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A theory is developed for the emission of bulk plasmons by a charged particle as it undergoes 
diffraction in a crystal. The angle-integrated cross section for inelastic scattering due to emission 
of a bulk plasmon by the diffracted particle is subject to a pronounced orientational effect such 
that for appropriate directions of motion of the fast particle conditions arise that are favorable for 
the emission of p l a s~ons  that have very small wave vectors and that could not be emitted as a 
result of the usual "Cerenkov" generation of plasmons. This kind of phenomenon can be called 
bremsstrahlung of bulk plasmons induced by the diffraction of fast charged particles. The theore- 
tically predicted resonances in the orientation dependence of the inelastic cross section for fast 
particles being diffracted in a single crystal may be the basis of a method for the direct experimen- 
tal observation of bremsstrahlung of longitudinal electromagnetic waves. 

91. INTRODUCTION 

For many years after the work of Bethe,' in which the 
basis of the quantum mechanical theory of diffraction of 
light charged particles in a crystal was worked out, the main 
attention in the physics of diffraction has been focused on 
developing and refining the concepts concerning the forma- 
tion of the wave field of the charged particles in crystals, 
finding those specific mechanisms for the interaction of the 
fast particles with crystals which determine the damping of 
this field, studying diffraction in non-ideal crystals, and de- 
veloping special theoretical formulations and approxima- 
tion methods suitable for carrying out computer calcula- 
tion~.~-" 

There exists also a wide literature on the diffraction of 
slow particles at single crystal surfaces and diffraction phe- 
nomena at high electron and positron energies such that it 
becomes more appropriate to use specific methods of de- 
scribing the interaction of electrons and holes with matter, 
even to the point of using classical  mechanic^.'^-" In this 
investigation we take diffraction to mean the interaction of 
fast charged particles (henceforth for brevity we shall call 
them electrons) with single crystals, where an adequate de- 
scription of the physical processes in the bulk of the material 
can be obtained in the few-wave approximation. Interest in 
this topic has not abated even 

Diffraction, however, is interesting not only in its own 
right, but also in that it can serve as a rather fine tool for the 
study of those physical processes that can exist also without 
diffraction, but in which diffraction of electrons helps to re- 
veal new aspects and to obtain information that is hard to 
obtain by other means. In recent years it has been established 
that by using electron diffraction it is possible, for example, 
to study incoherent electron-atom scattering of electron 
beams in which there are electrons with preferred impact 
parameters.22 In the usual experiments on electron-atom 
scattering, an electron plane wave is incident on the atom, 
and the incident electron can, with equal probability, be in 
any angular momentum state. Crystals, however, allow the 
formation of wave packets which select out certain values of 

the orbital quantum number and thus make it possible to 
carry out a phase shift analysis of the electron-atom scatter- 
ing. By using diffraction one can reveal spatial regions in the 
crystal where secondary electrons are produced most in- 
tensely .23 

Finally, electron diffraction causes a fine structure to 
appear in, apparently, all of the forms of electron emission 
from the crystal taking place under the influence of fast elec- 
trons penetrating the crystal. The first experimental obser- 
vation of this sort was made in Ref. 24. The role of diffrac- 
tion in these effects was established in Ref. 25, as well as in 
subsequent It is now known that the diffraction 
of intermediate-energy electrons has an effect even on the 
emission of Auger electrons, which are emitted from almost 
the very surface of the c r y ~ t a l . ~ ~ - ~ '  

In this investigation we show that diffraction of elec- 
trons makes it possible to reveal new aspects of the interac- 
tion of fast electrons with plasmons. Generally speaking, the 
interaction of diffracted electrons with bulk plasmons has 
been investigated previou~ly,~." in the first place to deter- 
mine the relative contribution of this process (in comparison 
to the contributions of phonons and one-electron excita- 
tions) to the imaginary part of the crystal lattice potential 
that determines the damping of the coherent field. Here it 
was taken as obvious that, because the wavelength of a bulk 
plasmon is ordinarily much greater than the crystal lattice 
constant, for the interaction of an electron with a plasmon it 
is not very important exactly in what state the fast electron 
is, whether it is in a diffraction state or whether it can be 
described by an ordinary plane wave. This means that in, 
e.g., two-wave diffraction, the contributions of plasmons to 
the damping of type I waves and type I1 waves are practically 
the same. 

