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Computer modeling is used to study the screening of an external electric field by a disordered 
system with localized electron states. The disordered system is an impurity band in a lightly 
doped compensated semiconductor. It is shown that at low temperatures the field averaged over 
the donor and acceptor coordinates or over a sufficiently large surface decreases with depth in the 
system over distances of the order of the average separation between the impurities, whereas the 
average of the absolute value of the field decreases with depth over a much greater distance 
governed by the field or temperature. 

9 1. QUALITATIVE CONSIDERATIONS 

We shall consider a system in which electron states are 
localized in the vicinity of the Fermi level. We shall discuss 
specifically an impurity band in a lightly doped and compen- 
sated n-type semiconductor at temperatures much lower 
than the donor ionization energy, when each acceptor cap- 
tures an electron and is charged negatively, whereas the re- 
maining electrons fill only some of the donors. The vacant 
donors are positively charged and the filled donors are neu- 
tral. In spite of the absence of free electrons, a system of this 
kind screens the external field or charges introduced from 
outside because of a redistribution of electrons between do- 
nors. No particular difficulties are encountered in the de- 
scription of such screening if the temperature is higher than 
the energy scatter of the levels (impurity band width). In this 
case the screening is of the Debye type and the screening 
radius is1 

r,= [?coT/4nK(1-K) N,e2]'", (1) 

where e is the electron charge; x, is the permittivity of the 
lattice; Tis the temperature in energy units; ND is the donor 
concentration; K = NA /ND is the degree of compensation; 
N, is the acceptor concentration. 

At low temperatures the problem becomes complicated 
by the fact that the correlations associated with the electron- 
electron interactions are very important. At absolute zero 
the problem of the screening can be formulated as follows. 
We have to find the ground state of the system in an electric 
field and in the absence of the field, and then compare the 
energies and charge distributions. 

In the present section we shall determine the charge 
distribution in an external field in the form that we shall 
postulate without-at this stage-justification and in the 
next sections we shall describe computer experiments car- 
ried out to study the problem. 

A. Screening of absolute zero 

We shall consider the half-space x > 0 which is filled 
with the system under consideration. We shall assume that 
outside this half-space there is a static electric field E direct- 
ed along the x axis. The question is: does the field decay in 
the half-space x > O? We can answer this question by postu- 
lating the following qualitative picture. Excess electrons mi- 

grate to the surface so as to screen the field. The density of 
the excess surface charge u is determined uniquely by the 
selected field: 4ur = E. If we bear in mind that the electron 
charge is discrete, we find that excess electrons form an ir- 
regular lattice with a period of the order of (e/u)'" = (4re/ 
E )'I2. When the field is reduced, the period of this lattice 
tends to infinity. We can easily describe now the field pattern 
in the half-space. Near the "sites" of this lattice the field is 
compensated, whereas between the "sites" it penetrates into 
the half-space to a depth of the order of 

r,= (4ne/E)  '", (2) 

which becomes infinite in the limit E 4 .  Therefore, in a 
certain sense the screening is nonlinear. This circumstance is 
pointed out in Refs. 2 and 3, where it is attributed to the 
Coulomb gap,4 i.e., to the vanishing of the density of states at 
the Fermi level. Essentially, the preceding discussions are 
based on two assumptions, which are the only ones needed in 
the derivation of the Coulomb gap: the electron states are 
localized and the interaction is in accordance with the Cou- 
lomb law. 

A full description of the screening can be provided if we 
can say at what distance from the surface is the screening 
lattice of excess electrons located. We shall assume that this 
distance is of the order of the average separation between 
impurities: r,zN; However, if the external field is con- 
siderably less than the fields exerted by one electron on an- 
other, then ro(rE. Moreover, by definition, the distance r, is 
independent of E. The low-temperature Debye radius of Eq. 
(1) reduces to this distance at the low-temperature limit of 
the validity of this equation, i.e., at T z e 2  Ng3/xO (the case 
of strong compensation 1 - K( 1 requires a separate discus- 
sion). 

We shall now consider the field averaged in a plane par- 
allel to the surface of the half-space. In view of the linearity 
of the electrostatic equations, this field is governed by the 
average charge which, in accordance with the above discus- 
sion, decreases steeply on increase in x in the range x > r,. 
Hence, it follows that the average field in this plane de- 
creases at a distance of the order of r,. 

