on the basis of an asymptotic be- 
havior of the heating function. However, it has been shown 
later2 that there is a new type of runaway of hot electrons 
associated with the presence of any nonzero transverse mag- 
netic field. This is called the transverse runaway.' 

We shall develop a theory of the transverse runaway. 
We shall show that it is related to the dependence of the 
heating field (consisting of the applied and Hall fields) on the 
scattering mechanisms. This dependence in turn is governed 
by the nature of the distribution function, which itself de- 
pends on the heating field. The problem is therefore self- 
consistent; the formation of the distribution function of hot 
carriers is governed not only by the dependence of the heat- 
ing function on the scattering mechanisms, but also by the 
dependence of the heating field on these mechanisms. We 
shall consider the conditions under which the influence of a 
field E on the formation of the distribution function is the 
dominant one. We shall also obtain a general condition for 
the development of the transverse runaway. 

To the best of our knowledge, the problem has not been 
formulated in this way before. The approach to this problem 
reveals a number of new effects. 

We shall consider a semiconductor subjected to strong 
electric E and magnetic H fields. The isotropic parts of the 
nonequilibrium distribution function of hot electrons for the 
quasielastic energy dissipation by interaction with phonons 
of different types and of momentum by interaction with 
phonons or defects can be represented as follows: 

where 

is the heating function; moreover, 

f l  is the angle between E and H; kT is the thermal energy; e 
and m are the charge and the effective mass of an electron. 
We shall assume that the energy dependences of the momen- 
tum (I ) and energy (1 ) mean free paths can be represented by 

The values oft ands for all the known scattering mechanisms 
are listed in Ref. 3. 

It is well known that the total current density is the sum 
of three currents: 

where n is the electron density. The mobility coefficients can 
be described in terms of fo(x) as follows: 

where 

po is the mobility in "zero" electric field, and r (t ) is the 
gamma function. 

All three components of the total (heating) field E differ 
from zero; Ex is the applied field, E,, is the Hall field, and Ez 
is known as the longitudinal-transverse galvanomagnetic 
field. Selecting now different experimentally attainable 
boundary conditions (and not specifying them so far), we can 
express E, and Ez in terms of Ex using the mobility coeffi- 
cients of Eq. (4). In turn, these coefficients depend on E. 
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Consequently, we obtain the following complex equation for 
the heating field: 

+m2 [ t ,  s ,  ' I ,  H q h ( t v  '), P] }. (9) 

The actual forms of the functions @,, and p,, depend on 
the boundary conditions. Hence, it is clear that the heating 
field is a function of the parameters that govern the scatter- 
ing mechanism (t,s), as well as a function of the fields (Ex, H ) 
and of the angle 0. It would be of interest to answer the 
following questions: 1) is there a combination of the scatter- 
ing mechanisms for which a solution of Eq. (9) representing 
the heating field E becomes infinite when considered as a 
function of one of the parameters Ex, H, and f l  when the 
other two are fixed? 2) if such a combination does exist, how 
the heating function for such scattering mechanisms behaves 
in the asymptotic limit x-m? 

If E+m, it follows from Eq. (1) that the distribution 
functions is not normalizable. Consequently, hot carriers ex- 
hibit the transverse runaway effect. It is also obvious that 
there may be a transverse runaway threshold both in respect 
of the applied electric field and in respect of H and P. If for 
the scattering mechanisms corresponding to E+ the heat- 
ing function 8 (x) also tends to infinity for x-t w , then the 
nature of the runaway effect (nonself-sustained partly re- 
strained scattering mechanisms' or transverse runaway) can 
be found by investigating the rate of rise of 8 (x) for x+ w and 
o f E 2  forE,+E,* (orH+H* and&$*). 

We shall investigate the behavior in crossed fields under 
constant current conditions. When the relevant boundary 
conditions are used (open-curcuited Hall contacts) and it is 
assumed that @, = 0, Eq. (9) becomes 

( d a - l ) " = g " Q  (a, g ) ,  (10) 

where the following notation' is used for convenience in 
further analysis: 

a- (EIE,)', a,= (E, /E,)2 ,  Q) (a, q) =Bo/q'hA. (1 1) 

The conditions for the appearance of the transverse 
runaway expressed in terms of the applied electric and mag- 
netic fields are of the form aa/aa, = w for 7, = const + 0 
and da/d7 = or, for a, = const, where 

It follows from the above expressions that, firstly, the 
threshold values of the applied electric and magnetic fields 
are 

which are inversely proportional to 7 in Eq. (14) and to a, in 

Eq. (15), which is expected on physical grounds. Secondly, 
the transverse runaway does not appear for the scattering 
mechanism such that the function @ is either independent of 
the electric field (i.e., d@ /da = 0) or is a falling function of a 
(i.e., d@ /da < 0). Moreover, the magnetic field threshold ex- 
ists if the numerator of Eq. (13) differs from zero. This re- 
quirement leads to the condition @ #const. 7-'12 when 
a - + ~ .  Consequently, the condition for the existence of the 
magnetic field threshold is determined by the explicit form 
of the dependence of @ on 7. If @ o: 7- 'I2, then there is no 
magnetic field threshold and it follows automatically from 
Eq. (14) that there is no dependence of a: on the magnetic 
field. 