The generation of plasmons is actually not very sensi- 
tive to the state of the diffractin4electron if the process of 
generationvis considered to be a Cerenkov process. But be- 
sides the Cerenkov mechanism for the generation of bulk 
plasmons, they can be emitted as bremsstrahlung, and the 
corresponding density effect can take place.32 We shall show 
that the two last effects are very sensitive to the character of 
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the diffraction. The specific details of the diffraction, as it 
turns out, allow us, in the description of the emission of plas- 
mons during diffraction, to separate directly the elementary 
processes, the bremsstrahlung of bulk plasmons and the den- 
sity effect. These two processes also take place, of course, in 
an isotropic medium. In Ref. 32 it was shown that they can 
have a marked effect on the halfwidth of the peak of the 
probability of plasma excitation by a fast electron in an iso- 
tropic medium. However, under these conditions the line 
shape of the plasmon peak is also determined by other fac- 
tors, such as the decay of a plasmon with the excitation of 
interband transitions or its decay that results when the elec- 
trons that participate in the plasma oscillations collide with 
impurities or crystal-lattice imperfections. All of these 
mechanisms that enter into the expression for the halfwidth 
of the plasmon peak are additive, so that under experimental 
conditions it is not possible to separate their relative contri- 
butions. The diffraction of electrons in single crystals 
changes this situation. 

The possibility of direct observation of bremsstrahlung 
of bulk plasmons and of the density effect is also of general- 
physics interest. Whereas these two processes in the emis- 
sion of transverse electromagnetic waves can be considered 
quite well studied, in the emission of plasmons-longitudi- 
nal electromagnetic waves-they have never even been di- 
rectly detected in spite of the important (and, according to 
relatively recent estimates,33 decisive) role of plasmons in the 
transformation of the energy of a fast particle into energy of 
excitation of the medium. 

In this study we shall show that the bremsstrahlung of 
plasmons and the density effect under conditions of diffrac- 
tion of fast electrons have a quite unusual character and lead 
to a characteristic orientational dependence of the cross sec- 
tion for the excitation of a bulk plasmon. In particular, we 
predict the existence of a new resonance in the angle-inte- 
grated inelastic scattering cross section for a fast electron, 
where, for certain directions of motion of the fast electron 
relative to the crystallographic planes, the total cross section 
for the emission of a bulk plasmon shows a resonance-like 
increase (in thin crystals or in thick crystals where plasmons 
make the decisive contribution to the average coherence 
length). 

92. CROSS SECTION FOR PLASMON EMISSION BY A 
DIFFRACTED ELECTRON 

We shall designate by $(r,R) the wave function of an 
electron undergoing diffraction in a crystal with a lattice 
that produces a potential U, (r), and interacting with elec- 
trons of the solid that produce a potential U, (r,R) and are 
able to participate in plasma oscillations. Here R is the set of 
position vectors of the particles in the crystal and r is the 
position of the fast electron. The wave function $(r,R) is gov- 
erned by the Schrodinger equation 

Here the Laplacian operator A contains the second deriva- 
tives with respect to all components of the variables r and R. 

The quantity U, (R) is the energy of interaction of all the 
particles of the crystal. 

We shall assume that the energy of the fast electron is 
such that the space-time sequence of events has the following 
form: first the fast electron incident on the single crystal goes 
into a diffracted-electron state, and then during diffraction it 
emits a plasmon. The fast electron which is thus inelastically 
scattered can then either pass through the crystal (if the crys- 
tal is thin) and be detected as an electron that has lost a 
characteristic amount of energy, or else (if the crystal is 
thick) it can undergo incoherent scattering through a large 
angle and leave the crystal through the same surface that it 
entered. The fate of the electrons that have lost energy 
greater than the plasmon energy fiw, is not tracked and in 
the present case these electrons are not detected. 

We assume that the fast electron incident on the crystal 
has such an energy and direction of motion that it is in a state 
close to an exact state of reflection with respect to a system of 
planes perpendicular to the crystal surface so that Laue dif- 
fraction takes place. 