It is pointed out in Ref. 5 that in a planar surface layer 
the density of states responsible for the change in the carrier 
density because of a change in the Fermi level position does 
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not have a Coulomb gap. This density is constant and gov- 
erned by the total impurity concentration. In the geometry 
under discussion the average thickness of the space charge 
layer can be estimated from ro = (e2g~xo)-"2, where go is 
the density of states for a moderate compensation of the or- 
der o fNg3 xo/e2. This estimate shows that the length ro is of 
the order of the average separation between impurities. 

It therefore follows that the proposed description is 
characterized by two different lengths representing the 
screening effect. The square of the field averaged over a 
plane parallel to the surface decreases at a distance of r,, 
whereas the average field in such a plane decreases at a dis- 
tance r,. This is true of any geometry. 

We shall consider a body of arbitrary shape and charac- 
teristic size R, subjected to a homogeneous electric field E. If 
this body is so large that R)rE, we can introduce a field 
averaged over distances large compared with r, but small 
compared with R. Such a field decreases with depth in the 
body over a distance of the order of ro, whereas outside the 
body it is identical with the field calculated on the assump- 
tion that the body is metallic. However, the average square 
of the field decreases only at a depth rE and at distances 
short compared with rE the field differs very little from the 
average value. On the other hand, ifthe body is small, so that 
R(rE, but still macroscopic, i.e., if R)ro, then the dipole 
moment induced in such a body does not have the same di- 
rection as the external field and its magnitude is a random 
quantity, i.e., it changes significantly on transition from one 
configuration of donors and acceptors to another. This is 
explained by the fact that if Rz r , ,  then the screening 
charge consists of about one electron. 

In considering a body in an external field, we may face 
the question what is the field at the point r when it is aver- 
aged over all possible donor and acceptor configurations. 
Within the framework of the proposed description of the 
screening, the answer is as follows. When the screening 
charge is averaged over the various configurations, its dis- 
crete nature is lost completely. The average screening charge 
is smeared out in a surface layer of thickness ro. IfR)ro, then 
the average field outside the body is the same as in the case of 
metallic solid, whereas the average field inside the body falls 
at a distance of the order of r,,. This is true for r >  r, or 
R < rE , but if R <rE the induced dipole moment exhibits a 
very strong dispersion on transition from one configuration 
to another, although its average value is still the same as that 
for a metal. 

Unfortunately, we cannot provide a rigorous justifica- 
tion of the proposed screening pattern, although in the next 
sections we shall give supporting results of a computer mod- 
eling. Moreover, we cannot say that this pattern is a definite 
consequence of the localization states and of the discrete 
nature of the electron charge. Let us examine, for example, 
the screening of an external field in a classical Wigner crystal 
which is formed by a classical electron class with a homogen- 
eously charged three-dimensional background. In this case 
we have both localization of one-electron states and the 
charge is discrete, but it is clear that there is no large length 
which depends on the field. The excess charge appears sim- 

ply because of an increase or reduction in the lattice constant 
of a Wigner crystal in the surface layer. Therefore, a weak 
field is completely screened over a distance of the order of 
the lattice constant and nonlinear screening does not appear. 
It follows that in the case of a Wigner crystal the screening of 
an external field does not occur in accordance with the pic- 
ture proposed above. In our picture it is assumed that the 
screening is due to a small number of excess electrons which 
have little influence on the structure of the ground state in a 
weak field. In the case of a Wigner crystal a weak field shifts 
all the surface electrons. It seems to us that this mechanism 
cannot operate in the case of a disordered system in which 
the short-range order is governed by the donor and acceptor 
configurations, and changes in this order require large ener- 
gies. 