We can see that the necessary conditions for the trans- 
verse runaway are the presence of any nonzero magnetic 
field and the existence of such scattering mechanisms that @ 
is a growing function of a .  The actual combination of the 
scattering mechanisms can be identified by finding first the 
nature of the dependence of @ on a that ensures the tran- 
verse runaway. With this in mind, we shall substitute Eq. 
(14) into Eq. (10) and bear in mind that we then have a + m  . 
We find that the inverse runaway appears if the asymptotic 
relationship is @ o: all2 in the limit a-+m . The same conclu- 
sion follows also from the requirement of the finite nature of 
the threshold fields of Eqs. (14) and (IS), which is ensured if 
@.d@ /da = const when a-tco, which gives the asymptote 
just quoted. 

Therefore, if we allow for the dependence @ ~ a ' / ~ ,  
@ + const. 7-'12 and use the general form of the distribution 
function, we can identify such a combination of the energy 
and momentum dissipation mechanisms for which there are 
transverse runaway thresholds in respect of the applied elec- 
tric and magnetic fields. 

Using Eqs. (I),  (6), (7), and (1 I), we find that @ ( a )  is 
described by 

Q) (a)  =J(zt+3) ,2(a) /J ,1+3)12 (a) ,  (16) 

where 

I+qx t  
G (a, x) = exp {- & 

F (a, 3) 

We shall investigate the asymptote of the function @ at 
high values ofa. We shall be interested in such combinations 
of t  and s for which the main contribution to the integrals in 
Eq. (16) in the limit a+ is made by large values of x, since 
the runaway occurs only in such a situation. 

We shall establish first of all the values o f t  and s for 
which both integrals in Eq. (16) converge. It is found that 
@ (a) exists for those t and s which satisfy the condition 

Considering now the asymptote @ (a) in the limit a+ , 
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we find that the main contribution to @ comes from large 
values of x for the scattering mechanisms such that 

Therefore, the combination of t and s ensuring the 
transverse runaway should be sought among those t and s 
which make the inequalities (17) and (18) mutually compati- 
ble. In other words, it means that in the (t,s) plane the re- 
quired combination corresponds to those points which lie in 
the region shown shaded in Fig. 1. 

A calculation of the asymptote @ (a) for a, 1 is quite FIG. 2. Splitting of the ( t ,~ )  plane into regions for which the asymptotes 

difficult, because it requires an analysis of a large number of CJ (a) are calculated. 

cases. It is therefore convenient to split the range of values of 
the parameters t and s shown shaded in Fig. 1 into regions I, 5+t-s 5-s 
11,111, and line IY, as shown in Fig. 2. This splitting is car- rl=r (zs) = ( )  2-t-s r'=r(%) , 
ried out as follows: 

5-s 3+t-s 
I .  PO, t+~>2;  11. DO, t+~<2;  r4=r (=), ~ = r  ( T ) 7  r6=r (2) . 

111. t c o ;  IV. t>O, t+s=2. 

The following asymptotic relationships are obtained for 
these regions: 

I) a % l ,  

IIa) 1 <a<$' + " - 2)/2t, 

Here, 

Using this asymptotic expressions for @, we find that the 
dependence ~ P a a " ~  is obtained only in the region I1 for 
3t + s = 2 and in the region IV for any values of t and s 
(dashed lines in Fig. 2). 

We thus find that the transverse runaway develops for 
the scattering mechanisms which satisfy the following con- 
ditions: 1) t > 0,3t + s = 2; in this case we find from Eq. (20a) 
that @ does not depend exclusively on 7, in other words 
there are thresholds in respect of the electric and magnetic 
fields; 2) t > 0, t + s = 2; in this case we have @ a  (a/?l)1'2, 
which means that there is a threshold only in respect to the 
applied electric field. The latter conclusion is confirmed by 
the results of Ref. 2, where the case is considered. 

An analysis of the asymptotic behavior of the heating 
function readily shows that the scattering mechanisms 1) 
and 2) are the retaining scattering mechanisms, in accor- 
dance with the Levinson classification. 