The fact that the plasmon is emitted by an electron for 
which the diffraction field can be considered to have already 
been formed means that the mean free path I,, of the fast 
electron with respect to bulk plasmon emission is greater 
than the extinction length of the wave field. Using in the 
calculations the expression for l,, 

which is valid for the motion of an electron in a homogen- 
eous isotropic electron gas (here v is the velocity of the fast 
electron, v, is the velocity of an electron at the Fermi sur- 
face, and w, is the plasma frequency), and keeping in mind 
that the extinction length of the wave field of a fast electron 
in an exact reflecting situation is 

(where U, is the Fourier transform of the potential U, and 
corresponds to the reciprocal lattice vector g) we find that 
the condition I,, )gg leads to the inequality 

which gives a lower bound to the energy of a fast electron for 
which the theory developed below is valid. From (4) it fol- 
lows that the energy of the fast electron must at least exceed 
10 keV. 

Condition (4) allows the wave function $(r,R) at a dis- 
tance of the order I,, below the surface of the crystal to be 
written in the form 

with 

The quantity qhD (r) in (5) and (6) is the wave function of the 
diffracted electron without allowance for its interaction with 
the electrons of the single crystal that are able to take part in 
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the plasma oscillations, Qi(R) is the wave function of the 
initial state of the electrons in the crystal, and S$(r,R) ac- 
counts for the interaction of the fast electron with the elec- 
tron subsystem in which the plasmons can be excited in the 
crystal. 

The function $D (r)Qi (R) satisfies the equation 

Substituting (5) into (1) and neglecting the terms containing 
U,S$ (the latter is of second order in the interaction of the 
fast electron with the plasmon) and U,S$ (it describes the 
diffraction of an electron that has emitted a plasmon and is 
therefore with high probability no longer coherent with the 
system of planes considered), and taking into account (7), we 
obtain an equation for S$(r,R): 

We now multiply both sides of this equation on the left by 
@;(R), the complex conjugate of the wave function of the 
final state of the electrons in the crystal, integrate with re- 
spect to R and thus obtain 

The symbols A, and A, stand for the terms of the total 
Laplacian operator that operate on the variables r and R, 
respectively. The quantity 

is the probability amplitude of finding the fast electron at the 
point r and the electron subsystem of the crystal in the state5 
Subsequently, in the calculation of the cross section for in- 
elastic scattering of a fast electron we shall sum over the 
indices of all the final statesf. For the present, however, we 
shall take f to be fixed. When the fast electron leaves the 
crystal and the interaction between the fast particle and the 
crystal becomes negligibly small, the function $,,, (r, f )  can be 
considered the wave function of a fast scattered particle 
which has excited the f th state of the crystal, i.e., it has excit- 
ed a plasmon in the crystal. 

Let us transform as follows the term in (8) involvingd , : 
J d~ @ f a  (R) An6$ (r. R) =z. J dR @I. (R) AR@. (R)$,, (r, n) 

(9) 

Here we have used an expansion of the function S$(r,R) in a 
complete set of orthonormal functions @, (R) describing the 
various states of the crystal 

and used the equation 

Here the quantity E, is the energy of the crystal in the nth 
excited state. Substituting (9) into (8) we obtain an equation 
for ( r , f  1: 

in which 

The solution of Eq. (10) has the form 

(12) 
where the Green's function is 

and 

is the modulus of the wave vector of the scattered electron. 
The asymptotic form of the solution (12) is 

so that the electron differential scattering cross section, 
summed over all the final states of the crystal, can be written 
in the form 

In the subsequent discussion we shall be especially in- 
terested in the total cross section for scattering with the 
emission of a plasmon; this corresponds to double integra- 
tion over the angles that determine by the direction of the 
vector k'. This double integral is conveniently written in the 
form of a fourfold integral. The reduction of a double to a 
triple integral in the calculation of the total scattering cross 
section and the advantage of this procedure have been dis- 
cussed in Ref. 34. This procedure corresponds to the replace- 
ment 

In this formula Q is the transferred momentum, Ep is the 
energy of the electron incident on the crystal, Ciw = E is the 
energy transferred to the electrons of the medium, and 
p = fik is the momentum of the incident electron. 