B. Estimate of the dispersion of the polarizability at zero 
temperature 

We shall consider a sphere of radius R in an external 
field E. It follows from the above discussion that the average 
(over the system) density of the screening charge is -E and 
the total screening charge in the sphere is -ER 2. If ER 2%e, 
then the discrete nature of the electron charge plays no sig- 
nificant role and the dispersion of the polarizability is weak. 
In the opposite limiting case, ER '<e, for the majority of the 
configurations of the donor and acceptor coordinates, i.e., 
for the majority of such spheres, a dipole consisting of two 
charges separated by a distance R does not appear at all un- 
der the action of the electric field. The probability of its ap- 
pearance is of the order off (R ) = ER '/e< 1. The average 
dipole moment Pis  of the order off (R )eR = R 3E, i.e., it is of 
the same order as for a conducting sphere of radius R. How- 
ever, the dispersion of the dipole moment is 
- 
P2-P2= (e2R2) ( E R 2 / e )  -R6E2, 

where the second term is small compared with the first. The 
relative fluctuation of the dipole moment 

[ (p'-p"/lp] 'I2= (e/EHZ) 'l2 (3)  
is large. A fluctuation of the polarizability a ,  defined by the 
relationship P = aE,  is of the same order of magnitude. We 
therefore find that the rms value of the relative deviation of 
the polarizability of a sphere of radius R is of the order of 

C. Screening of a point charge 

We shall assume that an additional point charge is in- 
troduced into the system. The potential of this charge alters 
the ground state of the system. The question is: what is the 
law which represents the screening of the potential of the 
charge? Obviously, the answer depends on the method of 
averaging of the resultant potential. The potential averaged 
over all possible configurations of donors and acceptors de- 
creases over a distance of the order of ro, exactly as in the 
screening of a homogeneous field. The discreteness of the 
electron charge then plays no role whatever. The average of 
the absolute value of the potential behaves quite differently. 
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We shall consider a sphere of radius R with an excess 
charge at its center. The majority of the changes inside the 
sphere experience an electric field E = e/x,J '. It is found 
that for any sphere the length rE introduced above is of the 
order of the sphere radius. This is to be expected because for 
any radius R the screening charge consists of one electron. In 
subsection A we have mentioned that the field averaged over 
a distance greater than r, fluctuates weakly in space and is 
not greatly affected when one distribution of coordinates is 
changed to another. When a point charge is screened, the 
field averaged over any sphere with a charge at the center 
fluctuates strongly. Therefore, the potential of a point 
charge is a strongly fluctuating random quantity at any dis- 
tance. 

~ f r o s  in fact assumed2 that the screening is of the insu- 
lator type, i.e., that the rms potential or the average of the 
absolute potential decreases in accordance with the Cou- 
lomb law 

Here, x is the permittivity which appears because of the po- 
larization of pairs of donors with an internal distance of the 
order of r,, where r,(r. (The value of x is of the order of 
infinity-see Ref. 6.) Essentially, Eq. (5) means that the main 
contribution to the permittivity appears for short distances 
because the permittivity does not exhibit spatial dispersion 
over distances r)r,. In this approximation the charge carri- 
ers are "electron polarons" which are electrons creating pair 
polarization during their motion. In fact, they can be regard- 
ed as electrons in a medium with the permittivity x,x. Then, 
the density of the polaron states near the Fermi level is 

However, we cannot exclude the possibility that IF I de- 
creases in accordance with the power law: 17 I a r - q ,  where 
q> 1 is an unknown index. In this case the formula (6) be- 
comes invalid. Unfortunately, the modeling for which the 
results are given in the next section cannot provide a suffi- 
ciently reliable value of the index q. 

D. Screening and finite temperatures 

We have mentioned earlier that at temperatures which 
are high compared with the impurity band width the screen- 
ing is of the Debye nature. Naturally, in this case the surface 
density of the screening charge a is related to the field E by 
the same expression E = 4 m ,  but the charges undergo ther- 
mal motion, so that averaging with respect to time destroys 
completely the effects of the discreteness of the electric 
charge. 

The question arises whether this suppression occurs at 
any temperature, no matter how low or only in the Debye 
range. It seems to us (although this cannot be regarded as 
proved) that low-temperature excitations in the system un- 
der consideration are electron transitions in donor pairs with 
large internal distances. These transitions do not alter basi- 
cally the structure of the ground state, which is determined 
by the immobile charged acceptors. Therefore, if the tem- 
perature is sufficiently low, the charge positions vary little 

with time so that the discreteness of the electron range re- 
mains important even after averaging with respect to time. 