We shall consider below the galvanomagnetic proper- 
ties in the case when t > 0, 3t + s = 2. Among the known 
scattering mechanisms these conditions are satisfied by the 
following3: t = + 1 (momentum dissipated by dipoles, and 
by polarization optical and acoustic phonons considered in 
the approximations of high and low temperatures) and 
s = - 1 (energy dissipated by deformation acoustic phon- 
ons in the approximations of high and low temperatures). 

If t = 1 and s = - 1, the distribution function is [see 
Eqs. ( I )  and (2)] 

When an allowance is made for Eq. (23), it is found that A,  
B,, and D [see Eqs. (5)-(7)] are described by 

FIG. 1. The shaded region represents the numerical values of t  and s that D= --- e-"dx. 
ensures the transverse runaway effect. I f  a 

1057 Sov. Phys. JETP 60 (5), November 1984 Z. S. Kachlishvili and F. G. Chumburidze 1057 



It is clear from Eq. (24) that the galvanomagnetic prop- 
erties can be obtained in an analytic form only in various 
combinations, among which we can use the approximation 
of a weak magnetic field governed by the condition q x /  
( 1  + a)( 1 .  In this approximation a solution of Eq. (10) is 

If H = const, then for Ex-t0.6Edi, /H we can expect the 
transverse runaway. However, if Ex = const, the transverse 
runaway occurs for H+0.6Ed-I,/Ex. 

Expressing the galvanomagnetic properties in terms of 
the applied field, we find that the Hall angle, Hall field, mag- 
netoresistance, and Hall coefficient are given by 

where 

The current-voltage characteristic is 

where Jo = -  en^&^. 
The general form of the dependence E = f ( E x , H )  was 

determined by solving Eq. (10) on a computer for various 
values of the magnetic field. We can see from Figs. 3 and 4 
that for each value of magnetic field there is a characteristic 
threshold value of the applied electric field. An increase in 
the magnetic field reduces the threshold value of Ex and 
there is a tendency for the curves to merge forming one de- 
pendence. Hence, we may conclude that in the asymptotic 
limit at high values of magnetic fields the field E :  is inde- 
pendent of the magnetic field. 

Having calculated the average energy, we can then find 
explicitly the condition that the magnetic field is weak: 

We shall now obtain estimates for the following scatter- 
ing mechanisms: we shall assume that the momentum is dis- 
sipated by interaction with dipole centers and the energy by 
interaction with the deformation potential of acoustic phon- 
ons. 

When we use the results of Refs. 4-6, we find that the 
conditions for the predominance of the momentum dissipa- 
tion by dipole center over the dissipation of the momentum 
by ions and phonons is 

FIG. 3. Dependence of E on Ex in a weak magnetic field: 1)  7 = 0.01; 2) 
q = 0.1; 3) 7 = 0.2. 

where Co = N, /ND and N, and ND are the acceptor and 
donor concentrations. 

In the case of Ge ( m  = 0.2m0) at T = 4.2 K the effect 
should be observed when ND)9  X 1014 ~ m - ~ ,  and at T = 77 
Kit  should be observed for ND)7  X 1016 cmP3. In the case of 
InSb ( m  = 0.013m0) at the same temperatures the effect 
should be observed for ND)1013 and ND)1015 cmP3, re- 
spectively. 

When the average electron energy rises, the scattering 
by dipoles changes to the scattering by ions. This condition 
limits the applied electric field from above in accordance 
with the condition 

where 

In applied fields which satisfy an inequality which is the 
opposite of Eq. (26) the main scattering mechanisms are the 
dissipation of momentum by ions (t = 3) and the dissipation 
of energy by the deformation potential of acoustic phonons. 

- 
Ex /EL7 

FIG. 4. Dependences of E on Ex in moderate and strong magnetic fields: 
1 )  q = 1; 2) 7 = 5; 3) 7 = 10; 4) 7 = 20. 
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However, it is known from Ref. 2 that in this case the trans- 
verse runaway occurs and the threshold applied electric field 
is independent of the magnetic field. 

In the limit E,-+E f the transverse field rises strongly. 
In this field an electron may acquire an energy sufficient for 
the transverse breakdown. The increase in the energy contin- 
ues until a restraining scattering mechanism becomes acti- 
vated. If this mechanism is sufficiently weak, i.e., if it begins 
to act in the range of high energies, then in some semicon- 
ductors the transverse runaway effect may give rise to a 
transverse breakdown. 

It  therefore follows that the transverse runaway effects 
can give rise to a transverse breakdown in a fairly weak mag- 
netic field. 
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