Keeping in mind (15), we note that the following sum- 
mation over f enters into (14): 
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I J d r e - ' ~ ' ~  ( r ,  i - f ) b  (r) 1'6 (ha-&,) 
f 

From a Lehmann expansion of the retarded and advanced 
boson Green's functions'' 

it can be seen that the difference of these functions has the 
form 

DR (r, r', a) -DA (r, rf ,  o )  = 2 n i z  { ( m i  1 ue (rl, R) 1 @f) 
f 

X((D,(U,(r, R) 1 @,)6(0-&f/h)-<(Pi(  Ue(r, R) I @ f )  

x<@! ( U,(rf, R) ( @f)6 (o+~f/t2.) 1. (18) 

Comparing ( 1  6) and ( 1  8) we conclude that 

1 J d r  e P i k r r ~  (r, i--f)$, (r) 1'6 (bo-e,) 
f 

if the integration over w on the right hand side of (15) is 
carried out only for positive values of the frequency. There- 
fore formula (14) for the differential scattering cross section 
takes the form 

where k' = k - Q/fi and o > 0. Therefore, in order to find 
the cross section for the emission of a plasmon by a diffracted 
electron it is necessary to know the wave function of the 
diffracted particle as well as the retarded and advanced 
Green's functions of the electric field of the electrons in the 
crystal. 

53. INELASTIC SCATTERING CROSS SECTION UNDER 
CONDITIONS OF TWO-WAVE DIFFRACTION 

The wave function 40, (r) of the diffracted particle can be 
written in the two-wave approximation in the form1' 

(p, z) =eik'[$, (z) +e-'gp$, (z) 1. (20) 

Here p and z are the components of r tangential and normal 
to the surface of the crystal. The vector g is a reciprocal 
lattice vector parallel to the surface. The functions $,(z) and 
&(z) have the form 

9, (2) =cos2 (@/2) e"lz+sin2 (@/2) ein2', 

$, (2) =sin (f~/2) cos (@/2) [eixzz-ei*lz] , (21) 

where, neglecting damping of the wave field, we have 

(22) 

The quantity w in (22) is a parameter that describes the devi- 
ation from the exact reflecting configuration. It is related to 
another parameter 0 encountered in the theory of diffrac- 
tion, and to the parameter s which describes the deviation 
from reflecting conditions, by the relations w = cot 0 and 
w = s/Ak = s l , .  In the exact reflecting configurations 
w = 0 and = r/2. Neglect of damping of the wave field 
means that we are dealing either with a thin crystal or a thick 
crystal in which the finite coherence length is determined 
mainly by the excitation of electronic states of the crystal. In 
$4 we shall present additional arguments for the possibility 
in a certain sense of neglecting the damping of the wave. At 
present we note that from (22) it follows that x ,  <O and 
x,  > 0 for all values of the parameter w. 

Let us consider the integrals in (19) over the spatial var- 
iables. It is convenient to integrate over the coordinates in 
(19) separately with respect to p and p' and z and z'. Intro- 
ducing the notation p - p' = p, and taking into account 
(20), we rewrite (19) in the form 

The Fourier transforms D (z,zr,q,w) of the retarded and ad- 
vanced Green's functions in (23) are defined by the transfor- 
mation 

dq e-iqcp-p')D (2, z', q, o )  . 

The integrals over p and p, in (23) are now easy to do, and 
then one can do the integration over q. As a result we obtain 
the integrated scattering cross section 

o=- - d o  

Qll. x { $I (2) lpl* (2)) [ D. (1, zf7 -jj-. 0) 