As at zero temperature, this discreteness may be mani- 
fested by the dispersion of the polarizability which appears 
as we go over from one impurity configuration to another. 
We shall still consider a sphere of radius R. It follows from 
the hypothesis of a Coulomb gap that the number of possible 
electron transitions from one donor to another located at a 
distance R is very low if we consider only the transitions that 
require an energy which does not exceed T. If T<e2/x,J, 
this number is independent of N, and proportional to T. 
These two statements are sufficient to show that the number 
in question is of the order of x,TR /e2. Hence, it follows that 
when temperature is lowered the dispersion becomes strong 
for T < e2/x,J and that 

Naturally, the inequality T<e2Ny/xo  should then be satis- 
fied. Equation (7) reduces to Eq. (4) when TzeER /x,. 

5 2. COMPUTER MODELING 

A. Absolute zero 

The program of modeling at zero temperature was as 
follows. A method described in Ref. 7 was used to find the 
ground state of a system comprising N donors and N/2  ac- 
ceptors in a homogeneous electric field and in the absence of 
such a field. Half the donors should be neutral and the other 
half charged. The ground state is determined by finding the 
set of occupation numbers characterizing the charge state of 
each donor and ensuring a minimum of the total electrostat- 
ic energy of the system. The projection of the dipole moment 
of the system on an axis parallel to the field is calculated for 
each of these states. The polarizability per one donor is 
found from 

where P, and Po, are, respectively, the projections of the 
dipole moment along the field direction in the presence and 
absence of the field. The vector P is given by the expression 

where ri is the radius vector of a donor and r, is the radius 
vector of an acceptor. If a donor i is occupied, we have 
n, = 1, but if it is vacant, we find that ni = 0. The quantity a 
was averaged over many configurations of donors and accep- 
tors and its dispersion was found. The modeling was carried 
out for sets with N = 200 and N = 50 in the form of a sphere 
and an ellipsoid of revolution (the latter only for N = 200). 

The unit of length is the average distance between the 
donors N, "3 and the energy and temperature are measured 
in units of e2 N Y/x,. In terms of such units the radius of the 
sphere is R = ( 3 ~  /4a)'I3. An electric field (in units of eN F/ 
x,) is 0.03,0.05,0.07,0.1,0.15, and 0.2. Within the limits of 
the calculation error, there is no systematic dependence of 
the average polarizability on the field. It is found that for a 
system in the form of a sphere the average value is 
0.19 f 0.02 for N = 200 and 0.16 + 0.02 for N = 50. The 
polarizability is averaged over 40 configurations of the do- 
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nor and acceptor coordinates for N = 200 and over 85 con- 
figurations for N = 50. 

In our units the polarizability of a metallic sphere is 
a, = 3/4n = 0.239. The deviation of the observed average 
values from this a, is due to the finite nature of the screen- 
ing radius ro. In the Appendix we shall derive an expression 
for the polarizability of a spherea on the assumption that the 
screening is linear, i.e., that the density of the screening 
charge is p(r)/4?r 6 ,  where p(r) is the potential at the point r 
and ro is the screening radius. In the Debye theory this 
expression should be identical with Eq. (1). In general, it can 
be calculated by substituting in Eq. (A.5) the values of a 
found by modeling. If rdR(1, then Eq. (AS) becomes 

It follows from Eq. (9) and from the above data that ro = 0.25 
both for N = 200 and N = 50. We shall now consider not a 
sphere but an elongated ellipsoid of revolution for the same 
set with N = 200 and with the axial ratio r3I2. The average of 
60 realizations of the polarizability was found to be 
a = 0.52 + 0.04. The polarizability of the corresponding 
metallic ellipsoid would be a = 0.68. 

If we apply to the ellipsoid a formula similar to Eq. (9), 

where S and V are the surface area and the volume of the 
ellipsoid, we again obtain ro = 0.25. 

It follows that the polarizability averaged over the var- 
ious configurations is the same as for a conducting solid of 
the same shape with a very small screening radius. 