Qa - D. (2, z', -ii, a)] + $2 ( 2 )  $; (2') 
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The quantity S in (24) is the area of the surface of the crystal. The retarded and advanced Green's functions of the 
The cross terms in $, and Ijl ,  do not contribute to the scatter- electromagnetic wave have arguments of the same form as 
ing cross section. The momentum Q is the momentum trans- the function (28) and can, of course, be written in the form of 
ferred to the entire crystal-to the lattice and to the plas- a Lehmann expansion, as was done for the functions 
mon. The wave vector g is parallel to the surface, so that the D, (r,rf,w) and D, (r,rf,w). From the Lehmann expansion it 
component Q, of the momentum Q is imparted only to the can be seen that in this as well as in the other case these two 
electron subsystem. Since theamouct of momentum typical- functions differ only in the sign in front of the infinitesimally 
ly transferred to a plasmon during "Cerenkov" generation of small imaginary correction to the frequency w. Therefore, 
the plasmon is in order of magnitude equal to #imp /v, while taking the damping of the plasmons to be infinitesimally 
under diffraction conditions, as we shall see below, it can be small, we can write 
still smaller, the quantity Q :/2m in the argument of the S 

DR (z, z', U, a )  -DA (z, z', U, 0 )  
function in (24) can be neglected. In general, the quantity 
Q i/2m cannot be neglected, since its value can be of the eth,(z-z') 

-2.2" dkt [ i - 
order fi22/2m, i.e., of the same order as the rest of the terms 

1 1 

I I (kiZ+ uZ) E (kt, U, 0) E' (kt, U, a )  
in the argument of the S function. It can be seen that (24) can 
be generalized to the case of many-wave diffraction. = 4iezfi I dk, e*t(z-zr)% Im 

(kiz+ uZ) E (kt, U, O) 
. (29) 

Integrating over Q, in (24) we now obtain 

imS Substituting (29) into (25) and introducing the new variable 
(J=- I dz 1 dz' 1 dw j dull {$t (z) $z* (z') u, = u - g, and designating the volume element d kldu, in 

(2n) 3fi3v, (kz-2molh) " wave vector space by the symbol d K, we can write the inelas- 
X [DR(z,zr ~11, o)-DA(z, z f ,~ l l r  O) 1 tic scattering cross section a in the form 

+'$z(z) $2' (2') [DR(z, z', UII-gt 0 )  (3 = ---- S dz dz do  dK 

{ 
i ( o - v , , ~ ~ , + f i ~ ~ ~ ~ ~ / 2 m )  (z-z') 1 - 

2n3aBu, j J ' 5 (kz-2mo/h)'1a 
-DA(z, z', uU-g, a )  1)exp 

Us Xexp i- [ "IK (.-zT) ] 
(25) 

In this formula we have introduced the new quantity x {qt (z) 4): (21) + q z  (z) $; (zl) 

ull = QII /fi in place of QII . (vg-figz/2m) 
Xexp [-i 

1 
The retarded Green's function D (z,zlz,u,w), correspond- U. (z-zr) ]} lmm.  

ing to a bulk plasmon far from the boundary, can easily be 
obtained from the last term of formula (3.9) of Ref. 35; this 

(30) 

term has the form In this formula, a, = fi2/me2. Let us now take the integrals 

dk, eatz P(k,, z') over z and z'. Keeping in mind (21) we can see that in (30) 
DR (z, z', U, 0 )  = - - 27 (k , (26) there appear integrals, over the variable z, of the form 

-- ,-iu) E- (kt, u, a )  
where 

+- J dz qt  (2) exp [ i. 
dkz e'kaz'~+ (ka, U, o) vz 

P(kt, u, o ,  z') =s - 
(k,+iu) (kz-kt) ' 

z I 
- c0 =236 cosZ--6 x i+  - 

and the ratio E-(kl)/&+(kl) = E ( ~ ~ , u , w )  is a factorization of 
w-vKIo I ( v, 

the dielectric function of an infinite medium in terms of the +sinz--6 xz+- . 
2 " u. 1) (31) variable k,. The function P (z') contains both a spatially oscil- 

lating term proportional to exp( - ik,zi) and exponentially Therefore the double integral in (30) over the variables z and 

damping terms coming from the pole k, = - iu and the sin- z', containing the functions $, and $7 in the integrand can be 

gularities of the function ~ + ( k , )  in the lower half-plane of the written as 

complex variable k,. The spatially oscillating bulk part of I J dz +, (z) exp [ i. 
z ]  1 ' the function P (k1,zf) comes from the pole at k, = k,. It has VZ 

the form 
2ni 

POSO (kt, 2')  = - - e-iklz' E +  (kt, u, o )  . 
kt+iu 

Substituting (27) into (26), we find the retarded Green's func- 
tion D, (z,zl,u,w) for bulk plasmons in an infinite medium: +sin4--6 xz+- 

2 
"-vK )] . " v. 

e&'(z-z') 

D.(Z, z', u, o )  =2e2h+~ dk, . (28) Here L is the thickness of the crystal. Similarly, we can cal- 
-- (k?+uZ) 8 (kt, u, a )  culate the double integral over z and z' of the part of the 

integrand containing the function $,. Substituting the value 
This Green's function takes into account both time and obtained for the integrals into (30), we find that the scatter- 
space dispersion. ing cross section can be written in the form 
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(33) 

Here V = SL is the volume of the crystal. 
We now introduce the angle 9 ,  defined by the relation 

v-g = ug cos(77/2 - 9 ). The expression v0g - fi2g/2m that is 
contained in the argument of the last two delta functions in 
(33) can be expressed in terms of the angle 9 defined above 

Vg-2m.= vg sin 2) - - = vg (sin &sin eB), 
hgz ( 2mv ) 

where aB = @/2mv is the Bragg angle. Since both 9, and 
the deviation A 9  = 9 - 2Pg from the Bragg angle are much 
less than unity, we have sin 9 - sin 9, =A9 and 

Therefore 

vg-Ag2/2m= ( x , + x 2 )  v,. (34) 

In the derivation of (34) it was taken into account that u and 
u, differ by an amount the order of Ug/4mugu. Taking into 
account (34) and integrating over the angle variables in K- 
space we obtain 

The 8-functions appear in (35) because the cosine of the angle 
between the vectors v and K must lie in the range - 1 to 
+ 1. We also took it into account that the conditions xl < 0 

and x, > 0 always hold. 
Since we have already assumed infinitesimally small 

damping of the plasmons, we can write 

Here Kc is the limiting value of the plasmon wave vector at 
which strong Landau damping begins (in statistically degen- 
erate systems) and the plasmon ceases to exist as a well de- 
fined quasiparticle. Substituting (36) into (35), integrating 
over K, and changing over from the concept of an inelastic 
scattering cross section o to the probability Wper unit time 
of a transition we obtain from the usual relation W = ov/V 

Going from o to W makes sense, since the generation of 
plasmons occurs in the bulk of the single crystal, far from the 
surface. 

The transition probability (37) can be represented in the 
form 

where 

is the probability of plasmon excitation in a homogeneous 
electron gas and the function F(P) describes the orientation 
effect. Deviation of the function F is different from unity 
corresponds in fact to existence of an orientation effect. 

The form of the function F (P )is clear from a comparison 
of (39) and (37), but to exhibit the physical meaning of these 
terms, it is helpful to write the function in a special form. To 
do so we shall transform the expression in the curly brackets 
in (37) in the following way: 

This allows the quantity F (P ) - 1, which describes the orien- 
tation effect and vanishes in the case of an isotropic medium, 
to be written in the form 
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94. ANALYSIS OF THE EXPRESSION FOR THE PROBABILITY 
OF INELASTIC SCATTERING OF FAST PARTICLES DURING 
DIFFRACTION 

The most important feature of the function F (p ), which 
describes the orientational dependence of the transition 
probability per unit time, is the presence of logarithms 
whose arguments and the coefficients depend on the param- 
eter B that characterizes the deviation of the beam of inci- 
dent particles from the exact reflecting configuration. The 
function F (p )and, even better, the function F (p ) - 1, can be 
conveniently be written so that this dependence becomes ex- 
plicit. Since 

and 
X2V Ug B 

ctg - , 
0, 2hwp 2 

the function F - 1 depends explicitly on P in the following 
way: 

Here f, = U, /2tiw,. This parameter depends on the nature 
of the single crystal. For some typical crystals f, < 1, but the 
case& 2 1 is apparently also realistic. In experimental inves- 
tigations the quantity w is used more frequently instead o f 0  
as the parameter that takes into account the deviation from 
the exact reflecting condition. In this case the function F - 1 
takes on the form 