However, the directions and absolute values of the di- 
pole moments of the individual configurations differ greatly 
from one another and from the situation encountered in an 
ideal conductor. This is manifested by the anomalously 
strong dispersion of the polarizability. Figure 1 shows this 
dispersion as a function of the electric field. The results 
should be compared with Eq. (4). We can see that when dis- 

persion for N = 200 is multiplied by (200/50)"3 = 1.59, the 
data for N = 200 and N = 50 become identical, in agreement 
with Eq. (4). We can also see that for large values of the 
dispersion [and Eq. (4) is only valid for such values!] the 
dependence is close to the square-root type. 

The screening of a point charge at the center of a sphere 
can be studied by assuming that this is a unit charge and by 
finding the ground state of a system with N = 200 without 
and with a charge. Then, at six points in a sphere of radius R, 
at which the Cartesian coordinates intersect a sphere of radi- 
us r, we can define the value of pi (r) as the difference between 
the electrostatic potentials at the center in the presence and 
absence of a charge (i = 1,2, . . . , 6). Then, calculating the 
average value for the sphere we obtain 

T ( r )  =6-'z qi ( r )  . 
i=i 

The values of r were selected to be as follows: 1/5,2/5, 3/5, 
4/5, 1, 2, and 5 in units of the radius R of the sphere. This 
procedure was carried out for 60 configurations of the donor 
and acceptor coordinates and averaging was carried out over 
the realizations of the quantities p(r) and Ip(r)l. This gave 

and I WI, respectively. The results are presented in 
Fig. 2. If r >  R, the potential fluctuates weakly and it 
amounts to l/r  in terms of the adopted units. However, if 
r < R, the fluctuations are so strong that very different re- 
sults are obtained by different averaging methods. In parti- 
cular, it is clear that decreases much more steeply than 
does I m). For comparison, we plotted two figures in Fig. 
2. The continuous curve represents the function 

which applies to linear screening with the radius ro(R, 
whereas the dashed curve is the function 

corresponding to the potential of a charged insulator sphere 
with a permittivity x .  It seems to us that fits well the 
curve of Eq. (1 1) with r,, = 0.45 in units of the average dis- 
tance between the donors, whereas 1 is close to the 
function (12) with x = 2.5. This corresponds qualitatively to 
the ideas put forward in 9 1. 

B. Modeling at finite temperatures 

FIG. 1 .  Dependence of the relative value of the rms deviation of the polar- 
izability on the electric field: A) N = 50, averaging over 85 coordinate 
configurations; 0) N = 200, values multiplied by 4'13, averaging over 40 
coordinate configurations. The curve represents Eq. (4). 

At finite temperatures the main results can be obtained 
by means of the fluctuation-dissipation theorem. The polar- 
izability is calculated from 

a= ( ( P Z > - ( P ) 2 )  /3TN,  (13) 

where ( . . . ) denotes averaging over a cycle of Monte Carlo 
steps, i.e., it denotes averaging with respect to time, whereas 
the bar still represents averaging over the realizations. The 
results obtained below were obtained for sets with N = 200 
and N = 50. The modeling program was described in Ref. 8. 
The number of the Monte Carlo steps increases as a result of 
cooling. The cycle ceases as soon as the number of electron 
transitions reaches 12 000. By increasing this number we can 
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demonstrate that 12 000 transitions are sufficient for the 
convergence of the process at all the investigated tempera- 
tures. The results of the calculation were averaged over the 
various configurations of donor and acceptor coordinates. 
The modeling was carried out at temperatures D0.05 .  Fig- 
ure 3 shows the temperature dependence of the polarizabili- 
ty. This curve demonstrates the results of the Debye theory 
according to which the screening radius ro is equal to r, and 
it is described by Eq. (1) (see the Appendix). Since the donor 
concentration is taken to be unity, spheres with N = 200 and 
N = 50 have different radii and their polarizabilities per do- 
nor differ at high temperatures, when r, becomes compara- 
ble with the sphere radius R. Figure 4 shows the dependence 
r,(T) obtained using the function a(ro) calculated in the Ap- 
pendix and the values of a are found from the modeling re- 
sults. This figure shows also the dependence r, (T) corre- 
sponding to the Debye theory. We can see that if TZ0.2, 
then we can in practice use the Debye theory which formally 