F(w)-I= 
1 

4 (l+w2)ln (vKclop) 

In order to understand better the physics of the orienta- 
tion dependence of the scattering cross section, let us consid- 
er formula (35). The 0-functions in (35) determine the mini- 
mal wave vector that the emitted plasmons can have. Since 
x, < 0, the first term in (35) corresponds to the generation of 
plasmons with wave vector K,, < wp /u. The same applies 
to the last term in (35) (because of the condition x, > 0). From 
energy-momentum zonservation in an isotropic medium it 
follows that in the "Cerenkov" generation of plasmons, only 
such plasmons for which the wave vector is greater than or 
equal to wp /v can be emitted. 

The fact that formula (35) describes the generation of 
long-wavelength plasmons cannot be explained simply by 
the deviation of the magnitudes of the wave vectors k'1.2' of 
the plane waves that comprise the function $, from the 
wave vector k of a fast particle of the same energy in an 
isotropic medium. This latter circumstance could lead to a 
situation where the minimal wave vector of a plasmon gener- 
ated by a fast particle in a state described by each of the 
above-mentioned plane waves would not be equal to wp /u. 
In this case 

The presence of the small factor +imp /Ep in front of the func- 
tion [w + (1 + ~ ~ ) " ~ ] / 4 ~ ,  in this formula means that Kmin 
is essentially unchanged as a result of simply a renormaliza- 
tion of the wave vector of the fast particle in the anisotropic 
medium. 

The substantial change of K,, compared to w,,/v, 
which follows from (35) and which leads to the emission of 
long-wavelength plasmons with K < up /v, is due to a pheno- 
menon that might be called plasmon bremsstrahlung in an 
anisotropic medium. This phenomenon is associated with 
the exchange of momentum between the crystal lattice and 
the fast particle that generates the plasmon. That part of the 
function I: (w) which is due to bremsstrahlung of a longitudi- 
nal electromagnetic wave has the form 

The concept we have introduced of bremsstrahlung of a lon- 
gitudinal electromagnetic wave the term "bremsstrahlung" 
stands for generation of plasmons with wave vectors from 
K,, to up /v. The existence of a lattice also has an influence 
on the emission of plasmons wJth K > up /v, which in princi- 
ple can be generated by the "Cerenkov" mechanism also in 
the absence of a lattice. The total difference between the cor- 
respondkg part of the scattering cross section and that due 
to the "Cerenkov" mechanism we shall call the density ef- 
fect. In this definition, the density effect can, depending on 
the nature of the interaction between the fast particle and the 
lattice, lead not only to a decrease but also to an increase in 
the probability of emitting a plasmon of a given wavelength. 
We shall see below that the sign of the density effect actually 
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depends on the value of the parameter of deviation from the 
exact reflecting configuration. 

The presence of the logarithms in (40) and (42) leads to a 
logarithmic divergence in the inelastic scattering cross sec- 
tion for x ,  = - up /v and x2 = up /v. This divergence is due 
precisely to the possibility of generation of very long wave- 
length plasmons at the corresponding values ofa  (or w). This 
resonance due to bremsstrahlung of plasmons, in the inte- 
grated inelastic scattering cross section can be called plas- 
mon-diffraction resonance. From (41), (42) or (43) it can be 
seen that the condition x ,  = - up /v is satisfied for 

P=2 arctg (l/fg). 

Since w = cot a ,  the condition for the existence of a reso- 
nance takes the form 

Similarly, we obtain x2 = up /v for P = 2 arctan (l/fg), or 

(45) 
The function cos4(P/2) in front of the corresponding 

logarithm is, in case (45), equal to 

The quantity sin2(P /2)cos2(P /2) at resonance (44) is equal to 

The ratio of (46) to (47) is (Ug /2Kwp )2. Therefore the value of 
the quantity f: is determined by which of the two scattering 
cross section resonances is more pronounced. This same 
quantity also determines the position of the resonance on the 
w axis. The positions of the two resonances are symmetric 
relative to the exact reflecting configuration. However, an 
asymmetry in the line shapes of these two resonances is due 

to the fact that, as can be seen from the formulas that have 
been derived, plasmons can be emitted in these two cases by 
an electron that is predominantly either in a wave of type I or 
in a wave of type 11. Usually a wave of type I1 interacts with 
the lattice more strongly than a wave of type I on account of 
the known localization of these waves; this enhances both 
the bremsstrahlung of plasmons and the density effect in the 
emission of plasmons. 

From a comparison of (42) and (43) it can be seen that 
the function F(w) - 1 has resonances at the same values of w 
as the functionF,,,,, (w). The form of these functions is given 
in Fig. 1 for various values of the parameter f, . It can be seen 
that the sharpness of the resonance depends on the value of 

fg . There is also a tendency towards an increase in the nonre- 
sonant part of the plasmon bremsstrahlung with increasing 
deviation parameter w. For negative w the density effect is 
dominant everywhere except at the resonance point and su- 
presses the generation of plasmons. Therefore, the peak of 
the plasmon-diffraction resonance for w < 0 is very narrow 
and sharp, almost like a 6 function. For positive values of w 
the density effect can give an additional contribution to W, 
i.e., the density effect and bremsstrahlung in this case in- 
crease the probability of plasmon generation in comparison 
with the generation that would occur in the case of a homo- 
geneous electron gas. 

Let us discuss finally the possibility of experimental ob- 
servation of the plasmon-diffraction resonance. Since the re- 
sonances are rather peaked, their observation requires a defi- 
nite accuracy in the determination of the mutual orientation 
of the crystal and the beam of fast particles. We assume that 
the accuracy of the orientation of the beam relative to the 
exact resonance configuration is f A w. We introduce the 
quantity 

which gives the ratio of the area under the part of the curve 

FIG. 1 .  The quantity F- 1, as a function of w, 
the parameter of deviation from exact reflecting 
configuration, for E, = 20 keV and for various 
values of the parameter f,, is shown by the solid 
line. The solid curve without additional symbols 
on it corresponds to f, = 0.5. The resonances at 
w = * 0.75 correspond to this value off, . The 
resonance at w = + 0.75 is broad and the reso- 
nance at w = - 0.75 is very peaked. The dashed 
lines show the function F,,, for various f,. It 
can be seen that for f, = 0.5 in the region 
w z  - 0.75 thedensity effect, which inhibits the 
emission of plasmons, is large. The solid and 
dashed curves with open points were plotted for 
f, = 0.25; the solid curve with the black points 
was plotted for f, = 1.0. 
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F (w) defined by formula (42), for F >  1, to the area under the 
entire curve, i.e., for all values of F. The quantity w, in (48) 
characterizes the exact resonant value of the parameter w. 
From the definition (48) it follows, in particular, that 
S, = 24 w. It is also clear that if the resonance had an exact S- 
function form, then M-1 as A w-O. Evaluation of (48) with 
the use of (42) gives 

To estimate this expression we use the fact that In (vK,/ 
w, ) =: 4. We take the parameter f, equal to 0.25. By choosing 
f, = 0.25 we have chosen the case of sharp resonances, 
which in some sense are the most complicated for experi- 
mental observation. In this case we have M = 0.11 1, i.e., the 
effect is quite observable for Aw-O.1. In other words, to 
observe the effect at the chosen values of v and f: it is suffi- 
cient that w be determined with such accuracy that Aw is 
between 0.01 and 0.1. As far as we know this accuracy in the 
determination ofAw, in any case, is within the possibilities of 
present day experiments. 

In conclusion we note that the actual resonances in the 
scattering cross section obviously will not be infinitely high. 
In thin crystals their height will be determined by the thick- 
ness of the crystal. In thick crystals it will be dependent on 
the damping of the wave field of the fast particles as they 
penetrate into the crystal and possibly dependent also on the 
effect of the orientational dependence of the surface reaction 
channels on the bulk channel considered in this investiga- 
tion. This question should be the topic of a separate investi- 
gation. We can suppose, however, that since the resonances 
have a logarithmic, i.e., an integrable, character, and 
allowance for the finite height of the resonances in the calcu- 
lation of the integrated scattering cross section will lead to 
comparatively small corrections. 
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