FIG. 2. Screening of a point charge placed at the center 
of a sphere: a) (r); 0) I mi. The continuous curve 
represents Eq. ( 1  1) with r,, = 0.45. The dashed curve 
represents Eq. (12) with x = 2.5. 

should be valid only for 73 1. This is clearly due to the fact 
that the Coulomb gap structure is destroyed at a very low 
temperature, as pointed out by Davies et This circum- 
stance interfered with our attempt to check the hypotheis of 
two screening lengths at finite temperatures. The longer 
length should be manifested by an anomalous dispersion of 
the polarizability. Our results indicated an increase in the 
dispersion in the range T 5  0.2 (Fig. 5). However, at the tem- 
peratures that could be considered in our analysis the disper- 
sion did not reach 100% and we were unable to check Eq. (7). 
One would have to increase the size of the set used in the 
computations and to lower the temperature. 

In addition to a modeling utilizing the fluctuation-dissi- 
pation theorem, we also carried out a modeling in which a 
system was "frozen" in a finite electric field and then ther- 
mal motion was "activated" and the polarizability was de- 
termined. However, this procedure did not give any basical- 
ly new results. 

The main conclusions were as follows: at absolute zero 
the screening is characterized by two lengths ro and r,, and 
this is manifested by an anomalous dispersion of the polariz- 

FIG. 3. Temperature dependences of the polarizability per donor: 0) re- FIG. 4. Temperature dependence of the screening radius: A), 0) results of 
sults of modeling at finite temperatures T; 0) results ofmodeling at T = 0; modeling for N = 200 and 50, respectively; the curve is the dependence 
the continuous curves represent the Debye theory; a) N = 200; b) N = 50. (1) .  
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FIG. 5. Temperature dependence of the relative value of the rms (%) 
deviation of the polarizability: 0) N = 50, averaging over 25 coordinate 
configurations; 0) N = 200, averaging over 10 coordinate configurations 
(the value of N = 200 is multiplied by 2 in order to fit the high-tempera- 
ture limits for the two sets). 

ability in weak fields; when a point charge is screened, the 
potential at large distances from the charge is random and 
decreases slowly, whereas the average potential over all the 
configurations decreases rapidly; at finite temperatures the 
range of validity of the Debye theory with a radius r, defined 
by Eq. ( I )  extends deep into low temperatures. This circum- 
stance does not allow us to "match" the data on the disper- 
sion at zero temperature with those obtained for finite tem- 
peratures. 

APPENDIX 

Calculation of the polarizability of a sphere of radius R with a 
given screening radius r, 

We shall select the origin of the coordinate system at the 
center of the investigated sphere. The potential outside the 
sphere is 

cp("=-Er cos 6+aE cos e l f ,  (A. 1) 
where 6 is the angle between the vector r and the field E. The 
potential inside the sphere is given by 

A solution of this equation is 

cp("=r-'" cos ~ [ C , I J I ~  (r /ro)  +C2Ky, (r /ro)  I ,  (-4.3) 

where C, and C2 are constants and I,,,(r/r0) and K,,,(r/ro) 
are modified Bessel and Hankel functions, respectively. 
Dropping the terms which diverge at zero, we find that the 
potential inside the sphere is 

(P(i)=r-le COS SC[  (r/ro) -'" ( e - r ~ ~ o + e r f ~ o  
+ (,.Ir0) 4: ( e - r / r o - e ~ / r ~  

) 
11, (A.4) 

where Cis  a constant which must be determined. . 
Matching the functions p(') and p"' and their normal 

derivatives on the surface of the sphere (at r = R ), we obtain 
an equation which relates the polarizability a to the screen- 
ing radius r,: 

2u/R3+1 e-" (2z-"+2z-"+z'/9) + e ~ 2 z - ' ~ - 2 z - % - z ' ~ )  
- - 

d R 3 - 1  z - l / x  ( e - z + e z )  +z-" ( e - z - e z )  
7 

(A.5) 

where z = R /r,. If Rsr,, we find from Eq. (A.5) that 

alR3=1-3r,/R. 

If R (r,, then 

a/R3=R2/1  5r02. (A.6) 

If we describe ro(T) using Eq. (I) ,  we obtain from Eq. (A.6) 
the expression 

a/RS=nRZ/15T.  
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